
Integration of Open Data into the
JValue Hub

BACHELOR THESIS

Dirk Engelhard

Submitted on 2 December 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Georg Schwarz

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 2 December 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 2 December 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

When working with open data, it is essential to have easy access to the necessary
sources. Open data portals provide a vast amount of data, but finding the right
platform and data for a specific project can be challenging. This thesis aims
to integrate open data into the JValue Hub, a web-based collaboration platform
for working on data pipelines built with Jayvee, a domain-specific language for
building data pipelines.

We design and implement a multistep solution that imports open data from
various sources and processes it into a format suitable for the JValue Hub. This
will lay the foundation for features that enable users to search for and access open
data directly from the JValue Hub without needing to switch between different
platforms.

iii

iv

Contents

1 Introduction 1

2 Foundations 3
2.1 Data in Open Data Portals . 3

2.1.1 GovData . 3
2.1.2 Data.gov . 5

2.2 Conclusion . 5

3 Requirements 7
3.1 Priority Group 1 . 7
3.2 Priority Group 2 . 8
3.3 Priority Group 3 . 8

4 Architecture and Design 9
4.1 Overview . 9
4.2 API crawling . 10

4.2.1 API Selection . 10
4.2.2 Integration into Existing Infrastructure 11
4.2.3 Configuration . 11
4.2.4 Structure of the data . 12

4.3 Datasource Middleware . 12
4.3.1 Integration into Existing Infrastructure 12
4.3.2 Configuration . 14

4.4 Data persisting . 14
4.4.1 Integration into Existing Infrastructure 14
4.4.2 Configuration . 14

4.5 Summary . 15

5 Implementation 17
5.1 Crawler . 17

5.1.1 Internal Data Representation 17
5.1.2 RDF-XML parsing . 19

v

5.1.3 Crawling algorithm . 21
5.1.4 Database . 22

5.2 Datasource Generator . 23
5.2.1 Mapping of the Crawled Data to Data Sources 23
5.2.2 DistributionQueue and DataSourceQueue 24

5.3 Hub-Backend . 25
5.3.1 Database Handling . 25
5.3.2 REST API . 27

5.4 Shared Libraries . 27
5.5 Logging . 28

5.5.1 Progress Logging . 29
5.5.2 Error Logging . 29

5.6 Containerization . 30
5.6.1 datasource-generator . 30
5.6.2 crawler-job . 31

6 Evaluation 33
6.1 Additional Requirements . 33
6.2 Priority Group 1 . 34
6.3 Priority Group 2 and 3 . 35

7 Future Work 39
7.1 Remaining Requirements . 39
7.2 Additional Ideas . 39

8 Conclusion 41

Appendices 43
A Requirements workshop notes . 45

References 49

vi

List of Figures

2.1 The data set search page of govdata. 4
2.2 The data set detail page of govdata. 4

4.1 DCAT RDF catalog specification (AG für GovData, 2022) 13
4.2 Diagram showing the extension of the JValue-Hub app system. . . 15

5.1 XML diagram of Dataset and Distribution interfaces 18
5.2 An Unified Modeling Language (UML) diagram for the Catalog-

Metadata interface and its corresponding methods 20
5.3 XMLStrings interface definition and Typescript implementation . 21
5.4 A XML diagram of DataSource and DataSourceMetadata classes . 23
5.5 Diagram showing the data source related REST API endpoints. . 27
5.6 A graph visualizing the interaction between components. 28

6.1 A data source info card in the JValue Hub displaying some crawled
data. The frontend was not implemented as a part of this thesis,
but uses the API endpoints created in this work as a foundation. . 35

6.2 The new topic search in the JValue Hub displaying some crawled
data. The frontend was not implemented as a part of this thesis,
but uses the API endpoints created in this work as a foundation. . 36

vii

viii

List of Tables

4.1 Comparison of supported APIs on various open data portals. The
data portals were checked in August 2024. 10

5.1 Logging identifiers for the new apps. 28

6.1 Overview of the requirements and their status 33

ix

x

Listings

5.1 A simplified example of the XML-formatted source data 19
5.2 Example of a DCAT RDF/XML catalog metadata 19
5.3 Implementation for DCAT-DE-AP 21
5.4 SQL schema of the data source table 26

xi

xii

Acronyms

API Application Programming Interface

CKAN Comprehensive Knowledge Archive Network

CSV Comma-separated values

DCAT Data Catalog Vocabulary

JSON JavaScript Object Notation

RDF Resource Description Framework

RAM Random Access Memory

REST Representational State Transfer

SPARQL SPARQL Protocol And RDF Query Language

UML Unified Modeling Language

URI Unique Resource Identifier

XML Extensible Markup Language

xiii

xiv

1 Introduction

‘Make open data safe, easy, and reliable to use.‘ — This is the headline of the
official website from the JValue project (JValue Project, n.d.). JValue is a project
with the goal of enabling people to use open data more easily and efficiently.
Besides Jayvee, a domain-specific language for building data pipelines, there is
also the JValue Hub. The Hub is a web-based management software that allows
users to create and collaborate on Jayvee projects.

Open data has become increasingly important in various fields, including research,
government, and business. It provides valuable insights and fosters innovation by
making data freely available to the public. However, accessing and integrating
open data can be challenging due to the diverse formats and sources from which
it is available.

Currently, users of the JValue Hub must manually search for datasets on the
internet and integrate them into their pipelines. This process involves switching
between the JValue Hub and third-party sources, creating a disconnect between
the actual work on the data pipelines and the source material. This workflow
interruption can be inefficient and cumbersome for users.

What if we could create the possibility for users to access open data from various
sources from right inside the JValue Hub? Having the data right at hand would
provide great additional value to the project. The goal of this thesis is to evaluate
possibilities to find open data sources directly on the JValue Hub instead of
relying on external services, and implementing the mechanisms that are necessary
for such a feature to work.

In order to implement such a feature, we examine where open data is offered
and how meta-data from those locations can be integrated into the JValue Hub.
Further, we look for inspiration in existing data providers for enabling users to
find open data on the JV Hub. Based on the findings, we design the feature for
the JV Hub and, finally, implement it.

In this thesis, we evaluate and implement the following mechanisms:

• A crawler that is able to connect to various open data portals by access-

1

1. Introduction

ing the Resource Description Framework (RDF) metadata catalog of the
Comprehensive Knowledge Archive Network (CKAN).

• A component that converts the data representation on the data portals to
data sources, the JValue Hub (and Jayvee) internal format.

• An Application Programming Interface (API) providing access to the data
sources to make a search on the data sources possible.

The resulting data source search in the JValue Hub allows users to browse open
data offerings from various sources based on their search options. With the
provided information, they will be able to decide which data sources they want to
use in their project. This removes the workflow step of switching to and between
open data portals manually and improves the user-friendliness of the JValue
Hub. The result also provides the foundations for more advanced functionalities
in the future, like linking data sources to Jayvee projects and vice versa, creating
projects based on a data source, or suggesting fitting data sources for projects.

2

2 Foundations

2.1 Data in Open Data Portals

First, we will examine where significant amounts of data used in Jayvee Pro-
jects might be found: Open Data Portals. We will examine how these portals
handle providing and displaying datasets and explore how we can build on their
approach.

When researching open data portals, one software that immediately stands out
is CKAN. It is one of the most widely used platforms for managing data portals.
In terms of adoption rate, there are only a few noteworthy alternatives. Socrata
is one of them, but the majority of renowned and international data portals use
CKAN as their base system.

Therefore, when considering the integration of datasets into the JValue Hub, it
is beneficial to start by examining how data is structured and managed within
CKAN-based data portals.

2.1.1 GovData

GovData is the open data portal of the German government. For this thesis, it
will be one of the most important reference points, and ensuring compatibility
with it will be a top priority.

When we open the data set overview (Figure 2.1), we see many entries with
the headline ‘dataset‘. Each dataset is displayed with a title and a description.
Below, there is a section that lists various file types contained within the dataset.
To find out more about a dataset, we can click on the title to open it.

This leads us to another screen. The title and description of the data set is still
displayed, but additional information is now visible. We see a side panel with
information such as keywords, categories etc., and below, we have a list of files.
Each file is displayed with its corresponding file type, and when we extend the
view by clicking on the arrow next to it, we see a description of the file, a ‘last
modified‘-date and some license information.

3

2. Foundations

Figure 2.1: The data set search page of govdata.

Figure 2.2: The data set detail page of govdata.

4

2. Foundations

2.1.2 Data.gov

Data.gov is the open data portal of the United States government. It is also
CKAN based and might be one of the initial data sources to be used in the
JValue Hub. Similar to the overview of GovData, the data sets are listed with
their respective title, description, and file type. If we open a data set, we see
the same structure as in GovData. The data set is displayed with a title and a
description, and below, there is a list of files. The files itself are displayed with
an according file type, and we can also view more detailed information about the
file by clicking on it.

2.2 Conclusion

Understanding the structure and management of data in open data portals is cru-
cial for integrating open data into the JValue Hub. By examining platforms like
CKAN and specific portals such as GovData, we can identify best practices and
potential challenges. This knowledge will drive the design and implementation
of features that enable seamless access to open data within the JValue Hub.

5

2. Foundations

6

3 Requirements

The requirements for the data set functionality in the JV Hub were evaluated
in a workshop that was held with some JValue Team members. The attendees
besides myself were Georg Schwarz, Johannes Jablonski, Phillip Heltweg and
Leonie Färber. The workshop aimed to provide a clear concept of how the mem-
bers would expect such a feature to work. Some suggestions were defined prior
and then evaluated within the group. Also, new ideas and features were brain-
stormed and added into the list of possible features. The group also discussed the
respective importance of the features, and, in some cases, ideas about possible
implementation possibilities. In the following section, the outcome of said work-
shop will be evaluated and portrayed as a collection of requirements. A protocol
of the workshop can be found in appendix section A.

The requirements are categorized based on their respective priority. This ap-
proach allows us to be more flexible regarding the implementation and efficient
use of time. In order to get a solid foundation or in case of unexpected changes,
resources can be transferred from less important categories without endangering
the value of the work.

3.1 Priority Group 1

This priority group describes the goals that are obligatory for functionality of the
feature. In the context of this work, they describe a minimal viable thesis.

• R1.1: Provide a crawler functionality that allows the import of data set
metadata from CKAN-based open data portals like GovData or Mobilithek

• R1.2: Create a scheduled update feature for iporting the changes made to
the dataset catalogues

• R1.3: Persistent logging functionality of the crawler

• R1.4: Enable the user to inspect the metadata of data sets

• R1.5: Possibility to create projects that are linked to data sets, or link

7

3. Requirements

existing projects to data sets

• R1.6: Create an intuitive way to search data sets in the hub

• R1.7-A: Additional requirement, added later within the process: Represent
data sets as data sources (as they are referenced and used like in Jayvee)
and provide a way to convert between the formats.

• R1.8-A: Additional requirement, added later within the process: Provide
an entry point for future work where solutions for improving data source
metadata with AI can be implemented.

3.2 Priority Group 2

This priority group describes features or functionality that is not mandatory, but
would provide significant additional value. If sufficient time is available in the
scope of this thesis, they should be implemented. They may be considered stretch
goals.

• R2.1: Possibility for hub users to manually add data sets

• R2.2: Possibility for hub users to manually update data sets

• R2.3: Suggestions of fitting data sets during project creation

• R2.4: Ability to browse linked projects for a data set

• R2.5: Basic pre-initialization of projects based on the used data sets

• R2.6: More advanced search on data sets (search conditions yet to be
evaluated, e.g. date, source platform, category, location)

3.3 Priority Group 3

This priority group describes features that could provide additional value, but
are not necessary.

• R3.1: Rank the data sets (based on a to-be-defined metric)

8

4 Architecture and Design

This chapter describes how the components will be designed and integrated into
the existing project architecture.

Currently, the JValue Hub project contains the following applications:

• Hub-Backend: The general backend application, mostly relevant for data-
base interaction.

• Hub-Web: The frontend for the user accessible via a web browser.

• File-Service: Used to write and read files from the file system.

• Pipeline-Service: Used for handling data pipelines built with Jayvee.

The apps use the NX1 build system and are containerized with Docker2.

4.1 Overview

Before the actual implementation it should be determined where it is reasonable
to place each functionality in the infrastructure of the hub.

When we isolate the main tasks of our code, the following abstract features can
be identified:

• API crawling

• Data processing

• Data persisting (Database handling)

Now let’s determine where the new added functionalities will find their place
inside the code.

1https://nx.dev/
2https://www.docker.com/

9

4. Architecture and Design

Data Portal RDF Catalog CKAN V3 API SPARQL
Austria Y Y N
Canada Y Y N
EU Data Portal Y N Y
France Y Y N
Italy Y Y Y
GovData (Germany) Y Y Y
Japan Y Y N
Mobilithek Y N N
UK Y Y N

Table 4.1: Comparison of supported APIs on various open data portals. The
data portals were checked in August 2024.

4.2 API crawling

This part deals with the task of retrieving the data from the sources by connecting
to their API and then making the data available for further processing.

4.2.1 API Selection

When designing the crawler, compatibility with open data portals should be kept
in mind. The different portals differ from each other in terms of API access.
To find the most suitable API for now, the number of supported data portals
should be as high as possible. When focusing on European or American data,
the official data portals mostly use an open source software called CKAN. CKAN
provides some APIs right out of the box. The most advertised API when read-
ing through the CKAN documentation (CKAN Project, 2023) is the CKAN v3
API. It provides access to the datasets via HTTP requests and the data is being
returned in JSON format.

Another option is the use of the SPARQL Protocol And RDF Query Language
(SPARQL). The CKAN extension ’SPARQL Interface for CKAN’ offers access
to the data over simple SPARQL queries.

However, these are not the most-used APIs at the moment. Some data providers,
including the German mobility data portal Mobilithek, don’t offer support for
these APIs. Instead, a very popular choice is to provide access via a RDF (World
Wide Web Consortium, 2014) metadata catalog, provided by the CKAN exten-
sion CKAN + DCAT (CKAN Project, n.d.). Govdata promotes the RDF catalog as
a primary way to access the data (Govdata Team, n.d.).

Table 4.1 shows the support of a selected set of open data portals for the different
APIs.

10

4. Architecture and Design

These examples show that the RDF Metadata catalog, at this time, is the most
popular option for the data portals we want to access. By choosing this variant,
we maximize the amount of data portals that are compatible with the crawler.

4.2.2 Integration into Existing Infrastructure

Since the world of open data is always moving and changing, importing the
catalog from a data portal is quite a time- and resource consuming task. The
most reasonable place for this would be the Hub-Backend, but there are a number
of reasons against this approach.

• The Hub-Backend has a more service-like functionality. A (possibly on-
demand) data import doesn’t fit that nature very well.

• If there is an issue with a data import, other components of the backend
should not be affected.

Since, out of the already-existing options, the Hub-Backend would have been the
most fitting one, we should consider the option of creating a new JValue Hub-
app from scratch. This approach allows us to containerize the functionality on
its own, which in turn makes it easy to schedule the runs on an infrastructure
level.

In terms of functionality, the Crawler will query the data portal APIs and save
the obtained data into the database of the hub.

A major difference between the Crawler and the existing hub components is, that
it won’t act in the background and take requests like a service, but instead runs
on-demand in a more procedural manner. This means the crawler is somewhat
special in the sense that it introduces a new type of component into the project.
The crawler is therefore given the descriptive name Crawler-Job.

4.2.3 Configuration

The configuration of the Crawler-Job will be handled analogue to the rest of the
apps via an .env file (and a separate one for the containerized deployment). A
new instance of the Crawler-Job will be created and executed for each data portal.
This means, the .env file will need a configuration parameter where the URL
of the CKAN metadata catalog can be passed. For development/convenience
purposes there will be another optional parameter allowing the developer to limit
the total amount of catalog pages that will be crawled during one cycle.

11

4. Architecture and Design

4.2.4 Structure of the data

Before we get started, we need to get a small overview about what we’re working
with. The open data metadata catalog is provided by a CKAN extension called
’CKAN + DCAT’. It exposes the metadata of the CKAN catalog formatted as
RDF/XML, Turtle or JSON-LD, defaulting to RDF/XML, according to the de-
veloper documentation (CKAN Project, n.d.). The RDF/XML serialization uses
the Data Catalog Vocabulary (DCAT) vocabulary, which is a W3C recommend-
ation for describing data catalogs and is described in its official recommendation
(World Wide Web Consortium, 2024). It is a set of classes and properties that
are used to describe data catalogs and datasets in a structured way. The DCAT
vocabulary is also used in the DCAT-AP adaptation, which is a recommendation
for the description of data catalogs in the European Union (AG für GovData,
2022). The DCAT-AP specification is, for example, used by the German gov-
ernment’s open data portal GovData. Figure 4.1 shows the essential part of the
UML diagram describing the DCAT vocabulary.

As illustrated, the open data representation consists of the main components
labeled with dcat:Dataset and dcat:Distribution keywords. From now on,
they will be referenced as ’dataset’ and ’distribution’. The distribution is some-
thing many people might intuitively consider as a data set (so a resource, e.g.
metadata of a Comma-separated values (CSV) file containing specific informa-
tion about some topic). It also contains license information, a title for the file
and many more information. The object referenced as a ’dataset’ by DCAT is
more like a meta-object that contains multiple Distributions. It also provides an
additional title, keywords and a description. In the frontend, many CKAN-based
data portals handle Datasets more like ’folders’ that contain the actual data (in
form of distributions).

4.3 Datasource Middleware

This part deals with the task of processing the crawled data and transform it
into a representation more suitable for the use inside the JValue hub.

4.3.1 Integration into Existing Infrastructure

We now know that the crawled data can flow in at any time a crawler run is
scheduled. Further, the time needed to process a new data set / distribution
may be longer than the rate in which they come in. Although this will be not
a major focus of this thesis, we want to consider that in the future there might
be added more sophisticated solutions for processing the incoming data. Faulty
metadata could be repaired, the data itself could be inspected and metadata
could be extrapolated from it. In short, we should accept that the processing of

12

4. Architecture and Design

Figure 4.1: DCAT RDF catalog specification (AG für GovData, 2022)

13

4. Architecture and Design

the data will likely have to be done in an asynchronous way to allow us to be
more flexible in scaling the application in the future.

This also means that the Hub-Backend won’t be the best place for this task,
either. We don’t want the import and data processing to interfere with the basic
functionalities of the backend, and the functionality of the Hub, in general. So
this feature also will be separated into its own app.

In conclusion, we will create another NestJS-App for processing open data
metadata that will operate more like a service in the background. This is because
it will wait for Crawler-Job-instances to spawn and then process the resulting
data. From now on, this app will be referenced as the ’Datasource Generator’.

4.3.2 Configuration

For the configuration, the Datasource Generator needs configuration for access
to both the Distribution-Queue and the Data Source-Queue. The configuration
will be handled via the .env file, as usual, and the app will get passed the queue
names as parameters.

4.4 Data persisting

This part deals with the task of saving the (now ready-to-use) data to the data-
base and providing the necessary API to the frontend, so it can be used.

4.4.1 Integration into Existing Infrastructure

This time, the Hub-Backend comes to mind as the natural choice. It already
provides the Database handling functionality for the majority of the cur-
rently existing features. It also provides access to the saved data by exposing
Representational State Transfer (REST)-API endpoints to the frontend. Creat-
ing an additional app here would create unnecessary redundancies, so we will
integrate this task into the Hub-Backend app.

4.4.2 Configuration

The Hub-Backend already has an .env file for configuration. Most of the con-
figurations also apply for the yet-to-be implemented features, but there will be
some additional parameters for being able to communicate with the Crawler-Job
and Datasource-Generator.

14

4. Architecture and Design

4.5 Summary

In short and as shown in Figure 4.2, we will add two additional apps to the
hub: crawler-job, running on-demand and being a new category in the hub,
and datasource-generator, that runs in the background like most of the other
apps.

crawler-job

file-service

hub-backend

hub-web

pipeline-service

runtime-simple

datasource-generator

services

jobs

Figure 4.2: Diagram showing the extension of the JValue-Hub app system.

15

4. Architecture and Design

16

5 Implementation

This chapter details the implementation of the data crawler and its integration
into the JValue Hub. The implementation covers various aspects, including data
representation, parsing, crawling algorithms, database interactions, and contain-
erization.

5.1 Crawler

The crawler is the first component that has to be implemented. It is responsible
for downloading the metadata catalogs from the open data portals, parsing the
data, and saving it into the database. The crawler is a standalone app that runs
independently of the JValue Hub. It is implemented as a NestJS app, which is a
Node.js framework for building server-side applications.

5.1.1 Internal Data Representation

Since the crawler itself won’t be responsible for generating the data source rep-
resentation of the open data, the internal representation will closely resemble the
source data it works with.

Essentially, we pick the most important information documented in the DCAT-
AP-DE specification, add some more useful information for working with the
objects and get these interfaces as a result:

From here on, objects that comply to these interfaces, are referenced as datasets
and distributions. The main differences (besides the removed parameters) are:

• id: Since we want our own versioning system, we cannot solely rely on the
IDs that come with the source data. This parameter is the hub-internal
UUID that will also be the primary key to be referenced in the database
later. Regarding the interfaces, only the Dataset needs the ID field at this
stage. More clarifications on this behalf follow in section 5.1.4.

• crawledDate: In addition to the already-provided creation and last mod-

17

5. Implementation

Figure 5.1: XML diagram of Dataset and Distribution interfaces

ified date fields, we add a crawledDate field to indicate when this entry
was found on the source platform. This field is important for the crawler
to determine if the entry has changed since the last crawl.

Additionally, we create some functions that provide the creating and parsing
functionality:

• datasetFromXMLNode(): Takes a raw dataset from the Extensible Markup
Language (XML) data, turns it into a Dataset object and returns it.

• parseDatasets(): Takes multiple raw dataset representations and turns
them all into Dataset objects.

• createBacklinksForDataset(): For the purpose of finding the corres-
ponding Dataset for a Distribution more easily, this function sets the
associatedDatasetAbout field for every distribution connected to it.

• distributionFromXMLNode(): Takes a raw distribution from the XML
data, turns it into a Distribution object and returns it.

• parseDistributions(): Takes multiple raw distribution represent-
ations and converts them all into Dataset objects by calling
distributionFromXMLNode(). The results are being returned as an ar-
ray.

18

5. Implementation

5.1.2 RDF-XML parsing

As discussed in chapter 4, the RDF and RDF-XML serialization specs predeter-
mine the way we have to interpret the provided metadata catalog. If we use the
DCAT vocabulary for filtering the correct nodes, we can use a simple XML parser
to extract the desired information. Listing 5.1 shows a simplified outline of how
the data is represented in the GovData metadata catalog.
<rdf:RDF >

<dcat:Dataset rdf:about ={DATASET-IDENTIFIER}>
<dct:title >{DATASET-TITLE}</dct:title >
<dct:description >{DATASET-DESCRIPTION}</dct:description >
<dcat:keyword >{KEYWORD 1}</dcat:keyword >
<dcat:keyword >{KEYWORD 2}</dcat:keyword >
<dct:issued rdf:datatype="date">{CREATION-DATE}</dct:issued

>
<dct:modified rdf:datatype="date">{MODIFIED-DATE}</

dct:modified >
<dcat:distribution rdf:resource ={DISTRIBUTION-IDENTIFIER}/>

</dcat:Dataset >

<dcat:Distribution rdf:about ={DISTRIBUTION-IDENTIFIER}>
<dct:title >{DATASET-TITLE}</dct:title >
<dct:description >{DISTRIBUTION-DESCRIPTION}<dct:description >
<dct:license rdf:resource ={DISTRIBUTION-LICENSE}/>
<dcat:accessURL rdf:resource ={DISTRIBUTION-URL}/>
<dcat:downloadURL rdf:resource ={DISTRIBUTION-DOWNLOAD-URL}/>
<dct:format rdf:resource ={DISTRIBUTION-FORMAT}/>
<dct:issued rdf:datatype="date">{CREATION-DATE}<dct:issued >
<dct:modified rdf:datatype="date">{MODIFIED-DATE}<

dct:modified >
</dcat:Distribution >

</rdf:RDF >

Listing 5.1: A simplified example of the XML-formatted source data

Essentially, we can link the distributions and datasets to each other by using
the ’rdf:about’ field specified in the RDF standard since it contains the Unique
Resource Identifier (URI) information for the referenced nodes. The URI of
the distribution (DISTRIBUTION-IDENTIFIER in the example) is accessible in the
rdf:resource parameter inside the distribution XML node.

To handle the catalog crawling, we also need a way to iterate over the different
catalog pages. Listing 5.2 shows which XML nodes the DCAT RDF/XML catalog
uses to express this information about itself by using the Hydra vocabulary.

This information will also be parsed and put into an object implementing a newly
created catalogMetadata interface:
<hydra:PagedCollection rdf:about ={LINK-THIS-PAGE}>

<hydra:nextPage >{LINK-NEXT-PAGE}</hydra:nextPage >

19

5. Implementation

Figure 5.2: An UML diagram for the CatalogMetadata interface and its cor-
responding methods

<hydra:firstPage >{LINK-FIRST-PAGE}</hydra:firstPage >
<hydra:lastPage >{LINK-LAST-PAGE}</hydra:lastPage >
<hydra:totalItems rdf:datatype ={INT}>{NUMBER-OF-ITEMS}</...>
<hydra:itemsPerPage rdf:datatype ={INT}>{ITEMS-PER-PAGE}</...>

</hydra:PagedCollection >

Listing 5.2: Example of a DCAT RDF/XML catalog metadata

• parseXMLStr(body: string): Uses the package xml-js 1 to parse the
downloaded XML file into a Typescript object representation.

• tryGetRDFBodyFromURL(url, logger, maxRetries: number){}: Wraps
getRDFBodyFromURL() to handle failures on fetch and retry a pre-defined
number of times.

• findNodesByName(): Finds all XML nodes that have the provided name,
e.g. <dcat:distribution>.

• getXMLContent(xmlElement: Element): string | undefined {}:
Takes an XML element and extracts the content. If the specified element is
not found in the object, then it tries to get it from typical XML attributes
used in DCAT.

• getDateFromXMLElement(xmlElement: Element): Date | undefined {}:
Uses getXMLContent() to get a date object contained in a DCAT RD-
F/XML date node.

1https://www.npmjs.com/package/xml-js

20

5. Implementation

export enum XMLStrings {
Distribution = ’dcat:Distribution ’,
distribution = ’dcat:distribution ’,
Dataset = ’dcat:Dataset ’,
downloadURL = ’dcat:downloadURL ’,
accessURL = ’dcat:accessURL ’,
resource = ’rdf:resource ’,
description = ’dct:description ’,
title = ’dct:title ’,
about = ’rdf:about ’,
format = ’dct:format ’,
license = ’dct:license ’,
hydra = ’hydra:PagedCollection ’,
hydraLast = ’hydra:lastPage ’,
modified = ’dct:modified ’,
issued = ’dct:issued ’,
datatype = ’rdf:datatype ’,
keyword = ’dcat:keyword ’,

}

Listing 5.3: Implementation for DCAT-DE-AP

Figure 5.3: XMLStrings interface definition and Typescript implementation

However, there is a caveat to consider: the DCAT-Vocabularies may vary from
one Data Portal to another. To handle that possibility, the vocabulary is be-
ing inserted by using an enumeration that can be easily replaced with another
one that implements another DCAT variant. For a case like that, typescript
provides a string-enum feature. Figure 5.3 shows the general enum layout and
the implementation for the DCAT-DE-AP vocabulary.

5.1.3 Crawling algorithm

This section provides a detailed overview of how the crawling algorithm is imple-
mented. This is a list of the functions used to implement the algorithm.

• crawl(catalogMetadata: CatalogMetadata){}: higher-level function
that crawls all pages of the provided RDF/XML catalog metadata. Saves
the results in the internal state of crawler-job.

• async function getRDFBodyFromURL(url: string, logger: Logger):
Promise<string | undefined> {}: uses node-fetch to get the RDF/XML
file from the provided URL.

21

5. Implementation

• saveDistributions(){}: saves the crawled distributions to the database.

• saveDatasets(){}: saves the crawled datasets into the database.

• appendDistributions(){}: adds a parsed distribution to the
distributions.

• appendDatasets(){}: adds a parsed distribution to the datasets.

• sendDistributionOverQueue(){}: sends a distribution object over the
queue to the datasource-generator.

On instantiation of a new crawler-job, the app reads the URL of the desired
metadata catalog from an environment variable. It uses node-fetch to down-
load the file from the webserver and creates a new CatalogMetadata object. This
object is used to slowly iterate over the catalog and download every remaining
page. On every iteration, the catalog page is being parsed into a typescript ob-
ject by using the parseXMLStr() function. The findNodesByName() function
is then used to get all the Dataset and Distribution nodes from the XML
file. Afterwards, the parseDatasets() and parseDistributions() functions
are then used to turn the raw data into Dataset and Distribution objects. The
objects are then being saved to the internal state of the crawler-job by using the
appendDatasets() and appendDistributions() functions. When the full cata-
log is processed, the saveDatasets() and saveDistributions() functions are
being called to persist the data into the database. If this step was successful, the
sendDistributionOverQueue() function is being called to send the distribution
objects to the datasource-generator.

5.1.4 Database

Although it is not planned to show the raw crawled data directly to the user, it will
be persisted in the database nonetheless. The Crawler, just like Hub-Backend,
uses TypeORM2 for communication with the underlying Postgres3 database. It’s
crucial that other apps, especially the backend, are also able to access the same
tables, so the database service class is created within the shared library folder
and then being used by importing the NestJS module. The service class mainly
consists of two methods:

• saveDataset(): Saves a dataset object to the postgres database and re-
turns the entity on success. On error, undefined is returned.

• saveDistribution()saveDistribution(): Saves a distribution object to the
postgres database and returns the entity on success. On error, undefined is
returned.

2https://typeorm.io/
3https://www.postgresql.org/

22

5. Implementation

Figure 5.4: A XML diagram of DataSource and DataSourceMetadata classes

Both save functions check, if the object already exists in the database. ’Already
exists’ in this case means that both of those conditions apply:

• An object with the same about field already exists.

• The object also has the same value inside the modifiedDate field.

The conditions ensure that only new versions of datasets and distributions will
be inserted into the database. A Postgres SQL constraint verifies the conditions
are met.

There are two tables, one for the datasets and one for the distributions. There
is a foreign key relation that maps multiple distributions to one dataset. The
primary keys are generated at insertion time, because the ’about’ fields, despite
being URIs, are not unique due to the possibility of having duplicates when
entries are changed or updated.

5.2 Datasource Generator

The datasource-generator is the second component that has to be implemen-
ted. It is responsible for generating the data source objects from the Distributions
provided by the Crawler. The datasource-generator is also implemented as a
NestJS app.

5.2.1 Mapping of the Crawled Data to Data Sources

Before we can talk about creating data sources, we need to clarify how data
sources are supposed to look like. Figure 5.4 portrays how the data sources are
defined.

We quickly recognize that the fields of the data source class are mainly a mix

23

5. Implementation

of the dataset and distribution classes. A few details were put outside the class
in another class called DataSourceMetadata. Information about the underlying
file is stored there as well as the Distribution and Dataset the data source was
created from.

Now we will create some functions that help us creating DataSource and Data-
SourceMetadata objects from the Distribution objects provided by the Crawler-
Job:

• createDataSourceFromDistribution(): This function, as the title sug-
gests, takes a Distribution object and returns a promise for a DataSource
object. The lastModifiedAt-timestamp is being set to the current date.
The following functions are called from within this function in order to set
the leftover fields accordingly.

• generateDataSourceTitle(): This function gets the source distribution
object and returns a fitting title for the new data source.

• generateDataSourceDescription(): like the previous function, but for
creating the description.

• generateDataSourceMetadata(): Generates a metadata object for the
data source. It sets the fileFormat, derivedFromDistribution and
derivedFromDataset fields, and sets sizeInBytes by calling the following
subroutine:

• getFileSizeInBytes(): Uses the provided fileUrl to get the file size for
the current data source. An HTTP GET request is being sent to the web
server, and the returned ‘content-length‘-header is being used to retrieve
the size of the actual file. This way, we can speed up the process and get
the information without downloading every data file, at the cost of possible
cases where the server does not provide the information.

• getCatalogMetadata(xml: Element[]): Takes a parsed XML file, and
creates a CatalogMetadata object from it.

5.2.2 DistributionQueue and DataSourceQueue

Setup

We already established that the datasource-generator won’t have access to
the underlying database and will communicate with the other apps asynchron-
ously by using queues. For this functionality, we need the following components:
First, we need two NestJS queue services, each handling its own queue. They
will be called DataSourceQueueService and DistributionQueueService. The
DataSourceQueueService will be used to send the generated data sources to the

24

5. Implementation

Hub-Backend, while the DistributionQueueService will be used to receive the
distributions from the Crawler-Job.

The app listens passively on the DistributionQueueService. This is being
achieved by registering the service class in the NestJS AppModule as a provider.
RabbitMQ4 now listens for incoming objects in the registered Queue.

When a Distribution object is being received, it shall be passed from
the DistributionQueueService to the DataSourceQueueService. This
can be achieved by creating a function handleNewDistribution() which
calls createDataSourceFromDistribution() on the incoming object and
sends the return value by using the sendMessage() function OF THE
DataSourceQueueService.

Now we can use the onApplicationBootstrap() function included in NestJS
controllers and pass a routine called onNewDistribution(), which takes
handleNewDistribution as a callback, parses the incoming queue object and
then invokes handleNewDistribution on the parsed object.

Object validation

For passing the distributions and data sources through their respective queues,
we need classes to instantiate them as objects and parse/validate them. Since
the handed objects might slightly vary from the entity objects that will be used
to save them into the database, we create the classes NewDistributionEvent
and DataSourceEvent. For RabbitMQ, to parse the objects correctly, we need
to add decorators from the class-transformer and class-validator libraries
to make sure every passed object was correctly sent. Every attribute undergoes
its corresponding type checker and optional attributes are marked as such. More
complex attributes like DataSourceMetadata have to undergo nested validation.

5.3 Hub-Backend

The main role of the backend in this setup is to serve as receiver for data source
objects from the generator, saving them to the database and exposing them over
the REST API, so they can be accessed from within the frontend.

5.3.1 Database Handling

Data model

The current database setup in the backend is TypeORM based. This approach
can be easily applied to data sources. A new relation is added to the database.

4https://www.rabbitmq.com/

25

5. Implementation

Listing 5.4 is the table scheme generated by TypeORM.
CREATE TABLE public.data_source_entity (

id uuid DEFAULT public.uuid_generate_v4 () NOT NULL ,
title character varying NOT NULL ,
description character varying NOT NULL ,
"fileUrl" character varying ,
platform character varying ,
tags text[] DEFAULT ’{}’::text[] NOT NULL ,
license character varying ,
metadata text NOT NULL ,
"lastModifiedAt" timestamp without time zone NOT NULL

);

Listing 5.4: SQL schema of the data source table

The metadata column is of type text because TypeORM uses a JavaScript Object
Notation (JSON)-parsing mechanism to handle the object conversion internally.
We have to provide a so-called transformer class to handle the conversion. It
consists of two methods:

• to(value: DataSourceMetadata): string

Parses the DataSourceMetadata object to a JSON string.

• from(value: string): DataSourceMetadata

Reverse operation of to(). Takes a JSON representation and parses it to
a DataSourceMetadata object.

Database service

TypeORM also needs a service class that provides the insertion/retrieving oper-
ations. It contains the following methods:

• async saveDataSourceFromEvent(dataSource: DataSourceEvent)

Takes a data source that is provided by the crawler over the queue, creates
an DataSourceEntity instance and saves it into the database.

• async saveDataSource(dataSource: DataSource)

Takes a data source that comes from another source (most likely the fron-
tend) and saves it into the database. Data sources provided this way may
have a slightly different structure than the generated ones, hence this sep-
arate method.

• async findById(id: string): Promise<DataSourceEntity[]>

Returns the data source entity with the given ID, if it exists.

26

5. Implementation

• async findAll(paginationOptions: PaginationOptions):

Promise<PageDto<string>>

Returns all data sources wrapped for use in a paginated overview.

5.3.2 REST API

The now established service classes are exposed over a REST API implemented
in the data source controller.

• GET and POST requests on /projects/data-source are being used to save
and delete connections between projects and data sources.

• GET on data-sources returns all data sources in a paginated way.

• GET on data-sources/{ID} returns a single data source by its ID.

Figure 5.5: Diagram showing the data source related REST API endpoints.

5.4 Shared Libraries

However, despite the added app logic being mostly independent of the rest of
the hub, other components might have to access some if its interfaces, e.g. the
Dataset and Distribution interfaces or database entities. This means that a place
outside the apps themselves is needed, where we can define these structures and
reuse them on multiple places of the hub. Luckily, there already exists such a

27

5. Implementation

App Name Logging identifier
Crawler crawler-job
Datasource Generator datasource-generator

Table 5.1: Logging identifiers for the new apps.

place. We can create a NestJS-module, and put it in the NestJS-shared-library
of the hub. Then, other apps can access the resources by importing the module.

Crawler-Job Datasource-Generator
Distribution-Queue

Hub-Backend
DataSource-Queue

Postgres-DB

NestJS-Shared

Hub-Web

Figure 5.6: A graph visualizing the interaction between components.

5.5 Logging

For all the newly introduced modules, the already-established logger class of the
JValue Hub is used. It is implemented by extending the LoggerService interface
of NestJS. When a logger is created, a string has to be provided that specifies
the category to be displayed within the log message. Each log message includes
the name of the originating app to ease tracing back issues to their source.

We will differentiate between two types of logging: Progress logging and error
logging. The progress logging is used to show the current status of the app, while
the error logging is used to show any errors that occur during the runtime of the
app.

28

5. Implementation

5.5.1 Progress Logging

When running Crawler-Job, the process may need some time to finish. Especially
in cases of data portals with lots of datasets, we want to have some progress
logging in order to visualize the current status.

When designing the logging, we have to consider ways of making the logs as
informative as possible without flooding the log files. Since we work with po-
tentially big amounts of data, we have to make sure that the logs are not too
verbose. The logs are most important to the people maintaining the system, so
we have to make sure that they can easily see the current status of the app and
only get the most important information.

This is achieved by logging the following events:

• A new catalog page has been downloaded successfully from the portal:
Page {$i} downloaded.

• A new Distribution/Dataset is being parsed/processed:
processing Dataset/Distribution ${i} of ${total}.
Since there might be large amounts of data being parsed, the logger only
sends this message when hitting a configurable interval, e.g. every 1000
datasets. This makes sure the crawler sends its heartbeats as frequently as
needed without flooding the log files in the process.

• The crawler job run has ended:

Summary: ${this.stats.crawledDatasets} datasets were
crawled, ${this.stats.newOrUpdatedDatasets} new or updated ones
were saved.
Summary: ${this.stats.crawledDistributions} distributions were
crawled, ${this.stats.newOrUpdatedDistributions} new or updated
ones were saved.

This overview is crucial for the maintainer to see how many datasets and
distributions were processed and saved, and also gives indications if some-
thing might be wrong or misconfigured. The summary log also contains
some error related information, which are explained in the following sec-
tion.

5.5.2 Error Logging

There might be some errors when processing the metadata catalogs. Those cases
also have to be covered by the logging functionality.

• Problems when downloading catalog pages:

29

5. Implementation

The downloads are wrapped in the function tryGetRDFBodyFromURL(). On
an unknown error, the message is logged, and the download is retried com-
bined with a growing cooldown time until a predefined number of retries is
reached. It returns a fetchResult object which contains the downloaded
page, or undefined on faults and the amount of retries needed at the at-
tempt. In a crawler run, the total download retries are counted and used
in the final statistics log.

• The page URL for the next catalog page could not be found:
Could not find next catalog page.

• The crawler job run has ended:

${this.stats.retries} download retries were needed,
and ${this.stats.pagesSkipped} catalog pages had to be
skipped.

This message is included in the summary log at the end of each run.

5.6 Containerization

Now that the new apps are implemented, we need to ensure the deployment of
them is easy, reliable and compliant with the current project standards.

For deployment, the JValue Hub uses docker compose to build the apps as con-
tainers. Ultimately, they will be deployed in a Kubernetes environment, but for
this thesis, it is only necessary to create Docker containers that are ready to be
deployed.

5.6.1 datasource-generator

datasource-generator will get an entry in the already existing compose
file docker-compose.yml. The build depends on the successful build of
runtime-queue, since it cannot operate without the queue container running.
The docker image is named datasource-generator and the build will be based
on a new Dockerfile called datasource-generator.Dockerfile.

To optimize the image size, we will implement a two-step build process. One
step for building the app, and one step for copying the transpiled code into a
minimal runner image. The Dockerfile uses the node:lts docker image as a
base. It will serve as the build image. The package-lock.json is copied inside
the container as well as the src folder. The dependencies are installed, and
the project is built using nx. After a successful build, the dist folder is copied

30

5. Implementation

into a minimal node:lts-alpine image alongside with necessary dependencies.
Finally, the JavaScript main file can be started.

5.6.2 crawler-job

When typing docker compose {build/up} into the terminal in order to
build/run the JValue Hub apps, we don’t want a crawler-job job to
build/run every time. For separation, we create a second compose file called
jobs.docker-compose.yml. It contains a single entry. The container will be
called crawler-job, it depends on datasource-generator and postgres-db. If
a developer wants to build or run the container, he has to type in the command

docker compose -f docker-compose.yml -f jobs.docker-compose.yml
up crawler-job.

The Dockerfile will be called crawler-job.Dockerfile. The build process, for
the most part, is quite similar to the one of datasource-generator. The main
difference is that the crawler needs a manual assignment of higher Random Access
Memory (RAM) limits by using the --max-old-space-size option. The node
process in the container has a standard limit, which, in deployment, was agnostic
of the actual RAM size that was allocated. Since we process the open data portals
in-memory, we give a generous limit of 10GB, which is more than sufficient when
crawling the GovData portal.

31

5. Implementation

32

6 Evaluation

In this chapter, we will evaluate whether and how the requirements and goals
defined in chapter 3 were fulfilled. Since at the creation time of these require-
ments, the data source mapping was not yet established, the term "data sets"
now refers to data sources.

For a better overview, table 6.1 categorizes the requirements. We will differentiate
between the requirements that have been met (green), those that have been
partially met (yellow) and those that were not met (red). The following sections
will elaborate each one in more detail.

6.1 Additional Requirements

First, we will look at important requirements that will be relevant at multiple
points of the evaluation. They were introduced later in the process, taking away
some focus from the original requirements.

• R1.7-A: Represent Data Sets as Data Sources was fulfilled by imple-
menting the datasource-generator.

• R1.8-A: Entry Point for Metadata generation was fulfilled by design-
ing datasource-generator as a separate app that works asynchronously

Priority Group 1 Priority Group 2 Priority Group 3
R1.1 R2.1 R3.1
R1.2 R2.2
R1.3 R2.3
R1.4 R2.4
R1.5 R2.5
R1.6 R2.5
R1.7-A
R1.8-A

Table 6.1: Overview of the requirements and their status

33

6. Evaluation

and independent of crawler-job. This way, datasource-generator can
act as an instance that can generate enhanced metadata for data sources
that were crawled by crawler-job using more sophisticated, such as ma-
chine learning-based techniques.

Throughout the project, other developers also advanced the project. Among
other features, a design system was created for a more streamlined way of creating
and maintaining UI components. Since the initial requirements for this work also
targeted work on UI components, we had to weigh adding new components with
the conflicts it might cause arising through the introduction of the design system.
In the end, we decided to shift focus on backend features in favor of producing
merge conflicts on the UI part. Thus, we agreed on an interface in the backend
that future UI features and components can be programmed against.

6.2 Priority Group 1

• R1.1: Crawler Functionality was fulfilled. The crawler-job app crawls
and imports data set metadata from open data portals based on CKAN by
accessing the commonly used RDF-XML metadata catalog.

• R1.2: Scheduled Update Feature was fulfilled. The fundamental
concept of the crawler-job app allows simple scheduling on an infrastruc-
ture level (by scheduling runs of the container). On multiple subsequent
runs, the crawler handles new or changed data sets accordingly, and there-
fore provide a full data update functionality.

• R1.3: Persisted Logging was fulfilled. The implemented features use
the JValue Hub internal loggers and create meaningful messages in order
to provide a good insight.

• R1.4: Metadata Inspection was partially fulfilled. On implementation
of the API that provides the data source metadata to the frontend, it was
ensured that the data complies to the frontend concept that was created
by the frontend developers. The actual integration of the components fell
out of the scope of this thesis, as explained in section 6.1.

• R1.5: Dataset / Project Linking was fulfilled. The many-to-many rela-
tion between projectEntity and dataSourceEntity suffices to track con-
nections between the two tables. The API endpoints and database service
functions provide simple access to the relationships and allow easy linking
and unlinking of data sources and Projects. The data source info card in
the frontend will also display the linked projects. Figure 6.1 demonstrates
a way of displaying the reference count of a data source in the JValue Hub.

• R1.6: Data Set Search was partially fulfilled. The search in the JValue

34

6. Evaluation

Figure 6.1: A data source info card in the JValue Hub displaying some crawled
data. The frontend was not implemented as a part of this thesis, but uses the
API endpoints created in this work as a foundation.

Hub got a big redo by the JValue Hub Team, so the search functionality
already exists. The API endpoints created in this work aim to comply to
the new search in the hub.

6.3 Priority Group 2 and 3

• R2.1: Manual Adding of Data Sets and R2.2: Manual uUdat-
ing of Data Sets were fulfilled partially. Besides the automated import,
hub-backend also provides a service function that saves potential manu-
ally created/edited data sources. Since building the frontend fell out of
the scope of this thesis, the action cannot be done by the end user at the
current time.

• R2.3: Suggestions of Fitting Data Sets and R2.5: Basic Pre-
Initialization of Projects, as they are frontend-focused features, they
also fell out of the scope of this thesis as described in section 7.1.

• R2.4: Ability to Browse Linked Projects for a Data Set was par-
tially fulfilled. The implementation of R1.5 also provides the option to
easily access the corresponding projects for a data set and vice versa. For
example, when retrieving a projectEntity from the database, the result-
ing object contains a dataSources-Array that contains all referenced data
sources.

35

6. Evaluation

Figure 6.2: The new topic search in the JValue Hub displaying some crawled
data. The frontend was not implemented as a part of this thesis, but uses the
API endpoints created in this work as a foundation.

36

6. Evaluation

• R2.6: More Advanced Search on Data Sets also was partially fulfilled
in the same sense as

• R1.6. The new topic search provides the advanced search functionality that
is aimed for. The Backend provides an Interface that will make this search
usable with the data sources.

• R3.1: Data Set Ranking was not fulfilled. Since this primarily was a
brainstorming idea, the already mentioned priority shift meant that this
idea could not be implemented at this point in time.

37

6. Evaluation

38

7 Future Work

This section elaborates on how we could improve the feature based on the found-
ation that was created within this work.

7.1 Remaining Requirements

First, we will look at the requirements that haven’t been implemented yet:

• R2.3: Dataset Suggestions for Projects - This could be implemented
by using a keyword search. By searching for the project name components
inside the data source table, relevant data sources could be retrieved and
displayed in a list.

• R3.1: Data Source Ranking - This could be realized by counting the
number of references to Jayvee projects for every data source. This way,
we can rank them by popularity. Additionally, a like/dislike system could
be added to enable users to influence the rating.

7.2 Additional Ideas

There are many potential enhancements for the JValue Hub data source func-
tionality. Here are some ideas that could be implemented:

• Generating enhanced data source metadata - Open data often
comes with the caveat that it may be auto-generated or poorly main-
tained. To provide the best possible experience to the user, we could at-
tempt to enhance the metadata in the data source generation step. The
datasource-generator could be extended to use machine learning al-
gorithms to enhance the metadata of the data sources. This could be
achieved by analyzing the metadata content, comparing data sources to
one another, and extracting additional information such as data quality,
relevance to a specific topic, or popularity.

39

7. Future Work

• Data source linking to Jayvee projects - The data source linking to
Jayvee projects could be improved by adding a feature that allows users to
link a data source to a Jayvee project directly from the data source info
card. This would enable users to create a project based on a data source
or to link a data source to an existing project with just a few clicks.

• Data source suggestions for projects - The data source suggestions
for projects could be enhanced by adding a feature that suggests relevant
data sources for a project based on the project’s name or description. This
could be achieved by analyzing the project’s content and comparing it to
the data sources in the JValue Hub. The user could then choose from a list
of suggested data sources and link them to the project.

• Support for additional APIs - The JValue Hub could be extended to
support additional APIs for importing data sources from other open data
portals. This would enable users to import data sources from a wider range
of sources and to access more data for their projects.

40

8 Conclusion

The main purpose of this work was to conceptualize and implement a method for
using open data inside the JValue Hub. We examined the most efficient way to
ensure compatibility with as many open data portals as possible and created a
method for importing the catalogs into the Hub. Then, we transformed the data
into a format that is suitable for further use.

We designd and implemented an appropriate asynchronous two-step data im-
porting and processing architecture to provide maximum flexibility and possibil-
ities for future enhancements. In this regard, we also provided entry points for
metadata enhancements in the open data conversion step implemented in the
datasource-generator.

Although implementing the according frontend was beyond the scope of this
thesis, we provided all necessary features and APIs for retrieval of the crawled
and processed data.

In general, the implementation of the data set, or retrospectively, data source
integration into the JValue Hub can be considered a success. We now have a
technical foundation that provides all necessary connection points to build upon.
Once the new components are integrated into the UI, end users will benefit from
access to various data sources, including their license information and much more.
This will enable users of the JValue Hub to build data pipelines with ease and
manage their resources more effectively.

However, the work on the data source feature is not yet complete. There are
many possibilities for improvement in the future. For example, we could generate
enhanced data source metadata, link data sources to Jayvee projects, suggest
fitting data sources for projects, or support additional APIs for importing data
sources from other open data portals. Possibilities are endless, and the JValue
Hub team will continue to work on improving the platform and providing the
best possible experience to users.

41

8. Conclusion

42

Appendices

43

Appendix A: Requirements workshop notes

A Requirements workshop notes

• Scheduled update

– create new one

– deal with removed ones

– update existing ones (metadata / data)

– expect edge cases: removed data (but not metadata)

• Link projects with data sets

– 2 ways:

∗ (1) Create project from data set ⇒ automatic link

∗ (2) Create project from scratch ⇒ suggest links to user / let them
choose

• Which portals are crawled

– Focus on CKAN

– make configurable

– Johannes: manual import and extendable to completely different
sources

– Philip: don’t do manual import, focus on automation (Johannes
agrees)

• How to deal with data sets that Jayvee cannot process?

– Concerns about data size

– Philip: no worries about the data size

– Philip: show everything in hub but make note when not possible ⇒
link to feature request in Jayvee (Georg agrees)

• Reporting statistics which data sets are linked most / created most / shown
most in searches

– helps with Jayvee development

• Crawler should only deal with metadata (not the actual data)

• How to trigger the import? Security concerns

45

Appendix A: Requirements workshop notes

– Johannes: not include into hub

– Georg: docker container that we can deploy, e.g., as k8s jobs (Philip
and Johannes agree)

– Philip: no manual CLI tool

• Voting / Stars?

– Dirk: vs. number of uses

– Johannes: current UI design has stars feature

– Philip: makes sense in the future, but not in thesis; focus on stable
imports

• Configuration

– same as plans: in JValue-shared?

• Search for data sets

– filter for tags and keywords?

– worries about keywords if originate from import

– Philip: do a prototype and then decide

• UX design: columns and rows not in metadata of CKAN

– Georg: don’t show and leave to future work (Philip agrees)

– Same data set from different portals?

∗ portal currently decoded in logo

∗ display source / portal link

∗ Georg: dataset is per portal ⇒ there can be data sets with same
name but different portals

∗ Philip: is there a federated field in metadata?

∗ Philip: checksum as indicator

• Naming of concepts: data set is in CKAN a collection of distributions

– Philip: stick to Govdata terminology

– Johannes: same data in different format should be a data set

– Georg: different data within a Govdata data set should be separate
JValue datasets

46

– Philip: maybe other naming but same structure: data collection (Gov-
data: sets) and data sets (Govdata: distribution) (Georg agrees)

– Wikipedia: data set is a collection

– Conclusion: research terms, choose some better names available, but
mirror structure

– Philip: maybe data source instead of data distribution to map to the
terminology of Jayvee

• Search on data set or source?

• Search vs. what to show

– Philip: Potentially search over more than to display in the end

– Johannes: focus on one (everyone agrees)

• Focus on quality over quantity of features (everyone agrees)

– e.g., help debug what went wrong when we were banned from a plat-
form etc. ⇒ persistent logs

• Some statement about resources / costs / time consumption would be nice
as evaluation

• Configuration of import

– Not via GUI

– Separate application

– Interface: database or API?

47

48

References

AG für GovData. (2022). DCAT-AP.de Spezifikation 2.0 [Accessed: 2024-11-27].
https://www.dcat-ap.de/def/dcatde/2.0/spec/

CKAN Project. (n.d.). CKAN DCAT Extension [Accessed: 2024-11-27]. https:
//extensions.ckan.org/extension/dcat/

CKAN Project. (2023). CKAN API Documentation. https://docs.ckan.org/en/
latest/api/

Govdata Team. (n.d.). Govdata Metadatenkatalog [Accessed: 2024-11-27]. https:
//www.govdata.de/suche/daten/govdata-metadatenkatalog

JValue Project. (n.d.). Vision and Mission [Accessed: 2024-11-27]. https://www.
jvalue.com/

World Wide Web Consortium. (2014). RDF Schema. https://www.w3.org/TR/
rdf-schema/

World Wide Web Consortium. (2024). Data Catalog Vocabulary (DCAT) - Ver-
sion 3 [Accessed: 2024-11-27]. https://www.w3.org/TR/vocab-dcat-3/

49

https://www.dcat-ap.de/def/dcatde/2.0/spec/
https://extensions.ckan.org/extension/dcat/
https://extensions.ckan.org/extension/dcat/
https://docs.ckan.org/en/latest/api/
https://docs.ckan.org/en/latest/api/
https://www.govdata.de/suche/daten/govdata-metadatenkatalog
https://www.govdata.de/suche/daten/govdata-metadatenkatalog
https://www.jvalue.com/
https://www.jvalue.com/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/vocab-dcat-3/

	Introduction
	Foundations
	Data in Open Data Portals
	GovData
	Data.gov

	Conclusion

	Requirements
	Priority Group 1
	Priority Group 2
	Priority Group 3

	Architecture and Design
	Overview
	API crawling
	API Selection
	Integration into Existing Infrastructure
	Configuration
	Structure of the data

	Datasource Middleware
	Integration into Existing Infrastructure
	Configuration

	Data persisting
	Integration into Existing Infrastructure
	Configuration

	Summary

	Implementation
	Crawler
	Internal Data Representation
	RDF-XML parsing
	Crawling algorithm
	Database

	Datasource Generator
	Mapping of the Crawled Data to Data Sources
	DistributionQueue and DataSourceQueue

	Hub-Backend
	Database Handling
	REST API

	Shared Libraries
	Logging
	Progress Logging
	Error Logging

	Containerization
	datasource-generator
	crawler-job

	Evaluation
	Additional Requirements
	Priority Group 1
	Priority Group 2 and 3

	Future Work
	Remaining Requirements
	Additional Ideas

	Conclusion
	Appendices
	Requirements workshop notes

	References

