
Modernizing the Data Storage
Interface of a Cloud Application

BACHELOR THESIS

Jan Michael Rehnert

Submitted on 23 October 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Julian Lehrhuber, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 23 October 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 23 October 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

This thesis presents the modernization of the backend architecture of QDAcity,
a cloud-based web application that supports Qualitative Data Analysis (QDA).
The existing backend of QDAcity is effective; however, it has limitations in terms
of efficiently handling blob data, which can affect both performance and scalab-
ility. In order to address these challenges, the project introduces a new storage
infrastructure, which serves to improve the management and organization of blob
data associated with qualitative research. Moreover, the thesis presents a re-
structuring of the Datastore Application Programming Interface (API) with the
objective of optimizing the system’s performance and streamlining its interac-
tions with the data. The principal enhancements include the flexibility of entity
structures to support multiple blobs per entity, which is indispensable for more
intricate data scenarios. In addition to these changes, the project implements
strategies for better resource allocation and reduces latency in data retrieval, en-
suring smoother operations. This comprehensive overhaul not only guarantees a
more maintainable and scalable backend but also establishes the foundation for
prospective extensions and improvements in the QDAcity platform.

iii

iv

Contents

1 Introduction 1

2 Technical Overview 3
2.1 Google Datastore . 3
2.2 JDO . 4

2.2.1 DataNucleus . 6
2.2.2 Culprits of using JDO with the Datastore 7

2.3 Objectify . 9
2.4 Key Differences between JDO and Objectify 9

2.4.1 Complexity and Learning Curve 10
2.4.2 Integration with Google Cloud Datastore 10
2.4.3 Type Safety . 11
2.4.4 Performance . 11

2.5 Other data storage interfaces . 12

3 Requirements 15
3.1 Functional requirements . 15

3.1.1 API Reliability and Compliance 15
3.1.2 API migration . 16
3.1.3 Google Cloud Storage (GCS) blobs 16

3.2 Non-Functional Requirements . 16
3.2.1 Datastore Access Encapsulation 16
3.2.2 System Maintainability and Future-Proofing 17
3.2.3 Documentation . 17

4 Architecture 19
4.1 Structured Backend Architecture 19
4.2 Integration of the Visitor Design Patterns to Enhance the Codebase 20

4.2.1 BaseProject classes . 21
4.2.2 BaseDocument classes . 21

4.3 GCS Blob Architecture . 22

v

5 Design and Implementation 25
5.1 Structured Backend Design . 25

5.1.1 Data Access Object . 26
5.1.2 Entities in Depth . 27
5.1.3 Migrate child entities to embedded entities 34

5.2 Integration of Design Patterns to Enhance the Codebase 35
5.2.1 BaseProject classes . 35
5.2.2 BaseDocument classes . 38

5.3 GCS Blob & GcsClient design . 39
5.3.1 GcsBlob class . 39
5.3.2 GcsClient class . 40
5.3.3 Strategy Design Pattern 41

6 Evaluation 43
6.1 Functional requirements . 43

6.1.1 API Reliability and Compliance 43
6.1.2 API migration . 44
6.1.3 GCS blobs . 45

6.2 Non-functional requirements . 46
6.2.1 Datastore Access Encapsulation 46
6.2.2 System Maintainability and Future-Proofing 47
6.2.3 Documentation . 50

7 Outlook 53
7.1 Upgrading Objectify to v6 . 53
7.2 Upgrading to Java 11/17 . 53
7.3 Optimize Cache usage . 54
7.4 Use more Key properties . 54

8 Conclusion 57

References 59

vi

List of Figures

2.1 Datastore Key structure . 4
2.2 UML Diagram of QDAcity’s Backend Architecture 6

4.1 Endpoint Controller DAO structure 19
4.2 Architecture of BaseProject classes 21
4.3 Architecture of BaseDocument classes 22

5.1 Typical DAO Structure . 26
5.2 UML Diagram of the Project Visitor Design Pattern 36
5.3 UML Diagram of the ProjectRevision architecture 37
5.4 UML Diagram of the Document Visitor Design Pattern 38
5.5 UML Diagram of the GcsBlob class 39
5.6 GcsClient UML Diagram . 40
5.7 Strategy Design Pattern . 41

vii

viii

Acronyms

ACID atomicity, consistency, isolation, and durability

API Application Programming Interface

CRUD Create, Read, Update, Delete

CVE Common Vulnerabilities and Exposures

DAO Data Access Object

DBMS Database Management Systems

GAE Google App Engine

GCS Google Cloud Storage

JDO Java Data Object

JDOQL Java Data Objects Query Language

JPA Java Persistence API

ORM Object Relational Mapping

QDA Qualitative Data Analysis

RDBMS Relational Database Management System

SQL Structured Query Language

URI Uniform Resource Locator

ix

x

1 Introduction

QDA is a crucial technique employed in qualitative research to interpret data by
identifying and coding recurring themes or behaviors, which are typically collec-
ted through methods such as interviews. The process is iterative, involving the
continuous collection and analysis of data until the emergence of new informa-
tion no longer significantly alters the theory developing. A fundamental aspect of
QDA is the coding process, by which specific labels are assigned to patterns in the
data. This stage is of great importance and requires contextual understanding to
ensure that the analysis captures more than just surface-level descriptions. The
overall aim of QDA is to achieve a deep understanding of human behavior and
thought processes, often culminating in the enhancement of existing theories as
research progresses (Andreas Kaufmann, 2015).
QDAcity is a cloud-based application designed to facilitate QDA. The applica-
tion is built with Java on the backend and React on the frontend. It operates
in the Google Cloud, utilizing the AppEngine1 hosting solution to ensure robust
performance and scalability.
Prior to this thesis, QDAcity operated with a functional but suboptimal backend,
particularly in its handling of blob data and datastore operations. The existing
blob metadata management architecture had complexities that compromised its
maintainability and hindered long-term adaptability. In addition, the datastore
connection API, while effective, was outdated and not fully aligned with mod-
ern data management requirements. These issues made interacting with data
more cumbersome and limited the system’s potential for scalability and future
enhancements.
In response to these challenges, this thesis aims to significantly improve the QDA-
city system by modernizing its backend infrastructure. The main improvements
focus on optimizing the storage and management of blob data through a re-
designed approach that improves efficiency and simplifies data handling. This
overhaul includes a restructured API for datastore operations to improve per-
formance and create a more streamlined interaction with data. The backend
code has also been reorganized to ensure better maintainability and extensibility,
resulting in a cleaner, more efficient codebase. In addition, the thesis addresses

1https://cloud.google.com/appengine/docs/

1

https://cloud.google.com/appengine/docs/

1. Introduction

the need to restructure certain entities within the datastore to support the stor-
age of multiple blobs per entity.
Ultimately, the thesis aims to create a more robust and maintainable backend for
QDAcity, laying the groundwork for future enhancements and ensuring that the
system can grow and adapt to evolving requirements.

2

2 Technical Overview

As a Google Cloud-based platform, QDAcity utilizes a range of API offerings from
the Google Cloud Platform. The following sections present an overview of the
technologies employed, outlining their key advantages and disadvantages, while
also exploring alternative options. This analysis will inform the development of
the requirements for this thesis, which will subsequently be evaluated on the basis
of their implementation.

2.1 Google Datastore

The Google Cloud offers the Google App Engine (GAE) Datastore, a highly scal-
able NoSQL database service designed to efficiently manage large amounts of data
while ensuring optimal performance for web applications. Datastore provides flex-
ibility, allowing developers to store and query data without the strict constraints
of traditional relational databases, making it ideal for applications that require a
schemaless dynamic data model.
The Datastore’s automatic scaling ensures consistent performance as data volumes
grow, which is crucial for applications handling fluctuating traffic. Its strong con-
sistency model guarantees that all queries return the most up-to-date information,
making it suitable for real-time data accuracy. Additionally, Datastore supports
atomic transactions, maintaining data integrity by ensuring that all operations
in a transaction either succeed together or not at all.
Entities of the same kind can have different properties and data types, which of-
fers adaptability for rapidly evolving applications. This flexibility, combined with
Google’s management of the underlying infrastructure, allows developers to fo-
cus on building their applications without worrying about database maintenance
(‘Datastore Overview’, 2024).

Unlike a traditional Relational Database Management System (RDBMS), Google
Datastore is a key-value store where each entry corresponds to an entity. It
functions more similarly to a HashMap, with the added capability to index and

3

2. Technical Overview

Key

+ parent: Key
+ kind: String
+ id: Long
+ name: String

Figure 2.1: Datastore Key structure

query values1. In the Google App Engine datastore, each entity is uniquely
identified by a key. Figure 2.1 displays the structure of a key, which consists of
several components.

• parent: This is the optional ancestry reference. Each key may include a
reference to its parent entity, which can also be null.

• kind: Serving as the entity type, this component is analogous to a table
name in a relational database.

• id: Acting as the unique identifier for the entity, the ID may be auto-
generated.

• name: This serves as an additional identifier for the key but cannot be
auto-generated. It cannot be used in conjunction with the ID. Instead, it
must be manually created as a unique string before the entity is saved,
making it less convenient. In most cases, the ID is preferred.

Manually setting each entity property individually is tedious. In order to stream-
line this process, third-party libaries such as Java Data Object (JDO) and Ob-
jectify allow the definition of Java classes encompassing all the entity properties.
Each of these tools provide an API that facilitates the storage and retrieval of
objects from these classes, making data management much more efficient.

2.2 JDO

JDO is an interface-based Java model that provides persistence abstraction.
Therefore, this API is a Java tool which helps the application to store and retrieve

1https://github.com/objectify/objectify/wiki/Concepts

4

https://github.com/objectify/objectify/wiki/Concepts

2. Technical Overview

data from databases (David Jordan, 2003).

In general, each JDO implementation, as well as JPOX, comprises
six distinct phases subsequent to those delineated by Leone and Chen
(2007):

1. design the domain/model classes;

2. define their persistence using Meta-data;

3. compile the classes, and instrumenting them (using a JDO en-
hancer);

4. generate the database tables where the classes are to be per-
sisted;

5. write the code to persist objects within the DAO layer; and

6. configure and run the application.

Initially, the process begins with the design of the domain/model classes, which
represent the entities within the application. These classes are carefully crafted to
ensure they accurately reflect the domain model and meet the specified require-
ments. Following this, the persistence of these classes is defined using metadata,
provided through annotations or XML configuration files. This metadata out-
lines the mapping between the classes and the database tables, detailing aspects
such as table names, column names, and relationships between entities. Once
the persistence metadata is established, the domain/model classes are compiled
and instrumented using a JDO enhancer. This enhancer modifies the compiled
classes to include the necessary code for interacting with the JDO framework, en-
abling features such as transparent persistence and lazy loading. Subsequently,
the database schema is generated based on the metadata definitions. This schema
includes the tables, columns, and constraints required to store the data objects,
ensuring that the database structure aligns with the domain model. Phase 5 in-
volves the implementation of the Data Access Object (DAO) layer, which provides
an abstraction for interacting with the database. The DAO layer contains meth-
ods for performing Create, Read, Update, Delete (CRUD) operations on the
domain/model classes, ensuring that the persistence logic is separated from the
business logic, thereby promoting a clean and maintainable architecture. Finally,
the application is configured to utilize the JDO implementation and is executed.
This configuration includes setting up the JDO properties, such as the database
connection details and transaction management settings. Once configured, the
application can be deployed and run, allowing it to persist and retrieve data
objects as required.

Whenever new classes are introduced or changes are made to the data model,
steps two through five must be repeated. This repetition is necessary, because

5

2. Technical Overview

any changes in the data model require updating the metadata, recompiling the
classes with the JDO enhancer, and adjusting the database structure and storage
logic to reflect the new or modified data structure (Leone & Chen, 2007).

2.2.1 DataNucleus

Since JDO is merely an interface, an implementation is required to manage
the persistence of Java objects effectively. DataNucleus is an open source pro-
ject that provides robust data management solutions for Java applications. It
provides a fully compliant implementation of both the JDO’s and Java Persist-
ence API (JPA) specifications, enabling seamless and transparent persistence of
Java objects (DataNucleus, 2022).

DataNucleus-AppEngine Plugin

QDAcity DAO

JDO
JDO

<<dependency>>
DataNucleus

<<datastore>>
Google Cloud Datastore

<<dependency>>
DataNucleus-AppEngine

Datastore API

<<accesses>>

Plugin API

<<delegate>>

QDAcity Controller
<<invokes>>

Figure 2.2: UML Diagram of QDAcity’s Backend Architecture

The DataNucleus Plugin is a specialized extension for DataNucleus designed to
work seamlessly with the GAE. It is noteworthy that the DataNucleus Plugin
is provided by Google, and its most recent release occurred approximately ten
years ago2. It is a DataNucleus plugin that provides Object Relational Map-
ping (ORM), that gives access to the Datastore3. ORM is a key concept, in
object-oriented programming when interacting with Database Management Sys-
tems (DBMS). ORM allows developers to implement classes, whose objects are

2https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.
1.2

3https://github.com/GoogleCloudPlatform/datanucleus-appengine/tree/master/dist

6

https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.1.2
https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.1.2
https://github.com/GoogleCloudPlatform/datanucleus-appengine/tree/master/dist

2. Technical Overview

translated into database entries by ORM (‘What is Object-Relational Mapping
(ORM) in DBMS?’, 2024).
Figure 2.2 illustrates the relationship between the JDO API, DataNucleus, the
DataNucleus Plugin, and the Google Datastore. The process begins with JDO,
which initiates API calls that are directed to DataNucleus. DataNucleus acts
as a mediator, handling the data operations. To interface with specific storage
systems, DataNucleus relies on the DataNucleus-Plugin. This plugin extends the
functionality of DataNucleus by adapting its operations to the requirements of
the Google Datastore.
In this setup, when DataNucleus sends a request through the DataNucleus-
Plugin, the plugin translates these requests into a format compatible with the
Google Datastore. This translation process ensures that the operations specified
by JDO are executed properly within the Google Datastore.
Once the Google Datastore processes the requests, it sends the results back to
the DataNucleus-Plugin. The Plugin then forwards this response to DataNuc-
leus, integrating the data or operation outcomes into the DataNucleus framework.
Finally, DataNucleus returns the processed results to the JDO API, completing
the data operation cycle4, 5.

2.2.2 Culprits of using JDO with the Datastore

The integration of JDO with the Datastore presents several challenges, primarily
due to limitations in the underlying DataNucleus plugin and the lack of continued
support from Google. These factors have resulted in difficulties in maintaining
long-term compatibility and adapting to future requirements. The following sub-
section outlines the key issues associated with this approach, which ultimately
required the migration to an alternative API.

One significant challenge in this integration arises from the way the Persistence-
Manager 6 is attached to objects, automatically triggering write operations when
object properties are modified. Although this behavior may seem convenient, it
introduces several practical issues.
Firstly, the implementation of frequent minor updates within cloud-based data
stores inevitably results in elevated operational costs, which are calculated based
on the number of write operations. The consolidation of updates into a single
write operation serves to reduce costs and enhance performance by minimizing
the number of network requests.
Moreover, implicit save operations frequently result in superfluous writes, even in
the absence of significant alterations to the data. In contrast, explicit save opera-

4https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/
legacy/standard/java/datastore/jdo/overview-dn2

5https://www.datanucleus.org/documentation/development.html
6https://db.apache.org/jdo/pm.html

7

https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/overview-dn2
https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/overview-dn2
https://www.datanucleus.org/documentation/development.html
https://db.apache.org/jdo/pm.html

2. Technical Overview

tions afford superior control, ensuring that data is only saved when it is required.
This methodology enhances maintainability by providing clarity regarding the
circumstances and locations where data is being persisted, thereby facilitating a
more comprehensible and less error-prone codebase.

Another major issue arises from the outdated version of DataNucleus, particu-
larly in its handling of inheritance. Upon cold-booting a backend instance and
attempting to retrieve all objects that extend a common parent class, DataNuc-
leus fails to return any objects, despite their previous persistence. This issue oc-
curs because DataNucleus caches the metadata of persistent classes at runtime7.
When querying for an entity type of a superclass after a cold boot, DataNucleus
is unaware of all potential child types for that class. Consequently, it only re-
turns objects of the exact queried type. However, if the superclass is abstract,
no objects are returned. As a provisional measure, the persistable subclasses are
instantiated upon the boot of the application, thus ensuring the DataNucleus
type cache is correctly initialized.

A related issue arises when querying objects that inherit from a common super-
class. Properties specific to the child classes are not populated and instead are
set to null because these properties are unloaded during the initial query. This
happens because these properties are unloaded during the initial query. In the-
ory, this behavior should be manageable using JDO’s FetchGroups8, which are
designed to control the loading of specific fields. However, when working with the
native Google Datastore API, there are two main methods to retrieve entity data.
One method fetches all the entity data, while the other retrieves only the entity
keys. Since the DataNucleus plugin relies on the AppEngine API 1.0 SDK 9, it
uses the native Datastore API, which restricts data retrieval to these two options.
This raises the question of why the FetchGroup feature, designed to control the
loading of specific fields, would be necessary. Configuring FetchGroups to load
all data, given that the default configuration does not handle subclasses, intro-
duces unnecessary overhead. This approach adds complexity without providing
significant benefits, as it often results in retrieving all entity data. Therefore, re-
lying on FetchGroups is not the most efficient solution and only increases system
complexity.

Another issue arises with the PersistenceManagerFactory in JDO, which is cap-
able of pooling multiple PersistenceManager objects. Although PersistenceM-
anager instances can be reused, no control is available, which specific instance
the factory provides. Hence, it is more convenient to generate them on demand.
In case of using different instances in rapid succession, one modifying data and

7https://github.com/datanucleus/datanucleus-core/blob/datanucleus-core-3.2.11/src/
java/org/datanucleus/metadata/MetaDataManager.java#L1736

8https://db.apache.org/jdo/content/api32/apidocs/javax/jdo/FetchGroup.html
9https://mvnrepository.com/artifact/com.google.appengine/appengine-api-1.0-sdk/1.9.80

8

https://github.com/datanucleus/datanucleus-core/blob/datanucleus-core-3.2.11/src/java/org/datanucleus/metadata/MetaDataManager.java#L1736
https://github.com/datanucleus/datanucleus-core/blob/datanucleus-core-3.2.11/src/java/org/datanucleus/metadata/MetaDataManager.java#L1736
https://db.apache.org/jdo/content/api32/apidocs/javax/jdo/FetchGroup.html
https://mvnrepository.com/artifact/com.google.appengine/appengine-api-1.0-sdk/1.9.80

2. Technical Overview

the other one attempting to read the modified data, it is possible that the read
operation may not reflect the recent changes. By consistently utilizing the same
instance of the PersistenceManager, the issue was effectively circumvented 6.

Additionally, when incorporating lambda expressions within an entity class, er-
rors arise during the enhancement process executed by DataNucleus 3.1.1, which
is utilized by QDAcity. This version of DataNucleus depends on the ASM lib-
rary version 4.0 for bytecode manipulation10. ASM 4.0 does not support Java 8
language features, meaning that features like lambda expressions cannot be used.
Support for Java 8 language features was introduced in ASM 5.0 beta11.

2.3 Objectify

The best-known alternative to JDO in a GAE environment is Objectify. Objectify
is a Java API designed to simplify data access to the Google Cloud Datastore
specifically. It strikes a balance between usability and transparency, offering
a more user-friendly experience than JDO, while being far more convenient to
use than Google’s low-level Datastore API. Objectify aims to help beginners
become productive quickly, while still providing access to the full capabilities of
the Datastore (GitHub, 2024). One advantage is that it utilizes Java generics to
provide type-safe Datastore keys and queries. This means that the key used to
retrieve an entity must be compatible with the type of entity being accessed. An
example of generic Key creation is shown in Listing 2.1.

Listing 2.1: Objectify Datastore Key Creation
1 Key <User > key = Key.create(User.class , id);
2 User user = ofy().load().key(key).now();

2.4 Key Differences between JDO and Objectify

As developers consider different approaches for integrating with Google Cloud
Datastore, it’s important to explore how each library interacts with the plat-
form. The integration process can significantly influence the effectiveness and
efficiency of data management within applications. This section examines the
specific challenges and benefits of integrating JDO and Objectify with Google
Cloud Datastore, highlighting how each framework’s design and dependencies
affect its functionality and ease of use.

10https://asm.ow2.io/
11https://asm.ow2.io/versions.html

9

https://asm.ow2.io/
https://asm.ow2.io/versions.html

2. Technical Overview

2.4.1 Complexity and Learning Curve

JDO’s rich and powerful feature set contributes to a steep learning curve. De-
velopers must familiarise themselves with numerous concepts, annotations and
configurations in order to use JDO effectively. This complexity can be daunting
for beginners and can take considerable time and effort to master12. In addi-
tion, finding a reliable implementation of the JDO interface can be challenging,
as they may not function as expected, requiring developers to spend extra time
troubleshooting and finding workarounds. Furthermore, JDO includes annota-
tions that the Google Datastore does not support, such as uniqueness constraints.
JDO is also a very large library, which can further complicate integration and
increase the overhead for developers trying to navigate its extensive features.
Nevertheless, the comprehensive functionality of JDO offers developers greater
flexibility in terms of configuration and utilization when compared to Objectify.
Objectify, on the other hand, is designed for simplicity and ease of use. It provides
a more streamlined approach to interacting with the Google App Engine data-
store. Objectify abstracts much of the complexity inherent in JDO and provides
a more intuitive API that is easier for developers to understand, especially when
working with the Datastore. This results in a shorter learning curve, allowing
developers to become productive more quickly. While Objectify simplifies many
aspects, developers still need to configure it, open an ObjectifyService13, and re-
gister each entity class, though this process is much less involved compared to
the more complex setup required by JDO.

2.4.2 Integration with Google Cloud Datastore

Integrating with Google Cloud Datastore requires careful consideration of the
tools and frameworks used, as different options offer varying levels of support and
complexity. JDO supports a range of features such as queries, transactions, and
object relationships, making it a robust choice for complex applications. How-
ever, integrating JDO with Google Cloud Datastore presents several challenges.
Specifically, the integration process necessitates the use of additional depend-
encies, such as DataNucleus and the DataNucleus-Plugin. These dependencies
introduce significant complexity to the setup process. Developers must manage
multiple configurations and ensure compatibility between different versions of
these plugins, which can be complex and time-consuming.
In contrast, Objectify simplifies the integration with the Google Datastore by
requiring no additional dependencies. This streamlined approach reduces the
potential for compatibility issues and simplifies the setup process. Objectify sup-
ports all native datastore features, including transactions, queries, and batch
operations, while offering added conveniences such as automatic caching and an

12https://stackoverflow.com/questions/4232944/accessing-the-gae-datastore-use-jdo-jpa-or-the-low-level-api
13https://github.com/objectify/objectify/wiki/Setup#initialize-the-objectifyservice-and-register-your-entity-classes

10

https://stackoverflow.com/questions/4232944/accessing-the-gae-datastore-use-jdo-jpa-or-the-low-level-api
https://github.com/objectify/objectify/wiki/Setup#initialize-the-objectifyservice-and-register-your-entity-classes

2. Technical Overview

intuitive query interface. Objectify’s design philosophy emphasizes ease of use
and rapid productivity, making it a preferred choice for developers working with
Google Cloud Datastore. However, developers still need to create the necessary
annotations and classes to map their entities to the Datastore14.

2.4.3 Type Safety

While integrating with Google Cloud Datastore involves navigating varying com-
plexities, the approach to type safety further distinguishes the two frameworks
in terms of development ease and reliability. Through Java Data Objects Query
Language (JDOQL), JDO provides a flexible query mechanism. JDOQL gives
developers the flexibility to choose the level of type safety they require by sup-
porting both typed and untyped queries. JDOQL’s type safety is not as strong as
contemporary query languages, and if queries are not written carefully, developers
may run into runtime errors. However, our outdated version of DataNucleus does
not yet support the usage of type-safe queries, which further limits the effective-
ness of type safety in practice. In addition, the verbose and complex nature
of JDO’s query API requires a thorough understanding of the underlying data
model and query language. As a result, writing and maintaining type-safe queries
can be challenging, especially in large and complex applications (Google, 2024;
Zeger Hendrikse, 2017).
On the other hand, Objectify provides a simpler and more type-safe query exper-
ience15. Type safety is prioritized in the user-friendly API design of Objectify,
which uses Java generics. By ensuring that queries are checked at compile time,
this reduces the possibility of runtime errors and raises the standard of the code
as a whole. In addition, Objectify provides an easy-to-use query interface that
simplifies the creation and execution of queries. As a result, developers who
prioritize type safety in their applications will find Objectify a suitable choice.

2.4.4 Performance

Although both frameworks possess distinctive advantages in regard to type safety,
their divergences also extend to performance, with each framework exhibiting a
unique approach to optimizing queries and data interactions. The performance
of JDO can be affected by its reliance on JDOQL for querying data, which is
not as optimized for Google Cloud Datastore as native query languages. In
real-world applications, developers have reported issues with poor performance,
especially when dealing with large datasets or complex queries. The need to make
multiple round trips to the datastore for certain operations can further degrade
performance (Oscar Rosner, 2021).

14https://github.com/objectify/objectify/wiki/Entities
15https://github.com/objectify/objectify/wiki/Queries

11

https://github.com/objectify/objectify/wiki/Entities
https://github.com/objectify/objectify/wiki/Queries

2. Technical Overview

Objectify’s API is optimized for performance, offering features such as automatic
caching and batch operations that can significantly reduce the number of data
store interactions16. This results in faster query execution and improved overall
performance. The framework’s ability to efficiently handle large datasets and
complex queries makes it a popular choice for developers seeking high performance
with Google Cloud Datastore.

2.5 Other data storage interfaces

When evaluating alternatives to Objectify for Google Cloud Datastore, the op-
tions are rather limited. The use of JDO with the DataNucleus plugin is largely
outdated and typically confined to legacy projects. In fact, Google themselves
discourage the use of JDO/DataNucleus, as indicated by warnings in their doc-
umentation17. Furthermore, with the end of support for the Java 8 AppEngine
runtime and the prohibition of deploying such runtimes after January 31, 202418,
using JDO/DataNucleus is no longer a viable option unless legacy code is repack-
aged for newer runtimes. This reliance on outdated technology can hinder the
ability to update project dependencies, creating compatibility issues and limiting
the adoption of newer libraries or tools. Additionally, the dependency on Data-
Nucleus complicates the migration from older Java versions, particularly from
Java 8 to more recent versions, due to incompatibilities. These factors make the
continued use of JDO with DataNucleus increasingly impractical in modern de-
velopment environments.
In response to these challenges, Google is actively developing the Spring Data
Cloud Datastore19, which uses the familiar Spring Data Repository to interact
with Google Cloud Datastore. The Spring Framework is a comprehensive plat-
form designed to simplify Java enterprise application development. It provides in-
frastructure support, dependency injection, and a wide range of modules tailored
to various application needs (João André Martins, Jisha Abubaker, 2024).
However, this option is currently not feasible for QDAcity. At the time of writing
this thesis, the migration to Spring Boot was not yet complete. Furthermore, re-
lying on another Google-provided framework carries an inherent risk, given that
Google has previously discontinued other projects.
Another alternative is to use Google’s Native Datastore API20. This API provides
direct access to the features of Google Cloud Datastore, but requires significantly

16https://github.com/objectify/objectify/wiki
17https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/

legacy/standard/java/datastore/jdo/overview-dn2
18https://web.archive.org/web/20240705164743/https://cloud.google.com/appengine/docs/

standard/lifecycle/support-schedule#java
19https://web.archive.org/web/20240910215033/https://googlecloudplatform.github.io/

spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
20https://cloud.google.com/datastore/docs/concepts/overview

12

https://github.com/objectify/objectify/wiki
https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/overview-dn2
https://web.archive.org/web/20230303063554/https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/overview-dn2
https://web.archive.org/web/20240705164743/https://cloud.google.com/appengine/docs/standard/lifecycle/support-schedule#java
https://web.archive.org/web/20240705164743/https://cloud.google.com/appengine/docs/standard/lifecycle/support-schedule#java
https://web.archive.org/web/20240910215033/https://googlecloudplatform.github.io/spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
https://web.archive.org/web/20240910215033/https://googlecloudplatform.github.io/spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
https://cloud.google.com/datastore/docs/concepts/overview

2. Technical Overview

more code and a deeper understanding of the underlying system. Objectify essen-
tially acts as a wrapper around the Native Datastore API, designed to streamline
interactions and minimize the amount of boilerplate code.

13

2. Technical Overview

14

3 Requirements

Building on the differences between JDO and Objectify, along with the neces-
sity to upgrade the Java Runtime of QDAcity, this chapter outlines the require-
ments that must be met for this thesis. It encompasses both functional and non-
functional requirements, which have been formulated using Rupp’s templates.
These templates facilitate the creation of requirements that are comprehens-
ible, comprehensive and verifiable. They provide a systematic framework for
formulating requirements in software engineering, emphasizing clarity and com-
pleteness. The use of predefined structures through the use of these templates
enables the formulation of explicit, testable requirements, which in turn facilitate
enhanced communication among stakeholders and streamline the development
process(Chris Rupp, 2014).

3.1 Functional requirements

The term functional requirements is used to delineate the particular tasks and fea-
tures that the system must provide in order to satisfy user needs and accomplish
its intended purpose. In accordance with the ISO 25000 standard, these require-
ments are indispensable for guaranteeing that a system is valuable by effectively
assisting users in their tasks. This section elucidates the functional requirements
pertinent to this thesis and which have been classified into distinct categories for
enhanced comprehension (Henri Basson, 2016).

3.1.1 API Reliability and Compliance

a) The new API shall be capable of utilizing the necessary features of the
Google Datastore.

b) The new API shall ensure the integrity and consistency of the data.

c) The new API shall be actively maintained, with at least one official release
in the year 2024 as a criterion for active maintenance.

15

3. Requirements

d) The new API shall be permissively licensed, allowing for modification, dis-
tribution, and commercial use with minimal restrictions.

3.1.2 API migration

a) QDAcity shall support migration from JDO to a new framework without
data loss, ensuring compatibility with existing data structures while intro-
ducing new enhancements.

b) QDAcity shall enable incremental migration from JDO to the new API,
allowing gradual updates without necessitating a complete transition at
once.

3.1.3 GCS blobs

a) The QDAcity backend component for managing GCS blobs shall be able to
create, read, update, and delete data.

b) The QDAcity backend component for managing GCS blobs shall be able to
manage multiple blobs connected to a single Datastore entity.

3.2 Non-Functional Requirements

Non-functional requirements are concerned with the criteria for evaluating a sys-
tem’s operational performance, as opposed to its specific behaviors or functions.
In accordance with ISO 25000, these requirements encompass a multitude of qual-
ity characteristics that influence how users interact with the system, including
efficiency, ease of use, dependability, and safety. They delineate the manner in
which a system should execute its functions and establish the benchmarks to be
attained throughout its entire lifecycle. This section elucidates the non-functional
requirements pertinent to this thesis, thereby ensuring that the proposed system
meets the indispensable quality standards while augmenting its overall efficacy
and user satisfaction (Henri Basson, 2016).

3.2.1 Datastore Access Encapsulation

a) Code that accesses the datastore shall be encapsulated within a dedicated
layer of the software architecture, to ensure maintainability and testability.

b) Each datastore table shall be managed through a dedicated class, allowing
for shared access among related entities while maintaining a clear separation
of concerns.

16

3. Requirements

3.2.2 System Maintainability and Future-Proofing

a) The refactoring shall enhance the codebase’s maintainability by establish-
ing a clear structure and reducing duplication, thereby facilitating efficient
feature additions.

b) QDAcity shall be able to update dependencies and integrate new depend-
encies.

c) QDAcity shall be compatible with all next-generation GAE APIs.

d) QDAcity shall address and mitigate security vulnerabilities present in the
previous implementation.

e) QDAcity shall decrease the number of Datastore write operations in its
backend.

3.2.3 Documentation

a) The code shall be documented using JavaDocs to facilitate future develop-
ment and maintenance.

b) The QDAcity wiki shall be extended to include the new API.

c) This thesis shall serve as comprehensive documentation for future developers
working with QDAcity.

17

3. Requirements

18

4 Architecture

This chapter provides an overview of the software architecture, beginning with
an examination of the modifications made to the entire backend design. It then
outlines the key architectural changes to the Project and Document classes. Fi-
nally, it details the adjustments necessary to enable the storage of multiple blobs
per entity instance.

4.1 Structured Backend Architecture

Backend

Endpoint Controller DAO

Frontend Google Datastore

Figure 4.1: Endpoint Controller DAO structure

The existing backend architecture of QDAcity is beset with significant issues that
require a comprehensive refactoring process. In the previous structure, Google
Datastore calls were dispersed throughout the entire backend, including within
the endpoint classes. This lack of organization results in a disorganized code-
base, characterized by a minimal number of DAO classes and a limited number
of controller classes. Consequently, the controller classes are bloated, housing
excessive code that complicated maintenance and readability. Additionally, most
controller methods are static, contributing to a less aesthetically pleasing and
more challenging backend architecture.
Furthermore, this scattered approach complicates the desired migration from

19

4. Architecture

JDO to Objectify, as the pervasive JDO calls inhibit the transition. The new
structured architecture, defined as the Endpoint Controller DAO structure, provides
an effective solution to these issues. As illustrated in Figure 4.1, the new design
facilitates interaction between the frontend and endpoint, which is followed by
an authorization. In the event of authorization being granted, the endpoint then
proceeds to invoke the pertinent controller classes, which are responsible for the
handling of the core logic, and calls upon the DAO classes.
The QDAcity codebase has become increasingly disorganized over time due to the
contributions of multiple developers. The previous architecture, which is charac-
terized by a widespread distribution of datastore calls, deviated from established
best practices and highlighted the necessity for a more structured approach. The
Endpoint Controller DAO architecture will significantly improve the organization
and maintainability of the codebase. The structured design not only facilitates
the modification of system logic but also simplifies the incremental migration
process from JDO to Objectify. By centralizing data access within the DAO
layer, the new architecture allows for a more straightforward transition, thereby
facilitating adaptation to Objectify’s requirements while preserving the integrity
of existing functionalities.

4.2 Integration of the Visitor Design Patterns to
Enhance the Codebase

The codebase contains several child implementations of the BaseProject and
BaseDocument classes, each incorporating distinct logic for operations such as
deletion, loading, and saving. To unify this logic, the visitor design pattern will
be implemented and extended. The visitor pattern, a behavioral design pattern,
facilitates the addition of new operations to objects without altering their under-
lying classes. By decoupling the algorithm from the object structure, this pattern
enables the introduction of new operations to existing object structures without
modifying the structures themselves. This approach is particularly advantage-
ous for maintaining adherence to the open/closed principle in object-oriented
programming (Erich Gamma, 1994).

The implementation of this design pattern offers several benefits:

• Extending the project/document classes becomes more straightforward.
When a new class extending BaseProject or BaseDocument is introduced,
an additional method must be incorporated into the visitor interface and its
implementations. The necessary logic must then be implemented to ensure
that the method is executed correctly.

• By using the visitor pattern, the logic for the datastore is separated from
the data structure itself. This separation makes the codebase more modular

20

4. Architecture

and easier to maintain, as the behavior can be modified independently of
the object structure.

• The visitor pattern aligns with the open/closed principle by allowing the
extension of functionality without altering existing code. New operations
can be added without the need to modify existing classes, reducing the risk
of introducing bugs and ensuring that existing functionality remains intact.

• Since the logic for different operations is centralized in the visitor imple-
mentations, changes to these operations need to be made in only one place.
This centralization reduces code duplication and makes the system easier
to maintain and update.

• The visitor pattern provides flexibility in terms of the operations that can
be performed on objects. It allows for different operations to be applied to
the same object structure, facilitating the addition of new functionality as
the system evolves.

4.2.1 BaseProject classes

Figure 4.2 illustrates the architecture of the project classes alongside the visitor
interface. The BaseProject class currently has five inheriting subclasses, each
with a corresponding method in the visitor interface. When a new visitor class
is created, it must implement all the methods defined in the visitor interface,
along with the required logic. This ensures that the specific logic required for
each subclass is effectively separated and executed.

BaseProject

Project

ValidationProjectExerciseProject

ProjectRevision

<<interface>>
Visitor

SandboxProject
has method in

Figure 4.2: Architecture of BaseProject classes

4.2.2 BaseDocument classes

Figure 4.3 outlines the architecture of the document classes alongside the visitor
interface. The visitor design pattern is already implemented in these classes and
will be extended with a new visitor class dedicated to handling the deletion of
documents. In addition to removing the document itself, this class is responsible
for deleting the associated content stored in GCS. Since this content removal

21

4. Architecture

process must be applied to every subclass of the document, the visitor pattern is
particularly effective. Each type of document can also have related data that must
be deleted, which can vary depending on the specific subclass. By introducing
a new visitor class specifically for these deletions, it was possible to encapsulate
the deletion logic for each type of document within its respective method in the
visitor interface.

BaseDocument

TextDocument TranscriptionDocument <<interface>>
Visitor

PDFDocument
has method in

Figure 4.3: Architecture of BaseDocument classes

4.3 GCS Blob Architecture

QDAcity is currently required to store data in the form of blobs, which frequently
exceed 1 megabyte in size, in conjunction with document and project entities. To
efficiently manage this, the blobs are stored in the GCS, while only the paths to
these blobs are stored in the Datastore. This approach optimizes storage and re-
trieval processes by leveraging the GCS for large data storage and the Datastore
for metadata management. At the time of writing, the GCS paths are stored in
individual entity properties. Although this implementation permits the storage
of multiple blob paths with a single entity, it lacks an accessible method for asso-
ciating additional blob metadata with the entities. Furthermore, the addition of
further blob paths would necessitate the definition of additional entity properties.
It would be optimal for this blob metadata to be stored in a list or a map, thus
obviating the necessity for individual entity properties. In order to accommod-
ate additional blob metadata stored alongside the blob path and to enhance the
extensibility of an entity with further blob metadata, it was necessary to refine
the architecture of the blob management system.
The already existing GcsClient class is responsible for the management of oper-
ations pertaining to the saving, loading, and deletion of data within GCS. The
methods in this class interact with an interface that only has a single method to
retrieve a string representing the GCS path where the blob information is stored.
These methods need to be updated to accept a GcsBlob entity as a parameter.
The GcsBlob entity is capable of storing a string representing the GCS path, a
byte array containing the content of the blob and a boolean value to indicate to
the client that updated content need to be sent to the server instead of directly
to GCS. As a consequence of this modification, any class that requires the stor-
age of data will then be required to save a GcsBlob in the Datastore, while also

22

4. Architecture

assuming responsibility for managing the connection with the GcsClient class. It
is of paramount importance to annotate the byte array in the GcsBlob class with
@Ignore in order to prevent this property from being stored in the Datastore,
given that it may be of considerable size.
Furthermore, a strategy design pattern will be implemented through the creation
of an interface designated as HasGcsBlobs. The interface defines a single method
for the retrieval of all necessary GcsBlobs, which are required for interaction with
other classes. The implementation of this design pattern will lead to the realiz-
ation of several pivotal enhancements. Firstly, the HasGcsBlobs interface allows
for different implementations, thereby enabling various classes to define their own
strategies for managing GcsBlobs. This separation has the effect of enhancing the
maintainability and readability of the code. Additionally, the employment of the
BlobStrategy interface enables the creation of unit tests for classes that interact
with GCS blobs. By means of mocking the implementations of the HasGcsBlobs,
it is possible to isolate and test the behavior of the aforementioned classes without
having to rely on actual GCS interactions. Furthermore, the strategy design pat-
tern allows the system to scale more effectively. In the event of new types of GCS
blobs or storage requirements emerging, it is possible to create new implementa-
tions of the HasGcsBlobs interface without having to modify existing code. This
extensibility ensures that the system can grow and evolve over time.

23

4. Architecture

24

5 Design and Implementation

This chapter provides a detailed look at how the elements described in chapter 4
were implemented. It highlights the key features of each component and how they
work together as a system. The chapter also covers specific topics related to the
implementation of these components. In addition, other related implementations
are discussed to give a complete understanding of how the architecture was put
into practice. The following sections will go into more detail about the technical
aspects and the reasons behind certain design choices.

5.1 Structured Backend Design

The majority of the programming work for this thesis involved the refactoring of
the entire backend codebase of QDAcity, with the objective of creating a struc-
tured Endpoint Controller DAO architecture. In this structure the frontend in-
teracts with existing endpoint classes that first create a context, which is a spe-
cialized class that initiates an ObjectifyService and handles additional logic such
as user management. Before proceeding with any logic, the endpoints perform
an authorization check. If the user is not authorized, an UnauthorizedException
is thrown. Otherwise, the endpoint continues by calling the necessary controller
classes, which handle the primary logic and call the DAO classes responsible for
caching and interacting with the datastore using Objectify.
Over time, the QDAcity codebase has gradually become disorganized due to the
large number of people working on the project. For example, datastore calls are
scattered throughout the codebase, including within endpoint classes. This was
not best practice and led to the implementation of the new structure, which re-
quired the refactoring of approximately 28000 lines of code.
The benefits of this change include the elimination of duplicate code, making
the code base more readable and easier to test. In a multi-contributor project,
duplicate instances of code are inevitable, nevertheless this new structure helps
to mitigate the problem by making it easier to identify whether a method has
already been implemented.
In addition, this structure makes it easier to modify the logic. For example, if a

25

5. Design and Implementation

User entity needs to be deleted along with its associated UserLoginProviderIn-
formation (which is linked by a key but not embedded), only the delete method
in the UserDAO class needs to be updated to handle both deletions.
Another advantage of this structure is its compatibility with the migration to
Objectify. Unlike JDO, Objectify does not have a delete hook, but this is no
longer an issue. The necessary calls can be added to the delete method of the
DAO class, effectively replicating the previous behavior.

5.1.1 Data Access Object

UserDAO

- context: Context

- UserDAO(context: Context)
+ with(context: Context): UserDAO
+ save(user: User): User
+ get(id: Long): User
+ delete(user: User): void
+ count(): int

Figure 5.1: Typical DAO Structure

One of the most crucial tasks was creating DAO classes to decouple the rest of the
codebase from Google Datastore. Each entity class, with the exception of those
who share a table with others, has its own dedicated DAO class. This does not
include embedded entities, which lack their own DAO as they are saved/deleted/-
loaded with the entity they are embedded in. Entities that share a table due to a
common abstract parent class, also share one DAO class. In these cases, a single
DAO class is used for all entities, with the class type passed as a parameter in
the load methods. A primitive example of a DAO class with it’s properties and
methods is shown in 5.1.

• context: Initially, the primary role of the context class was to manage the
PersistenceManager instance before migrating to Objectify. Its main func-
tion now is similar, as it currently manages the ObjectifyService instance.

• with(context): This method acts as a Factory Method, creating new DAO
instances with controlled instantiation (Erich Gamma, 1994).

26

5. Design and Implementation

• save(user): When saving entities, this method not only uses Objectify but
also leverages memcache to cache them. The saved entity is returned,
allowing the method’s return value to be directly assigned to any variable
the caller is declaring.

• get(id): Retrieving an entity from the datastore is straightforward with this
method, which relies on the entity’s unique ID.

• delete(user): Removal of the entity is handled here, ensuring it is deleted
from both the datastore and the cache.

• count(): This method queries the datastore using the DatastoreFacade
class, providing the current count of stored entities.

These are the core methods that every DAO class includes. However, many DAO
classes also implement additional methods tailored to more specific needs.

• getAll(): This method allows for querying all entities of a certain type, often
using specific properties or filters to narrow down the results.

• saveAll(users): When dealing with multiple entities, this method efficiently
saves all provided entities in a single operation, ensuring batch processing
and better performance.

• deleteAll(users): For bulk deletions, this method removes all specified entit-
ies from both the datastore and the cache, streamlining the cleanup process.

• countByFilter(filter): This method provides a way to count entities based
on a specific filter, enabling precise queries on the datastore without needing
to load all entities.

The primary advantage of these methods is their efficiency, as the DAO only needs
to connect to the Google Datastore once, to handle all entities in a single oper-
ation. This reduces the overhead of multiple datastore interactions, significantly
improving performance. Additionally, by batching operations like saving, delet-
ing, or querying entities, these methods streamline processes, minimize latency.

5.1.2 Entities in Depth

The transition to Objectify is facilitated by the structure of the backend, where
each Datastore table is associated with its own DAO class. This design allows
for an incremental migration, enabling the migration of each entity group to
Objectify individually while still allowing for the coexistence of entities utilizing
JDO. This approach facilitates a smooth transition without requiring a complete
overhaul of the codebase at once.

Table 5.1 illustrated a structured comparison of the annotations used in JDO
and Objectify. It is divided into two columns, each labeled with the respective

27

5. Design and Implementation

JDO Annotations Objectify Annotations
@PersistenceCapable(identityType) @Entity
@PrimaryKey @Id
@Persistent(valueStrategy) are persistent automatically
@NonPersistent @Ignore
are indexed automatically @Index
@PersistenceCapable(identityType)
@Inheritance(strategy =
InheritanceStrategy.SUPERCLASS_TABLE)

@Subclass

Table 5.1: Comparison of JDO and Objectify Annotations

framework’s annotations. A notable distinction between JDO and Objectify is
the approach to annotations for persistence and indexing. While JDO requires
explicit annotations, Objectify simplifies this process by making all properties
persistent by default. In Objectify, developers are not required to annotate each
field to indicate its persistence, which results in a more streamlined code struc-
ture. Furthermore, JDO automatically indexes all properties without the neces-
sity for specific annotations, whereas Objectify requires the use of the @Index
annotation for the explicit indexing of fields. This distinction can enhance the
efficiency of the Datastore queries. Moreover, while both frameworks support
inheritance, JDO necessitates the utilization of particular strategies to facilit-
ate subclassing, whereas Objectify simplifies this process through the @Subclass
annotation, thereby rendering it more intuitive for developers. In general, Ob-
jectify’s annotations are more concise and easier to comprehend for those new to
the field. However, JDO offers a more extensive range of settings to customize
the storage type, which can be advantageous for more complex data modelling
requirements.

Standard Entity Example

There are multiple ways to store entities in the datastore, requiring a decision on
whether the entity should be stored in its own table or in a shared table alongside
other entities. To store an entity in its own table using JDO, the class is annotated
with @PersistenceCapable, where the identityType is specified to indicate the en-
tity’s identity management strategy, such as IdentityType.APPLICATION. The
ID field is annotated with @PrimaryKey and requires the @Persistent annota-
tion, with the valueStrategy determining how the ID is generated. Additionally,
persistable fields like email require the @Persistent annotation, while fields like
sessionToken that should not be saved are marked with @NotPersistent, as shown
in Listing 5.1.

28

5. Design and Implementation

Listing 5.1: Common JDO Entity
1 @PersistenceCapable(identityType = IdentityType.APPLICATION)
2 public class User {
3 @PrimaryKey
4 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
5 String id;
6

7 @Persistent
8 String email;
9

10 @NotPersistent
11 String sessionToken;
12 }

In contrast, when using Objectify, the class is annotated with @Entity, and the
ID field is marked with @Id. Fields that should not be saved in the Datastore
are annotated with @Ignore, while those that need to be searchable are marked
with @Index. An example User class using Objectify is illustrated in Listing 5.2.
A comparison of the Objectify class with the previous example reveals that the
annotations are shorter, although JDO offers greater control over annotations.

Listing 5.2: Common Objectify Entity
1 @Entity
2 public class User {
3 @Id
4 String id;
5

6 @Index
7 String email;
8

9 @Ignore
10 String sessionToken;
11 }

Entities using Polymorphism

The code examples above show a common scenario where an entity is stored in
the Datastore independently, without any dependencies on other entities. On
the other hand, there are two methods to store multiple entities in one table.
The first method is to use polymorphism and the second is to embed an entity
in another entity. Listing 5.3 illustrates the utilization of polymorphism for the
storage of entities using JDO.

29

5. Design and Implementation

Listing 5.3: JDO Entities as Subclasses
1 @PersistenceCapable(identityType = IdentityType.APPLICATION ,

table = "User")
2 @Inheritance(strategy = InheritanceStrategy.NEW_TABLE)
3 @Discriminator(strategy = DiscriminatorStrategy.CLASS_NAME)
4 public abstract class BaseUser {
5 @PrimaryKey
6 String id;
7 }
8 @PersistenceCapable(identityType = IdentityType.APPLICATION)
9 @Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)

10 public class AdminUser extends BaseUser {
11 @Persistent
12 String adminLevel;
13 }
14 @PersistenceCapable(identityType = IdentityType.APPLICATION)
15 @Inheritance(strategy = InheritanceStrategy.SUPERCLASS_TABLE)
16 public class NormalUser extends BaseUser {
17 @Persistent
18 Long numberOfPosts;
19 }

In this code example, the entities are stored together in a Datastore table named
User. Beyond simple storage, JDO enhances the process by adding extra columns
to manage polymorphism. Specifically, a column called DISCRIMINATOR is
added to the table to identify the current subclass type, such as AdminUser or
NormalUser. A similar approach is demonstrated in Listing 5.4 using Objectify.

Listing 5.4: Objectify Entities as Subclasses
1

2 @Entity(name="User")
3 public abstract class BaseUser {
4 @Id String id;
5 }
6 @Subclass(index=true)
7 public class AdminUser extends BaseUser {
8 @Index String adminLevel;
9 }

10 @Subclass(index=true)
11 public class NormalUser extends BaseUser {
12 Long numberOfPosts;
13 }

In addition to storing, Objectify enhances this process by automatically adding
additional columns to handle the metadata for these entities. One of these
columns is ˆd, which works the same way as the DISCRIMINATOR column
in the JDO code example. Another column, ˆi, contains a list of parent classes
along with the class type of the current entity. In this case, it would represent a

30

5. Design and Implementation

list with a single element corresponding to the current class type.
Both Objectify and JDO support polymorphism, but their approaches differ
slightly. Objectify stores all entities in a single table and automatically adds
metadata columns to track the entity’s type and hierarchy. In contrast, JDO
provides greater control over table structure, allowing for either shared or sep-
arate tables for subclasses through its @Inheritance annotation. Additionally,
JDO allows you to rename the discriminator column used to distinguish between
subclass types, which can not be renamed in Objectify. While Objectify stream-
lines the setup by handling everything in one table, JDO offers more flexibility
for custom storage configurations.

Embedded Entities

Additionally, both APIs allow for the embedding of one entity within another.
Listing 5.5 demonstrates how this can be accomplished using JDO.

Listing 5.5: Embedded Entities in JDO
1 @PersistenceCapable(identityType = IdentityType.APPLICATION)
2 @EmbeddedOnly
3 public class Project {
4 @Persistent
5 String name;
6 }
7 @PersistenceCapable(identityType = IdentityType.APPLICATION)
8 public class User {
9 @PrimaryKey

10 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
11 String id;
12

13 @Persistent
14 @Embedded
15 List <Project > projects;
16 }

The above example shows how to embed entities in JDO, where the Project class
is marked as @EmbeddedOnly, allowing it to exist solely within the User entity.
In contrast, Listing 5.6 illustrates a similar approach in Objectify, where the
Project entity is defined without additional annotations, demonstrating its direct
embedding within the User entity.

31

5. Design and Implementation

Listing 5.6: Embedded Entities in Objectify
1 @Entity
2 public class Project {
3 String name;
4 }
5 @Entity
6 public class User {
7 @Id String id;
8 List <Project > projects;
9 }

The Datastore representation now has exactly one table called User with a
column named projects containing the list of projects for each User. When using
embedded entities like this, it is essential to be aware of the size of a User entity,
since a Datastore entity is limited to a size of 1 megabyte.

Entities using Foreign Keys

Lastly, with both APIs, it is possible to connect entities indirectly by storing a
key with them. Listing 5.7 shows how this can be achieved in JDO.

Listing 5.7: Foreign Key Entities in JDO
1 @PersistenceCapable(identityType = IdentityType.APPLICATION)
2 public class User {
3 @PrimaryKey
4 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
5 String id;
6

7 @Persistent
8 Key info;
9 }

10 @PersistenceCapable(identityType = IdentityType.APPLICATION)
11 public class LoginInformation {
12 @PrimaryKey
13 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
14

15 @Persistent
16 Key user;
17 }

In Listing 5.8, a similar approach is taken in Objectify, where both the User and
LoginInformation classes utilize keys to create indirect connections between the
entities.

32

5. Design and Implementation

Listing 5.8: Foreign Key Entities in Objectify
1 @PersistenceCapable(identityType = IdentityType.APPLICATION)
2 public class User {
3 @Id String id;
4 Key <LoginInformation > info;
5 }
6 @Entity
7 public class LoginInformation {
8 @Id Long id;
9 Key <User > user;

10 }

This link can be used to establish secure connections between entities and manage
one-to-one or one-to-many relationships. This method ensures that references are
clear and unambiguous, as each Key uniquely identifies an entity across all tables.
The primary distinction between the two is that JDO does not provide its own
Key implementation. Instead, it uses the native Google Datastore Key structure.
In contrast, Objectify offers its own Key<T> class, which serves as a wrapper
for the native API Key. The key difference is that Objectify’s implementation is
generic, which can be advantageous in some scenarios.
Instead of storing a key to another value, Objectify also provides users with a
Ref class. Refs are stored as native Key in the datastore, but when loaded it is
possible to use them as actual entity objects. However, these Refs can lead to a
DeadRef if the entity could not be loaded properly. For example, when loading
from the cache (Objectify, 2024). This is a reference to an object, that no longer
works as it should because it is disconnected from the live system (‘DeadRef
(Objectify App Engine 5.0 API)’, 2024).

Migration Work

Although the storage methods between both APIs are largely similar, there are
instances where additional effort is required to ensure that no data is lost during
migration.
Whenever the data schema needs to be altered to improve the overall structure,
a additional method is needed to load the old properties stored in the Datastore
and load them into their new structure. An example method for this is illustrated
in Listing 5.9.

33

5. Design and Implementation

Listing 5.9: Example @AlsoLoad Method
1 @Entity
2 public class User {
3 private List <String > paths;
4

5 private void loadOldProperty(@AlsoLoad("path") String oldpath
) {

6 if (path == null) return;
7 this.paths.add(path);
8 }
9 }

In this example, we had just one path stored before the migration, and now we
want to store multiple paths. To avoid losing any data, this method is automat-
ically executed by Objectify after the User entity is loaded from the Datastore.
We then store the old path value and can now also store other paths within the
list.
In the process of migrating old properties to new structures, a challenge arises
whereby only the properties of entities that have been loaded will be migrated.
For example, if a User has not logged in for an extended period and, therefore,
is not loaded, its data will not be transferred to the new format. To accelerate
the migration process, migration tasks have been implemented to load all stored
entities that require migration and then save them again. This ensures that the
method for loading old properties is invoked for each relevant entity. Once this
migration task is completed, the migration method can be safely removed from
the codebase.
A key distinction between JDO and Objectify lies in their ability to query poly-
morphic entities. Although Objectify supports querying across polymorphic en-
tities natively, JDO does not offer this feature directly. In JDO, filtering queries
based on the subclass type requires using the native Google Datastore API to
query the discriminator column. Objectify, on the other hand, allows for query-
ing polymorphic entities by simply including the entity’s class type when loading.
However, Objectify searches for the subclass type in its own ˆd column. Before the
migration, this information was stored in a column named DISCRIMINATOR,
which led to a mismatch. To resolve this, a new String property was added to
these classes, annotated with JDO’s @Persistent(column = "ˆd"), aligning the
column names. Combined with a method that loads the old discriminator value
and stores it in the new property, along with a migration task, this solution
allowed for a seamless transition without data loss or service interruptions.

5.1.3 Migrate child entities to embedded entities

To optimize the datastore, certain entities have been migrated from being linked
by foreign key relationships to being embedded within another entity. Con-

34

5. Design and Implementation

sequently, an embedded entity is no longer part of its datastore table, but is
included in the entity, where it is embedded in. However, due to Google’s 1
megabyte limit on entity size, not all related entities can be embedded.
Previously, JDO automatically stored only the key values of objects, while the
backend worked on the entire instance, not just the keys. With the migration
to Objectify, this behavior had to be reconstructed by creating a new field to
store the instances. A method with a parameter annotated with @AlsoLoad and
a Ref type on the embedded entity was implemented to load old values from
existing entities and set the new embedded values using the old values. If the old
entities had a parent key property, this property would also need to be given to
the embedded entity, which JDO automatically created before.
There were additional challenges during the migration, particularly with queries
involving newly embedded entities. Therefore, significant changes to the queries
were required. Until all entities are fully migrated, queries need to be written
to take into account both old non-embedded entities and new embedded entities.
These queries need to filter out any duplicates before returning a consolidated
list.
Migration scripts are required to transfer all the old data into the new embedded
entity groups. With the data migration now complete, the @AlsoLoad method is
ready for removal, allowing for the simplification of complex queries once again.

5.2 Integration of Design Patterns to Enhance the
Codebase

In this section, the visitor design pattern will be explored in greater depth. This
includes a detailed explanation of the various visitor implementations, highlight-
ing how each one functions and interacts within the pattern.

5.2.1 BaseProject classes

For the project classes a visitor design pattern was implemented to manage the
load and delete operations within the BaseProjectDAO class. The BaseProject-
DAO class is a DAO class responsible for handling data store interactions for all
project classes. Figure 5.2 illustrates the hierarchical structure of the BasePro-
ject class, which serves as the parent class to several subclasses, including Project,
SandboxProject, and ProjectRevision. The ProjectRevision class is further exten-
ded by two additional subclasses, ExerciseProject and ValidationProject.
By applying the visitor design pattern, the load and delete logic were encapsu-
lated in separate visitor classes. This approach kept the BaseProjectDAO class
clean and focused on its primary responsibilities, while the visitor classes man-
aged the specific operations. This separation of concerns not only improved the

35

5. Design and Implementation

BaseProject

SandboxProject

<T> T accept(ProjectVisitor<T>)

Project

<T> T accept(ProjectVisitor<T>)

ProjectRevision

<T> T accept(ProjectVisitor<T>)

ExerciseProject

<T> T accept(ProjectVisitor<T>)

ValidationProject

<T> T accept(ProjectVisitor<T>)

<<interface>>
VisitableProject

<T> T accept(ProjectVisitor<T>)

<<interface>>
ProjectVisitor<T>

T visit(Project)

T visit(SandboxProject)

T visit(ProjectRevision)

T visit(ExerciseProject)

T visit(ValidationProject)

DeletionProjectVisitor

Void visit(Project)

Void visit(SandboxProject)

Void visit(ProjectRevision)

Void visit(ExerciseProject)

Void visit(ValidationProject)

LoadRelatedEntitiesVisitor

Void visit(Project)

Void visit(SandboxProject)

Void visit(ProjectRevision)

Void visit(ExerciseProject)

Void visit(ValidationProject)

Figure 5.2: UML Diagram of the Project Visitor Design Pattern

36

5. Design and Implementation

maintainability of the code, but also made it easier to extend and modify the
operations without changing the existing class hierarchy.

ProjectRevision: Figure 5.3 outlines the architecture of the ProjectRevision
class, along with its parent class and child classes. This structure introduces
additional properties compared to BaseProject, including a list of Snapshot keys
and a corresponding list of Snapshot entities. Since Snapshot entities can exceed
the 1 megabyte entity size limit imposed by Google for stored entities, only their
keys and GCS blob information are stored in the Datastore. Since the loading
of a ProjectRevision entity will not automatically load the Snapshot entities, but
only their keys, the Snapshot entities have to be manually loaded and set in the
ProjectRevision#snapshotEntities property.

ExerciseProject ValidationProject

ProjectRevision

~ snapshots: List<Key<Snapshot>>

~ snapshotEntities: List<Snapshot>

BaseProject

~ id: Long

Figure 5.3: UML Diagram of the ProjectRevision architecture

LoadRelatedEntitiesVisitor: When loading a project of type ProjectRevi-
sion, it is essential to load all related Snapshot entities to ensure they are available
for backend operations. The LoadRelatedEntitiesVisitor class is used to retrieve
the Snapshot entities by their keys and populating the snapshotEntities property
with the loaded data.

DeleteProjectVisitor: Conversely, as the Datastore does not facilitate cas-
cading deletes, the DeleteProjectVisitor class was implemented to eradicate all
entities that are associated with a Project entity. This visitor is then invoked
by the BaseProjectDAO class when a project deletion operation is initiated, thus
preventing the creation of orphaned related entities within the Datastore.

37

5. Design and Implementation

5.2.2 BaseDocument classes

QDAcity’s document classes already implement a visitor design pattern illus-
trated in figure 5.4, which has been extended by a new visitor class called Doc-
umentDeletionVisitor. This class is designed to manage the different actions
required to delete different types of documents. For example, when deleting an
TranscriptionDocument entity, the corresponding TranscriptionJob entities must
also be deleted.
Furthermore, the DocumentDeletionVisitor class handles the deletion of content
stored in the GCS, which varies between document types, because the different
document types have differing amounts of blobs attached to them. By encap-
sulating the deletion logic within this visitor class, the codebase remains clean
and modular. This approach ensures that the specific deletion requirements of
each document type are adequately addressed, without adding complexity to the
main document classes. Additionally, the DocumentDeletionVisitor class can be
extended or modified to accommodate new deletion requirements, ensuring that
the system remains flexible and adaptable.

BaseDocument

TextDocument

<T> T accept(DocumentVisitor<T>)

TranscriptionDocument

<T> T accept(DocumentVisitor<T>)

PDFDocument

<T> T accept(DocumentVisitor<T>)

<<interface>>
VisitableDocument

<T> T accept(DocumentVisitor<T>)

<<interface>>
DocumentVisitor<T>

T visit(TextDocument)

T visit(PDFDocument)

T visit(TranscriptionDocument)

DocumentDeletionVisitor

Void visit(TextDocument)

Void visit(PDFDocument)

Void visit(TranscriptionDocument)

Figure 5.4: UML Diagram of the Document Visitor Design Pattern

38

5. Design and Implementation

GcsBlob

- path: String
- needsServerProcessing: Boolean
- content: byte[]

+ constructors
+ writeObject(out: ObjectOutputStream): void
+ getters/setters for instance properties

Figure 5.5: UML Diagram of the GcsBlob class

5.3 GCS Blob & GcsClient design

5.3.1 GcsBlob class

Figure 5.5 illustrates the structure of the GcsBlob class. The GcsBlob class has
three private instance properties.

• path: This property is a string representing the path to the blob in GCS.
It is used to locate and access the blob within the storage system.

• needsServerProcessing: This boolean property indicates whether the con-
tent needs to be sent to the server for processing before being stored in
GCS. If set to true, the content will be processed by the server. Otherwise,
it is stored directly in GCS.

• content: This property is a byte array containing the actual content of the
blob. It contains the data that needs to be stored in GCS. To prevent this
potentially large property from being stored in the datastore, it is annotated
with @Ignore.

In order to enable the caching of objects that have a GcsBlob as a property in
the memcache, it is necessary to consider the memcache’s 1 megabyte record
size limit. This issue has been addressed by implementing a custom writeObject
method, which ensures that the GcsBlob’s content data, which can be larger than
1 megabyte, is not serialized.

The writeObject(ObjectOutputStream) method temporarily saves the content prop-
erty in a local variable, sets content to null to exclude it from the serialization,

39

5. Design and Implementation

GcsClient

- bucketName: String
- storage: Storage

+ GcsClient()
+ upload(blob: GcsBlob): void
+ download(blob: GcsBlob): void
+ delete(blob: GcsBlob): void
+ deleteAll(blobs: List<GcsBlob>): void
+ copy(oldBlob: GcsBlob, newBlob: GcsBlob): void
+ move(oldBlob: GcsBlob, newBlob: GcsBlob): void

Figure 5.6: GcsClient UML Diagram

calls out.defaultWriteObject() to serialize the object without the content property,
and then restores the content property from the local variable after serialization.

5.3.2 GcsClient class

In order to interact with the GCS, the GcsClient class is implemented. Figure 5.6
illustrates the structure of this class, which has two properties:

• bucketName: Each Google Cloud Project can have multiple GCS buckets,
each with its own files and configurations. In this context, the static final
String stores the name of the GCS bucket, which is derived from the applic-
ation ID. It is employed to specify the target bucket for all GCS operations.

• storage: This particular instance of the Storage class, which is provided
by the GCS library, is employed for the purpose of interacting with the
GCS. It is initialized with the requisite service account credentials and the
relevant project ID within the constructor.

The introduction of the new GcsBlob class has necessitated modifications to cer-
tain methods inside the GcsClient class. These methods now employ the GCS
path stored within the GcsBlob.

• upload(GcsBlob): This method uploads the content of a GcsBlob to the
GCS.

• download(GcsBlob): This method downloads the content of a GcsBlob from
the GCS and saves it in the GcsBlob.

40

5. Design and Implementation

• delete(GcsBlob): This method removes content from GCS at the GcsBlob’s
path without altering the GcsBlob instance, which may still contain the
blob data even after the deletion. This ensures that the instance remains
unchanged, and its data is not invalidated by the deletion process.

• deleteAll(List<GcsBlob>): This method performs the same function as the
delete(GcsBlob) method, but for a list of GcsBlobs.

• copy(GcsBlob, GcsBlob): This method enables the transfer of a blob to
another location within the same GCS bucket.

• move(GcsBlob, GcsBlob): The objective of this method is to invoke the
copy(GcsBlob, GcsBlob) method and subsequently remove the blob situated
at the former path.

Prior to the modification, the aforementioned methods received an interface para-
meter, which held the path where the data is stored inside the GCS. This in-
terface was implemented by all classes that stored a GCS Uniform Resource
Locator (URI).

5.3.3 Strategy Design Pattern

<<interface>>
HasGcsBlobs

+ getBlobs(): Map<String, GcsBlob>

BaseProject

~ yDocBlob: GcsBlob

+ getBlobs(): Map<String, GcsBlob>

BaseDocument

~ blobs: Map<String, GcsBlob>

+ getBlobs(): Map<String, GcsBlob>

<<enumeration>>
UrlType

DOWNLOAD
UPLOAD

GcsUriSigner

- gcsClientSigningMethod: Function<String, URL>
- urlType: UrlType

+ GcsUriSigner(urlType: UrlType)
+ getSignedUris(hasGcsBlobs: HasGcsBlobs): Map<String, Url>

Snapshot

+ getBlobs(): Map<String, GcsBlob>

TextDocument

+ getBlobs(): Map<String, GcsBlob>

TranscriptionDocument

+ getBlobs(): Map<String, GcsBlob>

Figure 5.7: Strategy Design Pattern

Figure 5.7 shows a detailed view of the structure and relationships between several
key components, including the HasGcsBlobs interface and the UrlType enumer-
ation, within a system that manages blobs in the GCS. Any class that stores

41

5. Design and Implementation

at least one GcsBlob instance implements the HasGcsBlobs interface, allowing
for consistent and efficient handling of blobs across different classes. The Gc-
sUriSigner class is responsible for securing access in order for the resources to be
accessible by e.g. the QDAcity frontend. This class contains two main properties:

• gcsClientSigningMethod: Is populated with a function that accepts a string
and returns a URL. The specific method used is determined by the urlType
property, as different procedures are required to generate signed URLs de-
pending on whether the operation is a download or an upload to the GCS.
This function handles this distinction accordingly.

• urlType: An enumeration that specifies whether the signed URL is for a
download or upload operation, guiding the behavior of the gcsClientSign-
ingMethod.

This class currently provides a single method for handling HasGcsBlobs instances.
The method iterates over the provided map, sign the URI of each GcsBlob, and
subsequently add them to the returned map. In instances where the needsServer-
Processing property of a GcsBlob is set to true, the method simply skips this
iteration. Prior to this modification, the needsServerProcessing property had to
be stored directly in the entities themselves, which made the architectural design
less adaptable for future requirements, as some blobs within the same entity class
may not require additional processing.
The HasGcsBlobs interface serves a crucial role in the architectural framework.
It defines a single method, getBlobs(), which returns a Map<String, GcsBlob>.
This approach improves code reusability and ensures consistency across the sys-
tem.
The BaseDocument class now includes a Map<String, GcsBlob> property called
blobs, where each document type has a content blob, and additional GcsBlob in-
stances specific to the document can be added to the map. This structure allows
different document types to store both the contentBlob and any other relevant
GcsBlobs in a unified way, making the retrieval of all GcsBlob instances straight-
forward and easily extendable for future requirements.
All project classes, on the other hand, currently include a yDocBlob property.
When this has to be extended in the future, this property could also be migrated
to a collection or map.
Previously, the backend handled URL signing for each entity class individually,
using a separate class that implemented the visitor design pattern to manage
document blobs. With the introduction of the GcsUriSigner class, these signing
tasks have been streamlined. The GcsUriSigner consolidates all signing oper-
ations into a single method, simplifying the process and ensuring consistency
across different use cases. This change enhances maintainability by centralizing
URL signing in one location.

42

6 Evaluation

In this chapter, both the functional and non-functional requirements outlined in
chapter 3 are thoroughly evaluated to determine how well they have been met.

6.1 Functional requirements

Reg
1a

Reg
1b

Reg
1c

Reg
1d

Reg
2a

Reg
2b

Reg
3a

Reg
3b

fulfilled ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
partly fulfilled
not fulfilled

Table 6.1: Functional Requirement Evaluation Results

As demonstrated in Table 6.1, all functional requirements are fulfilled. The table
presents a comprehensive overview of the fulfillment status, indicating that each
requirement was successfully met. The subsequent section provides a detailed
examination of each functional requirement and elucidates the methods through
which they have been addressed and implemented.

6.1.1 API Reliability and Compliance

Req 1.a: The new API shall be capable of utilizing the necessary fea-
tures of the Google Datastore.

Objectify takes full advantage of the rich feature set of the Google Datastore.
The API supports all native Datastore functionality. This ensures that the sys-
tem can utilize the full capabilities of the Google Datastore to provide robust and
efficient data management1.

Req 1.b: The new API shall ensure the integrity and consistency of
the data.

1https://github.com/objectify/objectify/wiki

43

https://github.com/objectify/objectify/wiki#introduction-to-objectify

6. Evaluation

Objectify ensures the integrity and consistency of the data by supporting trans-
actions that enforce atomicity, consistency, isolation, and durability (ACID) prop-
erties. Each Objectify transaction opens its own ObjectifyService, which separates
the caches from each other. Furthermore, transactions must include an ancestor
in order to be queryable2.

Req 1.c: The new API shall be actively maintained, with at least one
official release in the year 2024 as a criterion for active maintenance.

The latest version of Objectify, released in July 2024, demonstrates that the
library is actively maintained, with ongoing support and updates from its de-
velopers. Therefore, it can be concluded that Objectify satisfies the criterion for
active maintenance3.

Req 1.d: The new API shall be permissively licensed, allowing for
modification, distribution, and commercial use with minimal restric-
tions.

Objectify meets this requirement, as it is licensed under the MIT License. The
MIT License is a permissive open-source license that allows users to freely use,
modify, distribute, and even sell copies of the software with very few restrictions.
The only obligation is to include the original copyright notice and license in any
copies or significant portions of the software. Therefore, Objectify satisfies the
requirement of being permissively licensed4.

Req 2: QDAcity shall support the transition to the new
API, ensuring the preservation of data and compatibility
with current data structures while integrating new features
during the migration from JDO.

6.1.2 API migration

Req 2.a: QDAcity shall support migration from JDO to a new frame-
work without data loss, ensuring compatibility with existing data struc-
tures while introducing new enhancements.

The migration from JDO to Objectify was carefully managed to guarantee the
integrity of the data. Initially, the compatibility with existing data structures
was preserved by using methods to load old properties and save them in the new
properties. Furthermore, migration scripts were employed to update entities,
ensuring a seamless transition while introducing new enhancements.

2https://github.com/objectify/objectify/wiki/Concepts#transaction-limitations
3https://github.com/objectify/objectify/releases/tag/6.1.2
4https://github.com/objectify/objectify?tab=MIT-1-ov-file#licence.txt

44

https://github.com/objectify/objectify/wiki/Concepts#transaction-limitations
https://github.com/objectify/objectify/releases/tag/6.1.2
https://github.com/objectify/objectify?tab=MIT-1-ov-file#licence.txt

6. Evaluation

Req 2.b: QDAcity shall enable incremental migration from JDO to the
new API, allowing gradual updates without necessitating a complete
transition at once.

Following the refactoring of all JDO code into DAO classes, the migration of
entity groups was conducted in a sequential manner. This approach permitted
the coexistence of JDO and Objectify within the codebase, facilitating an effective
transition. The incremental migration strategy minimized disruption and enabled
continuous functionality during the upgrade process, thereby demonstrating that
the requirement was effectively met.

6.1.3 GCS blobs

Req 3.a: The QDAcity backend component for managing GCS blobs
shall be able to create, read, update, and delete data.

Methods within the GcsClient class have been designed with the specific inten-
tion of facilitating interaction with the GCS. It provides a comprehensive set of
methods that are capable of ensuring effective management of data in the form
of blobs.
The creation of data in the GCS is facilitated by the upload(GcsBlob blob)
method. This method uploads the content of a GcsBlob to GCS. The retrieval of
data from the GCS is facilitated by the download(GcsBlob blob) method, which
loads the content from the GCS and stores the data in a GcsBlob instance. The
update functionality is intrinsic to the upload(GcsBlob blob) method. When a
GcsBlob object with an existing URI is passed to this method, the content of the
blob in the GCS is overwritten with the new content provided in the GcsBlob
object. The deletion of data in the GCS is managed by the delete(GcsBlob blob)
method.

Req 3.b: The QDAcity backend component for managing GCS blobs
shall be able to manage multiple blobs connected to a single Datastore
entity.

The entity classes have been enhanced to support the creation and admin-
istration of collections or maps of GcsBlobs. This allows multiple blobs to be
associated with a single Datastore entity. By storing these collections or maps in
the Google Datastore, the system can efficiently manage multiple blobs for each
entity.

45

6. Evaluation

6.2 Non-functional requirements

Reg
1a

Reg
1b

Reg
2a

Reg
2b

Reg
2c

Reg
2d

Reg
2e

Reg
3a

Reg
3b

Reg
3c

fulfilled ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
partly fulfilled
not fulfilled

Table 6.2: Non-Functional Requirement Evaluation Results

As evidenced in Table 6.2, all non-functional requirements are fulfilled. The sub-
sequent section provides a detailed examination of each non-functional require-
ment, outlining the methods and strategies employed to address and implement
them. This includes aspects such as performance, reliability, and usability, ensur-
ing that the system not only meets its functional goals but also excels in delivering
a high-quality user experience and robust performance under various conditions.

6.2.1 Datastore Access Encapsulation

Req 1.a: Code that accesses the datastore shall be encapsulated within
a dedicated layer of the software architecture, to ensure maintainabil-
ity and testability.

Initially, code accessing the Google Datastore was dispersed throughout the
backend codebase, which resulted in maintenance challenges and inefficiencies.
By centralizing all datastore access within DAO classes, the system ensures that
no datastore calls will be made outside of these classes. The refactoring effort
involved reorganizing approximately 28,000 lines of code into a more structured
endpoint-controller-DAO architecture. As a result, the codebase is now more
organized, with clear separation of concerns, and the amount of duplicate code
has been significantly reduced. This approach has improved maintainability by
making it easier to locate and update datastore access logic, enhanced perform-
ance by optimizing data access patterns, and increased readability by providing a
consistent structure. The new architecture not only meets the requirements but
also provides a robust foundation for future development and maintenance.

Req 1.b: Each datastore table shall be managed through a dedicated
class, allowing for shared access among related entities while maintain-
ing a clear separation of concerns.

DAO classes have been implemented to encapsulate all code responsible for es-
tablishing connections to the datastore. A total of 43 DAO classes were created

46

6. Evaluation

to ensure comprehensive coverage of all data access needs. These classes effect-
ively manage interactions with the datastore tables, allowing related entities that
share a table to access data through the appropriate class. This design promotes
a clear separation of concerns and enhances maintainability and testability within
the codebase.

6.2.2 System Maintainability and Future-Proofing

Req 2.a: The refactoring shall enhance the codebase’s maintainability
by establishing a clear structure and reducing duplication, thereby fa-
cilitating efficient feature additions.

The refactoring process has greatly improved the maintainability of the code-
base by introducing a clear and organized structure. By centralizing data store
access within DAO classes and establishing a well-defined architecture that sep-
arates endpoints, controllers, and DAO classes, the codebase has become more
modular and easier to manage. A significant portion of duplicate code has been
refactored into the DAO classes, further simplifying the codebase and reducing
redundancy. Additionally, the code was cleaned up, such as removing the iter-
ation over child entities, a step that was necessary with JDO, but is no longer
required in the new structure.
This new structure facilitates extensions by providing a consistent framework for
adding new functionality. Developers can now follow established patterns when
introducing new endpoints, controllers, and DAO classes, ensuring that existing
code is not disrupted. This modular approach enables integration of new func-
tionality, reducing the risk of bugs or inconsistencies.
In addition, the improved maintainability of the codebase allows future changes
to be implemented more efficiently. The clear separation of concerns between
different architectural layers allows developers to focus on specific areas of the
code without having to understand the entire system.

Req 2.b: QDAcity shall be able to update dependencies and integrate
new dependencies.

As a consequence of the migration from JDO to Objectify, five dependencies
were removed: datanucleus-appengine5, datanucleus-core6, datanucleus-api-jdo7,
jdo-api8, and javax-persistence9. This migration not only streamlined the code-
base but also established a more flexible architecture that allows for the straight-
forward upgrading of existing dependencies. Furthermore, the new structure

5https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.
1.2

6https://mvnrepository.com/artifact/org.datanucleus/datanucleus-core/3.1.3
7https://mvnrepository.com/artifact/org.datanucleus/datanucleus-api-jdo/3.1.3
8https://mvnrepository.com/artifact/javax.jdo/jdo-api/3.0.1
9https://mvnrepository.com/artifact/javax.persistence/javax.persistence-api/2.2

47

https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.1.2
https://mvnrepository.com/artifact/com.google.appengine.orm/datanucleus-appengine/2.1.2
https://mvnrepository.com/artifact/org.datanucleus/datanucleus-core/3.1.3
https://mvnrepository.com/artifact/org.datanucleus/datanucleus-api-jdo/3.1.3
https://mvnrepository.com/artifact/javax.jdo/jdo-api/3.0.1
https://mvnrepository.com/artifact/javax.persistence/javax.persistence-api/2.2

6. Evaluation

supports the integration of new dependencies, which was not feasible with the
previous setup. As a result, developers can now efficiently manage and incor-
porate third-party libraries and tools, enhancing the overall functionality and
adaptability of the system.

Req 2.c: QDAcity shall be compatible with all next-generation GAE
APIs.

Previously, the system was dependent on an outdated version of the DataNucleus-
AppEngine dependency, which was no longer supported by Google. The lack of
support prevented the application from upgrading the DataNucleus v3 depend-
ency to DataNucleus v6. and constrained its compatibility with any prospective
Java runtimes. However, through the migration to Objectify, the obsolete de-
pendencies were removed, thus enabling the application to be compatible with
the Second-generation Java runtimes10. This transition ensures that the system
can leverage the latest features and improvements

Low Mid High Critical
CVE-2019-17571 x
CVE-2020-1945 x
CVE-2021-36373 x
CVE-2021-4104 x
CVE-2022-23302 x
CVE-2022-23305 x
CVE-2022-23307 x

Table 6.3: Categorization of Common Vulnerabilities and Exposures (CVE) by
Severity

Req 2.d: QDAcity shall address and mitigate security vulnerabilities
present in the previous implementation.

As a consequence of the migration, the system has become more modular and
less reliant on outdated dependencies. The modularity of the system allows for the
updating of individual components without compromising the overall stability of
the system. Moreover, the active maintenance and community support provided
by Objectify facilitate the integration of new updates and security patches. This
proactive approach to dependency management mitigates the risk of vulnerabil-
ities and ensures that the system remains current with the latest advancements.
This reduction in complexity not only enhances the system’s performance, but
also facilitates future updates and enhancements. Furthermore, this migration
resulted in the removal of seven security vulnerabilities. Table 6.3 categorizes

10https://web.archive.org/web/20240901144234/https://cloud.google.com/appengine/
migration-center/standard/migrate-to-second-gen/java-differences

48

https://web.archive.org/web/20240901144234/https://cloud.google.com/appengine/migration-center/standard/migrate-to-second-gen/java-differences
https://web.archive.org/web/20240901144234/https://cloud.google.com/appengine/migration-center/standard/migrate-to-second-gen/java-differences

6. Evaluation

the removed CVEs by their severity. Among these, three were rated as high
and two as critical. These vulnerabilities were addressed by removing outdated
and vulnerable dependencies, leading to a significant improvement in the secur-
ity posture of the system. The following CVE were mitigated by removing these
deprecated libraries:

• Memory Issues:

– CVE-2021-3637311: A memory-related error that posed a risk in
the previous implementation was resolved. In specific instances, the
application may encounter a memory error when processing a specially
designed TAR file.

– CVE-2020-194512: The vulnerability in Apache Ant permitted the
leakage of sensitive information and the potential manipulation of code
through the unsafe handling of temporary files. The resolution of this
issue was achieved by the removal of the obsolete JDO dependency.

• Deserialization Vulnerabilities:

– CVE-2022-2330713, CVE-2022-2330214, CVE-2021-410415, CVE-
2019-1757116: These vulnerabilities, which originated from the insec-
ure deserialization of data, were addressed by eliminating the usage of
the outdated DataNucleus-AppEngine API that permitted these at-
tack vectors.

• Structured Query Language (SQL) Injection:

– CVE-2022-2330517: The vulnerability in Log4j 1.2.x allowed attack-
ers to manipulate SQL queries through crafted inputs, due to insecure
handling of SQL statements in the JDBCAppender. By removing de-
pendencies tied to this version of Log4j, the risk of SQL injection was
eliminated.

The migration to Objectify not only brought improvements in performance and
maintainability but also fortified the system against these critical security vulner-
abilities. By removing obsolete dependencies that were known to carry security
flaws, the system is now more secure and less prone to potential threats, providing
a higher degree of safety for both data and users.

11https://nvd.nist.gov/vuln/detail/CVE-2020-1945
12https://nvd.nist.gov/vuln/detail/CVE-2021-36373
13https://nvd.nist.gov/vuln/detail/CVE-2022-23307
14https://nvd.nist.gov/vuln/detail/CVE-2022-23302
15https://nvd.nist.gov/vuln/detail/CVE-2021-4104
16https://nvd.nist.gov/vuln/detail/CVE-2019-17571
17https://nvd.nist.gov/vuln/detail/CVE-2022-23305

49

https://nvd.nist.gov/vuln/detail/CVE-2020-1945
https://nvd.nist.gov/vuln/detail/CVE-2021-36373
https://nvd.nist.gov/vuln/detail/CVE-2022-23307
https://nvd.nist.gov/vuln/detail/CVE-2022-23302
https://nvd.nist.gov/vuln/detail/CVE-2021-4104
https://nvd.nist.gov/vuln/detail/CVE-2019-17571
https://nvd.nist.gov/vuln/detail/CVE-2022-23305

6. Evaluation

Operation Old Version
put requests

Current Version
put requests

projects 7 4
createRevision 4 3
settleAction 10 6

Table 6.4: Example comparison of the number of Datastore put requests in the
old and current versions

Req 2.e: QDAcity shall decrease the number of Datastore write oper-
ations in its backend.

One of the main metrics examined throughout the course of this thesis was the
number of Google Datastore put requests generated by the application. At the
beginning of the project, the number of put requests was considerably higher, as
evidenced by Table 6.4. By the end of the thesis, there was a notable reduction
in the number of requests, with decreases of 42.86%, 25%, and 40% across dif-
ferent API endpoints respectively. Notably, this decrease was observed primarily
in more complex requests, while simpler requests remained unchanged. This re-
duction can be directly attributed to the migration from JDO to Objectify. JDO
inherently associates objects with PersistenceManager 18, which can result in im-
plicit write operations at unexpected times, without explicit commands. This
behavior frequently results in inefficiencies, as Datastore operations occur in an
unpredictable manner. In contrast, Objectify offers a more controlled and expli-
cit approach to data persistence. With Objectify, write operations are only made
when explicitly called, leading to more efficient data management and signific-
antly fewer unnecessary datastore operations.

6.2.3 Documentation

Req 3.a: The code shall be documented using JavaDocs to facilitate
future development and maintenance.

Extensive documentation has been incorporated throughout the codebase to
support future development and maintenance. Each DAO class is now docu-
mented, offering clear explanations of their purpose, methods, and usage. This
thorough documentation ensures that developers can easily grasp the function-
ality and responsibilities of each class, facilitating smoother onboarding and col-
laboration. The comprehensive documentation includes:

• Class Descriptions: All added classes have detailed explanations of their
purpose and functionality.

• Method JavaDocs: All methods inside DAO classes have clear descrip-
18https://db.apache.org/jdo/pm.html

50

https://db.apache.org/jdo/pm.html

6. Evaluation

tions, including parameters, return values, and any exceptions that may be
thrown.

This documentation not only fulfills the requirement but also significantly en-
hances the overall quality of the codebase. It ensures that future development
and maintenance efforts are well-supported, thereby promoting a more efficient
and collaborative development process.

Req 3.b: The QDAcity wiki shall be extended to include the new API.
The QDAcity Wiki has been updated to include comprehensive documentation

on the new Objectify API. The documentation provides an overview of Objectify,
highlighting its advantages in simplifying and streamlining common datastore
operations such as querying, saving, and deleting entities. It also includes a quick
start guide for defining entities and demonstrates how to create an entity class and
annotate it appropriately. By including this detailed information, the QDAcity
wiki not only meets the requirement but also serves as a valuable resource for
developers, ensuring they have the necessary guidance to effectively use the new
API.

Req 3.c: This thesis shall serve as comprehensive documentation for
future developers working with QDAcity.

This thesis includes detailed explanations of key components, such as the mi-
gration from JDO to Objectify, the refactoring efforts undertaken to improve
maintainability, and the overall functionality of the system. It offers a compre-
hensive examination of the architectural design, design decisions, and implement-
ation strategies of the QDAcity project. The thesis presents this information in
a structured and accessible manner, thereby serving as an essential resource for
future developers. It not only aids in understanding the existing codebase but
also supports onboarding and promotes best practices within the development
team. Furthermore, the documentation includes examples, diagrams, and refer-
ences to relevant resources, ensuring that developers have the necessary tools and
knowledge to effectively contribute to the QDAcity project.

51

6. Evaluation

52

7 Outlook

While QDAcity’s backend codebase has undergone significant modernization,
there still remain areas that require further improvement. This section outlines
key milestones for future development efforts on QDAcity, highlighting areas that
have not yet been fully handled.

7.1 Upgrading Objectify to v6

An important step into the future is the upgrade from the current Objectify v5
to the new Objectify v6. Migration to a newer Objectify version was not yet
possible, because it requires the use of the new datastore emulator, which is not
usable for Java8 applications. This new version introduces several major changes,
the most notable being the transition from the proprietary ApiProxy interface
to the more versatile Google Cloud SDK. Google is phasing out this proprietary
interface in favor of standards-based interfaces for cloud services. This makes
Objectify v6 more future proof. The Google Cloud SDK represents the future
of Google, offering developers greater flexibility, compatibility, and long-term
support1.

7.2 Upgrading to Java 11/17

With the removal of DataNucleus and its plugin, the application can now upgrade
its Java version. Previously, the DataNucleus-Plugin prevented this upgrade due
to compatibility issues with newer Java versions. These dependencies were tightly
coupled to older Java versions, making it impossible to upgrade to a newer ver-
sion.
With Java 8’s general availability date back in March 2014 and premier support
having ended in March 2022, the extended support, which lasts until December
2030, is now the key phase for maintaining security and stability. As a result,
upgrading to more recent long-term support versions such as Java 11 or 17 is

1https://github.com/objectify/objectify/wiki/FrequentlyAskedQuestions

53

https://github.com/objectify/objectify/wiki/FrequentlyAskedQuestions

7. Outlook

becoming increasingly important for businesses looking to stay up to date and
secure in the long term2. There are numerous advantages to making this trans-
ition. One of the primary benefits is enhanced performance. Java 11 and 17
introduce optimized features such as ahead-of-time compilation, which improves
the performance of Java programs while reducing the application’s startup time.
Java 17 also introduces new, improved garbage collection mechanisms and better
just-in-time compilation. Security is another critical improvement with Java 17.
The latest version includes advanced security features that better protect user
data and ensure the integrity of Java applications. This is crucial for maintain-
ing a secure and reliable application environment. Additionally, there are several
new language-level improvements. For example, pattern matching for switch
statements makes the code cleaner and more readable. These enhancements
simplify the development process and improve code maintainability. Further-
more, upgrading to Java 11 or 17 also facilitates easier integration with modern
frameworks. The latest API’s and libraries are designed to work seamlessly with
contemporary development tools, providing better support and integration (‘Top
7 Reasons To Migrate From Java 8 to Java 17’, 2023).

7.3 Optimize Cache usage

Many of the DAO classes in the codebase already store and delete entities us-
ing the memcache. However, the cache load calls are scattered throughout the
codebase. In the future, these cache load calls should be moved to the DAO
classes. The load methods should first attempt to retrieve data from the cache,
and if nothing is found, then proceed to load from the Datastore. Additionally,
several methods in the Cache class require refactoring because they are marked
as deprecated, yet continue to be used.

7.4 Use more Key properties

Currently, foreign key class members that reference other entities in the data-
store are often stored as Long IDs or String names. For example, BaseDocu-
ment#projectId references the project to which a document belongs. However,
projects are distributed across four different database tables, each representing
a different type of project. This distribution means that IDs are only unique
within their respective tables, leading to potential ambiguity when referencing
these projects.
To address this vagueness, the Datastore Key of the project should be stored

2https://web.archive.org/web/20241004224253/https://www.oracle.com/java/
technologies/java-se-support-roadmap.html

54

https://web.archive.org/web/20241004224253/https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://web.archive.org/web/20241004224253/https://www.oracle.com/java/technologies/java-se-support-roadmap.html

7. Outlook

directly. This approach ensures that references are unambiguous, as each Key
uniquely identifies an entity across all tables.

55

7. Outlook

56

8 Conclusion

In conclusion, this thesis has examined the transition from using JDO with Data-
Nucleus to Objectify for interacting with the Google Datastore. While JDO was
once a suitable interface, the now obsolete DataNucleus plugin no longer meets
current standards. The lack of updates and support for the DataNucleus plu-
gin has made it increasingly difficult to maintain and extend the system, and
in some cases it has become impossible to update or upgrade certain dependen-
cies. In contrast, Objectify is a well-maintained API designed specifically for the
Google Datastore. It provides a modern and efficient approach to data manage-
ment, enabling significant improvements to the project. Migrating to Objectify
has brought several benefits, including improved performance, smoother integ-
ration with the Google Cloud Datastore and improved type safety, all while be-
ing future-proof. The refactoring process of approximately 28,000 lines, which
involved centralizing datastore access within DAO classes and implementing a
structured architecture comprising endpoints, controllers, and DAO classes, has
greatly improved the maintainability and extensibility of the codebase. As part
of this effort, around 30 controller classes were created, further enhancing the
organization and making the backend cleaner and more structured. In addition,
the comprehensive documentation introduced throughout the codebase further
supports ongoing development and maintenance. Overall, the move to Objectify
and the associated architectural improvements have resulted in a more organized,
efficient and maintainable system. These changes provide a solid foundation for
future development, ensuring that the project can continue to evolve and effect-
ively meet the needs of its users.
In terms of GCS blobs management, the introduction of the GcsBlob has con-
stituted a pivotal enhancement in the system, ensuring efficient management of
substantial data storage requirements within the GCS environment. This imple-
mentation has introduced practical tools and patterns for efficiently managing
data, including the ability to create, read, update, and delete blobs, as well as
to handle multiple blobs tied to a single datastore entity. At the heart of this
functionality is the GcsClient class, which acts as the primary interface for inter-
acting with GCS, offering simple methods for managing blobs. Complementing
this, the GcsBlob class efficiently organizes the data needed for blob manage-

57

8. Conclusion

ment, while the BlobStrategy interface provides flexibility, enabling the system to
easily accommodate different approaches for handling blobs. This design ensures
greater adaptability and future scalability.
Tasks completed as part of this thesis included submitting around 190 merge
requests and resolving around 200 issues in GitLab, which were able to com-
pletely fulfill all requirements. These activities were instrumental in moving the
project forward. In addition to these primary tasks, several proactive measures
were taken to improve areas outside of the original scope, further contributing to
the overall improvement of the project. Time was spent updating legacy code,
correcting inefficient implementations and resolving numerous IntelliJ warnings.
A major initiative was the refactoring of several older controller classes that had
previously relied on static methods, which cluttered the back-end code and re-
duced flexibility. Converting these to instance methods improved the structure,
clarity and maintainability of the backend.
While these efforts have a positive impact on the project, several areas still re-
quire attention and development. As outlined in chapter 7, important milestones
include upgrading Objectify to version 6, moving to Java 11 or 17, optimizing
cache usage, and using more Datastore key properties to ensure clearer references
throughout the datastore. Addressing these issues will be essential to maintain
and improve the quality and longevity of QDAcity, ensuring it remains efficient
and relevant for future developers.
In conclusion, the modernization of QDAcity’s backend has not only led to a not-
able enhancement in its capacity to manage large-scale data storage requirements,
but has also resulted in optimized overall system performance. The incorporation
of sophisticated technologies has led to the creation of a more efficient, scalable,
and maintainable infrastructure, which has reduced operational overhead. These
enhancements provide a robust and flexible foundation for future innovations, en-
abling the seamless integration of new features and technologies. Consequently,
QDAcity is now better positioned to adapt to evolving user needs, ensuring long-
term reliability, security, and user satisfaction.

58

References

Andreas Kaufmann, D. R. (2015). Improving traceability of requirements through
qualitative data analysisanalysis (Open Source Research Group, Computer
Science Department, Ed.). Retrieved September 3, 2024, from https://
open . fau .de/ server/api / core/bitstreams/57a12f24 - d054 - 4269 - bc26 -
f4a57f486603/content

Chris Rupp. (2014). Requirements templates — the blueprint of your require-
ment. Retrieved August 25, 2024, from https://www.sophist.de/fileadmin/
user _ upload / Bilder _ zu _ Seiten / Publikationen / RE6 / Webinhalte _
Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_
Requirements_Rupp.pdf

DataNucleus (Ed.). (2022). Jdo getting started guide (v5.2). Retrieved August
14, 2024, from https://www.datanucleus.org/products/accessplatform/
jdo/getting_started.html

Datastore overview. (2024). Retrieved August 17, 2024, from https : / / cloud .
google.com/datastore/docs/concepts/overview

David Jordan, C. R. (2003). Java data objects (O’Reilly & Associates, Ed.).
Retrieved October 12, 2024, from https://books.google.de/books?hl=
de& lr=&id=dTr7AAAAQBAJ&oi= fnd&pg=PR7&dq= jdo&ots=
vTBdXaaJD9&sig=skRZsxuwoSdMl2KomX5DRwfPMxo&redir_esc=
y#v=onepage&q=jdo&f=false

Deadref (objectify app engine 5.0 api). (2024). Retrieved August 18, 2024, from
https://www.javadoc.io/doc/com.googlecode.objectify/objectify/5.0/
com/googlecode/objectify/impl/ref/DeadRef.html

Erich Gamma, R. H. (1994). Design patterns - design patterns, elements of re-
usable object-oriented software.

GitHub. (2024). Objectify/objectify: The simplest convenient interface to the
google cloud datastore. Retrieved August 15, 2024, from https://github.
com/objectify/objectify/wiki

Google. (2024). Datastore-abfragen in jdo. Retrieved August 18, 2024, from https:
//cloud.google.com/appengine/docs/legacy/standard/java/datastore/
jdo/queries?hl=de

59

https://open.fau.de/server/api/core/bitstreams/57a12f24-d054-4269-bc26-f4a57f486603/content
https://open.fau.de/server/api/core/bitstreams/57a12f24-d054-4269-bc26-f4a57f486603/content
https://open.fau.de/server/api/core/bitstreams/57a12f24-d054-4269-bc26-f4a57f486603/content
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.datanucleus.org/products/accessplatform/jdo/getting_started.html
https://www.datanucleus.org/products/accessplatform/jdo/getting_started.html
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://books.google.de/books?hl=de&lr=&id=dTr7AAAAQBAJ&oi=fnd&pg=PR7&dq=jdo&ots=vTBdXaaJD9&sig=skRZsxuwoSdMl2KomX5DRwfPMxo&redir_esc=y#v=onepage&q=jdo&f=false
https://books.google.de/books?hl=de&lr=&id=dTr7AAAAQBAJ&oi=fnd&pg=PR7&dq=jdo&ots=vTBdXaaJD9&sig=skRZsxuwoSdMl2KomX5DRwfPMxo&redir_esc=y#v=onepage&q=jdo&f=false
https://books.google.de/books?hl=de&lr=&id=dTr7AAAAQBAJ&oi=fnd&pg=PR7&dq=jdo&ots=vTBdXaaJD9&sig=skRZsxuwoSdMl2KomX5DRwfPMxo&redir_esc=y#v=onepage&q=jdo&f=false
https://books.google.de/books?hl=de&lr=&id=dTr7AAAAQBAJ&oi=fnd&pg=PR7&dq=jdo&ots=vTBdXaaJD9&sig=skRZsxuwoSdMl2KomX5DRwfPMxo&redir_esc=y#v=onepage&q=jdo&f=false
https://www.javadoc.io/doc/com.googlecode.objectify/objectify/5.0/com/googlecode/objectify/impl/ref/DeadRef.html
https://www.javadoc.io/doc/com.googlecode.objectify/objectify/5.0/com/googlecode/objectify/impl/ref/DeadRef.html
https://github.com/objectify/objectify/wiki
https://github.com/objectify/objectify/wiki
https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/queries?hl=de
https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/queries?hl=de
https://cloud.google.com/appengine/docs/legacy/standard/java/datastore/jdo/queries?hl=de

References

Henri Basson, M. B. (2016). Qualitative evaluation of manufacturing software
units interoperability using iso 25000 quality model (Springer Interna-
tional Publishing Switzerland, Ed.). Retrieved September 29, 2024, from
http://www.wellesu.com/https://link.springer.com/chapter/10.1007/
978-3-319-30957-6_16

João André Martins, Jisha Abubaker. (2024). Spring framework on google cloud.
Retrieved August 20, 2024, from https : / /googlecloudplatform .github .
io/spring- cloud- gcp/reference/html/ index .html#spring- data- cloud-
datastore

Leone, A., & Chen, D. (2007). Implementation of an object oriented data model
in an information system for water catchment management: Java jdo and
db4o object database. Environmental Modelling & Software, 22 (12), 1805–
1810. https://doi.org/10.1016/j.envsoft.2007.05.016

Objectify. (2024). Entities · objectify/objectify wiki. Retrieved August 17, 2024,
from https://github.com/objectify/objectify/wiki/Entities

Oscar Rosner. (2021). Profiling and optimizing performance in the cloud. Re-
trieved October 5, 2024, from https://oss.cs.fau.de/wp-content/uploads/
2021/10/rosner_2021.pdf

Top 7 reasons to migrate from java 8 to java 17. (2023). GeeksforGeeks. Retrieved
September 1, 2024, from https://www.geeksforgeeks.org/top-reasons-to-
migrate-from-java-8-to-java-17/

What is object-relational mapping (orm) in dbms? (2024). GeeksforGeeks. Re-
trieved August 15, 2024, from https://www.geeksforgeeks.org/what-is-
object-relational-mapping-orm-in-dbms/

Zeger Hendrikse. (2017). Intro to jdo queries. Baeldung. Retrieved August 20,
2024, from https://www.baeldung.com/jdo-queries

60

http://www.wellesu.com/https://link.springer.com/chapter/10.1007/978-3-319-30957-6_16
http://www.wellesu.com/https://link.springer.com/chapter/10.1007/978-3-319-30957-6_16
https://googlecloudplatform.github.io/spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
https://googlecloudplatform.github.io/spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
https://googlecloudplatform.github.io/spring-cloud-gcp/reference/html/index.html#spring-data-cloud-datastore
https://doi.org/10.1016/j.envsoft.2007.05.016
https://github.com/objectify/objectify/wiki/Entities
https://oss.cs.fau.de/wp-content/uploads/2021/10/rosner_2021.pdf
https://oss.cs.fau.de/wp-content/uploads/2021/10/rosner_2021.pdf
https://www.geeksforgeeks.org/top-reasons-to-migrate-from-java-8-to-java-17/
https://www.geeksforgeeks.org/top-reasons-to-migrate-from-java-8-to-java-17/
https://www.geeksforgeeks.org/what-is-object-relational-mapping-orm-in-dbms/
https://www.geeksforgeeks.org/what-is-object-relational-mapping-orm-in-dbms/
https://www.baeldung.com/jdo-queries

	Introduction
	Technical Overview
	Google Datastore
	JDO
	DataNucleus
	Culprits of using JDO with the Datastore

	Objectify
	Key Differences between JDO and Objectify
	Complexity and Learning Curve
	Integration with Google Cloud Datastore
	Type Safety
	Performance

	Other data storage interfaces

	Requirements
	Functional requirements
	API Reliability and Compliance
	API migration
	GCS blobs

	Non-Functional Requirements
	Datastore Access Encapsulation
	System Maintainability and Future-Proofing
	Documentation

	Architecture
	Structured Backend Architecture
	Integration of the Visitor Design Patterns to Enhance the Codebase
	BaseProject classes
	BaseDocument classes

	GCS Blob Architecture

	Design and Implementation
	Structured Backend Design
	Data Access Object
	Entities in Depth
	Migrate child entities to embedded entities

	Integration of Design Patterns to Enhance the Codebase
	BaseProject classes
	BaseDocument classes

	GCS Blob & GcsClient design
	GcsBlob class
	GcsClient class
	Strategy Design Pattern

	Evaluation
	Functional requirements
	API Reliability and Compliance
	API migration
	GCS blobs

	Non-functional requirements
	Datastore Access Encapsulation
	System Maintainability and Future-Proofing
	Documentation

	Outlook
	Upgrading Objectify to v6
	Upgrading to Java 11/17
	Optimize Cache usage
	Use more Key properties

	Conclusion
	References

