
Crowdsourcing License and Copyright
Scanner Corrections

Master Thesis

Handed in by: Eldrin Sanctis

Supervisor: Martin Wagner, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Submission date: 18.10.2024

Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Engineering,
Department Computer Science, Professorship for Open Source Software

Declaration of originality

I confirm that this thesis is my original work, written independently and without
external assistance. I have credited all sources where the work of others has been
referenced. This thesis has not been previously submitted for examination or pub-
lished. Additionally, the electronic version of the thesis is identical to the printed
version.

Erlangen, 18.10.2024

2

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 18.10.2024

3

Abstract

Abstract

In today’s software development world, open-source software is a big player, but
it presents a number of challenges in managing and complying with a sea of li-
censes. Tools like ScanCode are used everywhere for detecting the licenses within
the code, but they regularly fail at newer or modified licenses since the open-source
landscape keeps on changing. The result is often missed or wrong licenses, putting
organizations at legal risk.

This thesis also proposes a new approach that will make identification of licenses
more accurate by adding a crowdsourcing feature to SCA Tool. Users can suggest
licenses that might have been missed by the scanner, endorse the finding of an
existing license, and finally provide comments to support decisions made on both
suggestion and endorsement activities. Upon reaching the number of endorsements,
the license is flagged as concluded but takes only full approval upon review and
confirmation of the admin himself in the database.

By doing so, the methodology pools collective knowledge of the community in a
quest towards keeping pace with a fast-changing world of OSS licenses. Human
judgment along with automated scanning achieves a more accurate process and also
makes sure that organizations can confidently stay compliant.

I

Table of Contents

Contents

Declaration of originality . 2
License . 3
Abstract . I
Contents . II
List of Figures . IV
1 Introduction . 1

1.1 Problem statement and the business value of accurate open-source
license scanning . 1

1.2 How crowdsourcing can improve license identification accuracy . . . 2
1.3 Copyright corrections . 4
1.4 User limitations in code and package analysis 4

2 Literature review . 6
2.1 Introduction to open-source license management 6
2.2 Existing software solutions for license scanning 6

2.2.1 ScanCode toolkit . 6
2.2.2 FOSSology . 7
2.2.3 Black Duck by synopsys . 8

2.3 Use cases for license scanning tools 9
2.4 Concluded license and the role of SPDX 9

2.4.1 Understanding concluded licenses 9
2.4.2 The role of SPDX in license management 10

2.5 Importance of Crowdsourcing License and Copyright Scanner Correc-
tions . 10

2.6 Problem-solving and relevance . 11
2.7 Drawbacks of crowdsourcing approach 12

3 Requirements . 14
3.1 Functional requirements . 14

II

Table of Contents

3.2 Nonfunctional requirements . 21
4 Architecture . 24

4.1 High-level overview . 24
4.2 User Interface (UI) for license contribution and voting 24
4.3 Crowdsourcing logic layer . 25
4.4 Admin Intervention for review and validation 26
4.5 Data storage for contributions and voting 26

5 Design principles . 30
5.1 Overview . 30
5.2 Separation of Concerns (SoC) . 30
5.3 Single Responsibility Principle (SRP) 31
5.4 Dependency Injection . 32
5.5 Repository Pattern . 32
5.6 RESTful API Design . 33
5.7 DTO (Data Transfer Object) Pattern 34
5.8 Strategy for Extensibility . 34
5.9 Why do these design principles and patterns work for crowdsourcing

license correction system . 35
6 Implementation . 36

6.1 Overview . 36
6.2 Add license functionality . 36
6.3 Voting mechanism implementation 38
6.4 Component loading implementation 40
6.5 User management and flagging by admin 42
6.6 Error handling . 44
6.7 Performance optimizations . 45

7 Evaluation . 47
7.1 Functional requirements evaluation 47
7.2 Non-functional requirements evaluation 52
7.3 Limitations . 54

8 Conclusion . 55
8.1 Conclusion . 55
8.2 Future work . 56

Bibliography . 57
Declaration of authorship . 61

III

List of Figures

List of Figures

Figure 1: User Interaction . 19
Figure 2: Admin Interaction . 20
Figure 3: Architecture . 28
Figure 4: Navigating the user interface . 48
Figure 5: Adding a license "GPL" along with comments 48
Figure 6: Successfully added GPL license . 48
Figure 7: Approving/Upvoting a discovered license 49
Figure 8: Approval/Upvoted successfully . 49
Figure 9: Disapproving/Downvoting discovered license 49
Figure 10: Disapproval/Downvote successful 50
Figure 11: Same user(eldrin), same package (pkg:npm/debug@2.6.9), differ-

ent distribution unit getting suggested a license since he concluded
a license in the other distribution unit 50

Figure 12: User marking/voting GPL license as concluded in this distribution
unit as well . 50

Figure 13: Task successful . 51
Figure 14: JSON License has a net difference of 9 upvotes which is 1 vote less

than the threshold in package "pkg:npm/depd@2.0.0". 51
Figure 15: User "Eldrin" upvoting the JSON license making the net difference

to 10 upvotes. 51
Figure 16: Another user "Issac" is being suggested the JSON license as it has

reached the threshold. 52
Figure 17: User Issac has now added the JSON license. 52

IV

Introduction

1 Introduction

1.1 Problem statement and the business value of
accurate open-source license scanning

In today’s world of software development, open-source components are found ev-
erywhere. They are crucial in making robust and effective applications. However,
with such wide usage comes the big responsibility of management and following
the rules laid down by different open-source licenses as described in (Wolter et al.
2022). Each license has its set of permissions, requirements, and restrictions that a
developer should observe. Following are some of the reasons why open-source license
scanning is important:

Legal compliance: To avoid legal issues, it is important to follow all the rules of
open-source licenses. The failure to follow these may lead one to lawsuits resulting
in fines or worse, the forced release of proprietary source code. These problems
also will have serious financial implications on both individuals and organizations
as mentioned in (Duan et al. 2017).

Security: As stated in (Domar Bolmstam et al. 2020), various licenses have specific
requirements with respect to the handling and notification in cases of vulnerabil-
ities. For such licenses, if they are misidentified, important requirements may be
overlooked, which might compromise the security of the entire software. Proper or
precise identification allows the security measures placed to be followed correctly.

Reputation management: Following open-source license rules helps an organiza-
tion keep up its reputation among the developer community and its customers (HU
et al. 2024); it alludes to ethical practices for respecting intellectual property and
enhances elements of trust and credibility.

1

Introduction

Intellectual property management: License findings helps in the management
of intellectual property, including the correct scanning of the licenses, to ensure
the proprietary code remains protected and that contributions towards open-source
projects are properly credited as clearly explained in (Harutyunyan et al. 2019).

However, considering the fact that the most advanced tool, like ScanCode, identifies
correctly known licenses in source code and gives hints, fast evolution is an issue in
open-source licensing. New licenses appear, and updates to existing ones occur quite
often, making the process of automated identification hard. So many diverse licenses
are present, with each in its own complexity, requiring human intervention and
interpretation of license texts. This indicates partial limitations of the automated
tools themselves. This is why human judgment is typically necessary to accurately
ascertain the set of licenses applying to the open-source components.

1.2 How crowdsourcing can improve license
identification accuracy

In open-source license identification, crowdsourcing will take the accuracy on a com-
pletely different level. Due to the collective knowledge and contribution of a large
pool of people, the crowdsourced license scanning will be much more accurate and
extensive than anything performed previously. Following are some of the reasons
supporting that:

Tapping into collective insight:

Diverse insights: Crowdsourcing by definition involves a wide community of users.
It draws upon the wide range of experiences emanating from diverse users and thus
is more apt to correctly identify licenses.

Expertise: Some contributors might have deep knowledge concerning particular
licenses or codebases that could add value to the identification process in terms of
precision.

2

Introduction

Real-Time updates:

Real-time contributions: The community can update new licenses or even modify
existing ones to help maintain the license database up to date.

Quick fixes: Mistakes brought to light by the automatic tools could be quickly
fixed by the community, which means a higher quality.

Quality control:

Voting mechanism: The license identifications can be voted on by any user; this
in turn creates a self-regulating environment whereby the most reliable piece of
information rises to the top.

Admin review: Provides administrators with the ability to review and verify con-
tributions for added validation.

Engaging the community:

Engagement encouragement: Platforms allow users to contribute and create a
sense of community with shared responsibility which leads to increased activity.

Incentives and recognition: The contribution of more users brings an increase
in quality and quantity for data by recognition or rewarding the top contributors.

Scalability:

Better volume management: Crowdsourcing can handle an increased workload
much better when the number of open-source components go up than relying on
automated tool competency with a meager team.

Building on the idea that crowdsourcing can significantly improve license identifica-
tion accuracy, it is also important to consider other additional aspects of open-source
compliance that pose challenges. Specifically, issues related to copyright corrections

3

Introduction

and user limitations in code and package analysis are crucial to address for a com-
prehensive solution.

1.3 Copyright corrections

While the focus of this thesis is on crowdsourcing license findings, it should be
mentioned that copyright statements constitute yet another integral part of OSS
compliance. Copyright statements (Fontana et al. 2008), or those which declare
ownership over intellectual property, can sometimes be as painful to find and deter-
mine as the licenses themselves. Like licenses, these statements can be missed or
incorrectly identified by automated scanners owing to inconsistencies in how they
are formatted or embedded within the code.

Although the current SCA tool does not have a user interface for copyright state-
ments and therefore cannot support crowdsourcing of corrections for the same, but
the same principles being used as for license findings and validation can be extended
to address copyright statements in the future. Correct identification is important
in that such a copyright without accompanying license might indicate restrictions
on reuse or modification in the code (Morris and Martin 2004). It would allow the
community to develop this database, verify, and check these copyright statements
for correctness of attributions.

1.4 User limitations in code and package analysis

One current limitation of SCA tool is that it does not have direct provision for
the user to look at the source code or packages within the tool in order to analyze
the license or copyright statements. Instead, it requires the user to track various
components outside the tool, review them manually, and then perform the necessary
license information analysis. This includes manual steps such as verifying whether
a license detected is correct and then using SCA tool to submit input for example,
add or vote on licenses.

Although this functionality is out of the scope of this thesis, the developers of SCA
tool are currently working on integrating features into the tool whereby it will allow

4

Introduction

users to view and review code and packages within it. This will facilitate the process
for license analysis, adding more efficiency for the user in contributing toward license
corrections.

In the following chapters,

• A thorough literature review is conducted to explore existing research on
open-source license scanning, crowdsourcing techniques, and the integration
of community-driven approaches in software compliance tools.

• The functional and non-functional requirements of crowdsourcing system are
established.

• The architectural framework is provided.

• Design principles that guided the crowdsourcing system is discussed which
ensures the system is scalable and maintainable.

• Technical details of the implementation is explained comprehensively along
with the use of modern technologies.

• System’s performance is evaluated against the requirements and desired out-
comes set earlier.

• Finally a conclusion with reflections on findings and suggestions for some
future work is provided.

5

Literature review

2 Literature review

2.1 Introduction to open-source license
management

Today’s software development relies heavily on open-source software (OSS), which
offers advantages including quicker innovation, cost savings, and collaborative growth.
Nonetheless, the difficulty of maintaining compliance with numerous, frequently in-
tricate open-source licenses accompanies this extensive use. Accurately recognizing
these licenses is necessary to maintain legal compliance, safeguard intellectual prop-
erty, and steer clear of costly legal conflicts (Wolter et al. 2022). With these licenses
becoming more complicated and dynamic, it’s critical to have sophisticated tools
and procedures for efficient license administration.

2.2 Existing software solutions for license
scanning

To help developers and organizations manage open-source licenses; several tools and
platforms are available. These tools generally use automated scanning to identify
licenses within codebases. Here’s a look at some of the most notable solutions:

2.2.1 ScanCode toolkit

• Description: ScanCode is an open-source toolkit widely used for analyz-
ing and detecting licenses, copyrights, package manifests, and dependencies
in software codebases. It supports comprehensive license detection across a

6

https://github.com/aboutcode-org/scancode-toolkit

Literature review

broad range of open-source licenses. This tool plays a critical role in ensuring
compliance with license obligations, making it indispensable in open-source
projects (Al-Samman 2020, Phipps and Zacchiroli 2020).

• Features:

– License and copyright detection: ScanCode can detect and identify
licenses and copyrights in codebases, ensuring that software components
comply with licensing regulations (Wagner 2023)

– Package manifest scanning: The tool is capable of scanning package
manifests to ensure the proper attribution of licenses (Kemppainen 2023
)

– Rule-based engine: ScanCode employs a sophisticated rule-based en-
gine to detect variations in license texts, making it an effective solution
for comprehensive software compliance audits (ScanCode-Wiki 2024)

• Limitations:

– Newly introduced or modified licenses: The toolkit may not detect
new or highly modified licenses promptly, as the open-source landscape
evolves rapidly.

– Predefined patterns and rules: Since ScanCode relies on predefined
patterns and rules, it may miss variations in license texts that do not
conform to standard templates (ScanCode-Wiki 2024)

– Legal interpretations: While ScanCode can detect and identify li-
censes, legal interpretation is required to ensure full compliance. The
tool does not replace the need for legal expertise (ScanCode-Wiki 2024)

2.2.2 FOSSology

• Description: FOSSology is another open-source license compliance toolkit
that helps users scan and analyze open-source licenses within a codebase. It
offers a web-based interface for managing and reporting on license compliance
(FOSSology-Wiki 2024)

7

https://github.com/aboutcode-org/scancode-toolkit
https://github.com/aboutcode-org/scancode-toolkit
https://github.com/aboutcode-org/scancode-toolkit
https://github.com/aboutcode-org/scancode-toolkit
https://github.com/fossology/fossology

Literature review

• The below features are mentioned in (FOSSology-Wiki 2024)

– Scans and detects licenses

– Generates and analyzes SPDX(Software Package Data Exchange) reports

– Provides a web-based user interface for managing licenses

• Limitations:

– Like ScanCode, FOSSology can struggle with licenses that don’t fit pre-
defined patterns or those that are more or less common (FOSSology-FAQ
2024)

– The tool may require significant setup to get optimal results (FOSSology-
Setup 2024)

2.2.3 Black Duck by synopsys

• Description: Black Duck is a commercial software composition analysis
(SCA) tool that offers comprehensive license compliance and security vulner-
ability management for open-source components (Black-Duck-Team 2023)

• The below features are mentioned in (Black-Duck-Team 2023)

– Automatic license identification and manages associated risks.

– Provides continuous monitoring for license compliance.

– Integration with DevOps pipelines for seamless operations.

• Limitations:

– As a commercial product, it comes with a high cost, making it less ac-
cessible to smaller organizations or individual developers.

– Being a closed-source solution, it offers limited customization and trans-
parency

8

https://github.com/aboutcode-org/scancode-toolkit
https://github.com/fossology/fossology

Literature review

2.3 Use cases for license scanning tools

License scanning tools are used in various scenarios to ensure compliance with open-
source licenses:

• Enterprise software development: Large companies often integrate tools
like Black Duck into their development workflows to maintain compliance
throughout the entire software lifecycle. This ensures that all components
meet licensing requirements from development through to deployment (Black-
Duck-Team 2023)

• Open-Source projects: Open-source projects that are managed by tools like
ScanCode or FOSSology help in verifying that all contributions adhere to the
project’s licensing rules (Fendt and Jaeger 2019)

2.4 Concluded license and the role of SPDX

2.4.1 Understanding concluded licenses

A key concept in managing open-source licenses is understanding “concluded li-
censes”. This term refers to the final licenses determined for a piece of software after
considering both the licenses declared by the author and those discovered through
automated scanning.

• Declared licenses: These are the licenses explicitly stated by the software’s
author or distributor (Samman et al. 2024)

• Discovered licenses: These are identified by tools like ScanCode or FOS-
Sology based on the analysis of the codebase (Samman et al. 2024)

• Concluded licenses: After evaluating both declared and discovered licenses,
and incorporating any additional input from users or administrators, the con-
cluded license represents the final legal license governing the software (SPDX-
Concluded-License-Info 2023). Getting this right is crucial, as mistakes can
lead to legal issues and intellectual property disputes.

9

https://github.com/aboutcode-org/scancode-toolkit
https://github.com/fossology/fossology

Literature review

2.4.2 The role of SPDX in license management

SPDX (Software Package Data Exchange) is a standardized way to document the
license of open-source software. It helps in recording, exchanging, and analyzing
license information across different platforms.

• SPDX license list: This is an up-to-date list of recognized open-source
licenses, each with a unique identifier to simplify identification and reporting
(SPDX-License-List-Info 2022)

• SPDX documents: These provide a standardized format to describe li-
censes, copyrights, and other relevant details about software packages, aiding
in compliance reporting and due diligence (SPDX-Document-Info 2022)

• Concluded license field: This field in the SPDX specification records the
final license determination after considering all the relevant data. It is vital for
compliance workflows as it represents the legal status of the software package
(SPDX-Concluded-License-Info 2023)

2.5 Importance of Crowdsourcing License and
Copyright Scanner Corrections

Addressing limitations of automated tools

Current license scanning tools, while useful, often struggle with the complexities of
modern open-source licenses, especially as new ones emerge and existing ones evolve.
This thesis proposes a crowdsourcing approach to complement these tools, bringing
in human expertise to address these limitations.

• Human input: Automated tools may miss context-specific nuances in license
texts. By allowing users to contribute and verify license information, this
approach enhances accuracy.

• Dynamic license landscape: Crowdsourcing helps keep the license database
up-to-date, leveraging community knowledge to address the constantly evolv-
ing open-source ecosystem.

10

https://spdx.github.io/spdx-spec/v2.3/

Literature review

Enhancing license identification accuracy

Accurate license conclusion is essential for legal compliance. By incorporating crowd-
sourced input where users can vote on and contribute to license identification, this
solution improves the reliability of concluded licenses. This helps ensure the final
determination reflects a broad base of knowledge and is less prone to errors. This pro-
cess also includes mechanisms for flagging and managing troll users who contribute
false or malicious license information, ensuring the integrity of the crowdsourced
data.

Use cases for the proposed solution approach

• Small and medium enterprises (SMEs): For SMEs that may not afford
expensive compliance tools, crowdsourcing offers a cost-effective way to achieve
accurate license compliance.

• Open-source project maintainers: These projects benefit from community
contributions to maintain compliance, especially when dealing with multiple
contributors.

• Compliance teams: Integrating crowdsourced data with existing tools adds
an extra layer of verification, helping legal teams manage compliance more
effectively.

2.6 Problem-solving and relevance

Solving the incomplete identification problem

The proposed approach addresses the issue of incomplete or inaccurate license iden-
tification by combining automated scanning with crowdsourced human input. This
hybrid approach fills the gaps left by existing tools and provides a more comprehen-
sive solution.

11

Literature review

Relevance in the current landscape

Growing OSS adoption: As more organizations adopt open-source software, the
need for accurate license compliance becomes increasingly important. The proposed
solution approach is timely, helping companies use open-source components confi-
dently while staying compliant.

Legal risks and compliance: With tighter regulations around software use, pre-
cise license identification is crucial. The proposed solution offers a solution to these
challenges, helping organizations navigate the complexities of open-source licensing
with greater assurance.

2.7 Drawbacks of crowdsourcing approach

Reliance on user contributions:

• The accuracy of the system depends heavily on active community participa-
tion.

• A lack of contributions or malicious input could reduce the system’s effective-
ness.

Potential for bias or errors:

• Crowdsourcing can introduce bias if users overwhelmingly agree without suf-
ficient validation.

• Incorrect contributions or votes might still influence the outcome until re-
viewed by an admin.

12

Literature review

Admin workload:

• Admins must review and approve/disapprove licenses, which could become
time-consuming with large numbers of contributions.

Examining the state of open-source licensing management today and the tools avail-
able for license scanning shows that although these solutions provide useful features,
they are severely constrained. Automated solutions alone are unable to adequately
handle the issues posed by the complexity of modern licenses and the quick evolution
of the open-source ecosystem. By including the community’s collective knowledge,
crowdsourcing has emerged as a promising method to improve license identification
accuracy. But there are some disadvantages to this approach as well, namely the
dependence on user input and possible biases. To move forward, it is important to
define the specific requirements that a new solution must meet to effectively improve
upon existing methods.

13

Requirements

3 Requirements

In this chapter, we will go into more detail about the functional and non-functional
requirements, taking into account the positives and negatives found in our literature
review. This will lay the foundation for developing a system that not only improves
the license findings through crowdsourcing but also mitigates the challenges or diffi-
culties involved, strengthening open-source compliance procedures in the process.

3.1 Functional requirements

The functional requirements will explain what kind of behaviors and functions the
system must have in order to accomplish the goals of the thesis. These are required
by SCA Tool to crowdsource and maintain the licensing information efficiently.

• User contributing a discovered license

Title: Add a detected license

As a: User

I would like to add a license that the scanner missed to the discovered licenses

So that: I can contribute to the community.

Acceptance criteria:

– Users can proceed with the licenses found section.

– The user can add a new license and insert an optional comment explaining
the license.

14

https://scatool.com/about/

Requirements

– The additional license gets added and is considered temporary until it
obtains a net difference of 10 contributions.

• User confirming a discovered license

Title: Confirming a license found

As a: User

I would like to verify a detected license that I agree with

So that: It may achieve the threshold to become a temporary concluded
license.

Acceptance criteria:

– Users can view the list of discovered licenses.

– Users can click an upvote button next to a license they’ve discovered.

– When upvoting, a comment can be included supporting the reason for
the positive vote.

– The system registers the confirmation (upvote) and updates the vote
count along with the net difference.

– If the net difference of confirmation minus disapproval reaches 10, the
license status becomes temporarily concluded.

• User rejecting a discovered license

Title: Disapproves a found license

As a: User

I would like to disapprove or reject a detected license that I disagree with

So that: The community knows my opinion about the license.

Acceptance criteria:

15

Requirements

– Users can view the list of discovered licenses.

– Users can click a downvote button next to a discovered license.

– Users can add a comment explaining the reason for the downvote.

– The system registers the disapproval and updates the vote count and net
difference.

• Admin reviewing and approving temporary concluded licenses

Title: Review and approve temporary concluded licenses

As an: Admin

I would like to review licenses that have reached the upvote threshold and
are marked as temporarily concluded.

So that: I can ensure that the concluded license is accurate and valid.

Acceptance criteria:

– Admin can view licenses that have a net difference of 10 upvotes.

– Admin can approve or disapprove the license.

– Approved licenses are marked as concluded.

– Disapproved licenses are flagged with a status "D" for Disapproved.

• Admin marking a user as a troll

Title: Mark user as troll

As an: Admin

I would like to identify and flag users who add nonsense licenses or malicious
input

So that: I can maintain the integrity of the system.

Acceptance criteria:

16

Requirements

– Admin can review the history of a user’s contributions.

– Admin can flag a user as a troll if they repeatedly add nonsense licenses.

– Flagged users are restricted from adding new licenses or voting.

• User viewing and adding concluded licenses

Title: View and add concluded licenses

As a: User

I would like to view concluded licenses or accept suggested conclusions one
by one or all together

So that: I can use accurate, community-validated license information.

Acceptance criteria:

– Users can navigate and access the concluded licenses section.

– Users can view and accept from a list of licenses that have been marked
as suggested licenses for conclusion.

• User commenting on a license during interaction

Title: Comment on a license

As a: User

I want to add comments when I add, approve, or disapprove a license

So that: I can provide additional context or information about the license.

Acceptance criteria:

– Users can add a comment when contributing a new license.

– Users can add a comment when confirming a discovered license.

– Users can add a comment when disapproving a discovered license.

17

Requirements

– Users can add a comment when confirming a concluded license.

– Comments are visible to admins.

– Comments are sanitized to remove any personal information, such as
email addresses.

• Admin removing a license contribution

Title: Remove a license contribution

As an: Admin

I would like to remove a license contribution that is deemed inappropriate
or incorrect

So that: The integrity of the license data is maintained.

Acceptance criteria:

– Admin can view a list of user-contributed licenses.

– Admin can mark a license contribution with a status "D" meaning Dis-
approved.

– Disapproved licenses are no longer visible to regular users.

18

Requirements

Figure 1: User Interaction

19

Requirements

Figure 2: Admin Interaction

20

Requirements

3.2 Nonfunctional requirements

Non-functional requirements explain the quality, performance, and system oper-
ational characteristics that will ensure that the designed system runs efficiently,
effectively, and securely.

• System performance and scalability

The system should be built to efficiently handle increasing license and user
numbers.

Details:

– It should allow for more user submissions and votes without substantial
delays.

– For getting the user contributions, votes, basically license information;
database has to be optimized.

– Even with peak traffic, the user interface should stay responsive.

• Security and access control

The system must safeguard user data from unwanted access.

Details:

– Licenses can only be reviewed, approved, or disapproved by administra-
tors and authorized users.

– Data has to be encrypted regardless whether it is in transit or rest.

21

Requirements

• Usability and user experience

Both users and administrators should find the system easy to use.

Details:

– The information should be organized/arranged clearly and the interface
should be easy to use.

– Tooltips, help documents, and guidelines should be offered to help users
contribute licenses and vote.

• Reliability and availability

The system must be reliable, fault-tolerant, and have little downtime to main-
tain high availability.

Details:

– It should recover fast from failures, ensuring fault tolerance.

– To avoid data loss, backups should be performed regularly.

• Maintainability and extensibility

The system should be easily maintainable and extensible for future updates
and improvements.

Details:

– The codebase should be thoroughly documented, with clear comments
and developer documentation.

– The design needs to be adaptable in order to allow upgrades or new
features to be added without affecting already existing functionality.

– Automated testing should ensure that new modifications do not cause
bugs or regressions.

22

Requirements

In summary, this chapter has covered all the essential functional and non-functional
requirements necessary for building our proposed crowdsourcing system. The nec-
essary functions that allow users to add new licenses, validate or reject current
licenses, and allow administrators to examine and accept these contributions while
preserving the integrity of the system have been outlined. In order to guarantee
that the system is reliable and easy to use, we have also highlighted the significance
of system performance, security, usability, reliability, and maintainability. These
requirements provide a solid basis for creating a system that tackles the issues we’ve
discovered and enhances license findings through crowdsourcing, paving the way for
the architectural design in the following chapter.

23

Architecture

4 Architecture

In this chapter, we will explore the architecture of the crowdsourcing solution, de-
tailing how the various components will work together to meet the needs that were
identified earlier. We’ll explore the design decisions, the technologies that will be
used, and how we’ll address the challenges highlighted in our requirements.

4.1 High-level overview

The architecture includes the following components:

• User Interface (UI) for license contribution and voting

• Crowdsourcing logic layer

• Review and validation by admin

• Data storage for contributions and voting

Every element has a distinct function in overseeing and verifying user contribu-
tions.

4.2 User Interface (UI) for license contribution
and voting

Description:

Users interact with the system using the frontend. It includes options for submitting
new licenses, voting on current ones, and providing feedback.

24

Architecture

Key features:

• License contribution form: Users can add new licenses and leave comments
to describe their contribution.

• Voting interface: Enables users to accept or reject licenses while adding
required contextual remarks.

• View/Add concluded licenses: Users can view concluded licenses and ac-
cept suggested conclusions individually or collectively.

• Status indicators: Displays the current status of licenses (e.g., temporarily
concluded, concluded)

Technology:

TypeScript.js: It is used to create an interactive and adaptable user interface.

4.3 Crowdsourcing logic layer

Description:

The backend layer processes user contributions, votes, and manages temporary li-
censes.

Key functions:

• License submission handling: Validates new licenses and labels them tem-
porary.

• Voting management: Updates the net difference for each license and tracks
the vote counts.

• Threshold monitoring: This module determines when a license has received
+10 approvals, for example, and modifies its status correspondingly.

• Comment management: Saves comments with votes and ensures personal
information is secure.

25

Architecture

Technology:

Java with Spring framework for backend processing and business logic.

4.4 Admin Intervention for review and validation

Description:

Admins analyze licenses that have been temporarily concluded and control user
contributions from within the database.

Key features:

• License review: Administrators review temporary licenses based on vote
counts and comments.

• Approval/Disapproval actions: Admins update the license status in the
database, marking them as approved or disapproved.

• User management: Admins can edit flagged users’ database records and
restrict their ability to contribute or vote as needed.

Technology:

Database management system: Administrators utilize SQL queries and database
tools to review and manage users.

4.5 Data storage for contributions and voting

Description:

This component stores all data related to user contributions, voting, and license
statuses.

Key features:

• License database: Stores licenses with current status, vote counts, and com-
ments.

26

Architecture

• User contributions and voting records: Tracks all user contributions and
votes for auditing and review.

• Audit logs: Records admin actions to ensure openness and accountability.

Technology:

PostgreSQL: A relational database for structured data storage.

27

Architecture

Figure 3: Architecture

28

Architecture

To sum up, this chapter described the architecture for our crowdsourcing solution
aimed at improving open-source license findings. The system was divided into four
main components where each part plays a crucial role; users interact through a
TypeScript.js frontend, their inputs are handled by a Java Spring backend, admins
perform reviews using database tools, and everything is stored in a PostgreSQL
database. By detailing how these components work together, we’ve set the founda-
tion for implementing the crowdsourcing system.

29

Design principles

5 Design principles

5.1 Overview

With the architectural framework in place, several software design patterns and
ideas were used in the creation of the crowdsourced license findings system for SCA
Tool in order to guarantee the solution’s scalability, maintainability, and flexibility.
The frontend, backend, service, and repository layers of the system are all developed
using these patterns and concepts to create a clean design that will allow for future
updates without requiring a lot of effort.

5.2 Separation of Concerns (SoC)

Principle: The separation of concerns (Noda and Kishi 2001) design principle
recommends breaking up a software system into discrete pieces, each of which deals
with a unique responsibility or concern.

Application in the crowdsourcing system:

• The frontend (user interface), backend (business logic and API), and repository
(database interactions) are the three main layers that make up the system.
Each layer is responsible for overseeing a certain area of the application.

• The Frontend focuses primarily on showing data to the user and sending/re-
ceiving data from the backend.

• The Backend focuses on processing the data, implementing business rules,
and managing the information flow between the frontend and database.

30

https://scatool.com/about/
https://scatool.com/about/

Design principles

• The Repository abstracts away the specifics of SQL queries and data persis-
tence, focusing only on database operations.

Benefits:

• Because each layer may change on its own, it is simpler to update or refactor
without impacting the system as a whole.

• Because developers may concentrate on specific issues without having to deal
with the complexity of other portions of the system, maintainability is im-
proved.

5.3 Single Responsibility Principle (SRP)

Principle: According to the single responsibility concept, a class or module should
only have one responsibility and one reason for change (Rana and Khonica 2021)

Application in the crowdsourcing system:

• Every class in the system has a specific goal in mind when it is built.

– The GovernanceController handles HTTP requests and passes pro-
cessing to the service layer.

– Business logic, such as addDiscoveredLicense and voteDiscoveredLicense,
for managing licenses and votes is contained in the Service Layer (De-
pendencyServiceImpl, LicenseServiceImpl).

– The Repository Layer (ComponentRepository) is the only entity that
can communicate with the database.

Benefits: SRP makes the system’s parts more unified and task-specific, which
facilitates testing, debugging, and system extension. The only class or module that
has to be changed when a specific system feature changes is the pertinent one.

31

Design principles

5.4 Dependency Injection

Principle: Dependencies for an object can come from external sources instead
of generating them internally thanks to the design pattern known as dependency
injection (Yang et al. 2008)

Application in the crowdsourcing system:

• Dependency injection is a feature of the Spring framework, used in this system
that enables the injection of components into controllers and service classes,
including repositories and services.

• Services like UserService, DependencyServiceImpl, and LicenseServi-
ceImpl are injected by the GovernanceController. In a similar vein, service
classes manage database interactions by injecting repository objects .

Benefits:

• Dependency injection improves testability and maintainability by separating
an object’s behavior from its construction. During unit testing, for instance,
services and repositories might be replaced with mock implementations.

• It promotes loose coupling between classes, which facilitates system refactoring
and extension without requiring tight dependencies.

5.5 Repository Pattern

Pattern: By encapsulating the logic for accessing and altering data from the under-
lying data source, the repository pattern offers a means to abstract data access.

Application in the crowdsourcing system:

Votes, licenses, and governance component retrieval database operations are ab-
stracted by the ComponentRepository class. Complex queries are handled via
methods like findAllByDistUnitIdAndDistUnitVersionAndUserId to retrieve
relevant data from the database without disclosing SQL query information to the
rest of the application.

32

Design principles

Benefits:

• Because modifications to the underlying database structure have no impact
on the service or controller layers, abstracting the data layer makes system
maintenance easier.

• Because many services can use the same repository methods without duplicat-
ing database access logic, it encourages reusability.

5.6 RESTful API Design

Pattern: Networked application design uses the architectural pattern known as
representational state transfer (REST). It depends on client-server, stateless com-
munication using common HTTP techniques (Li et al. 2016)

Application in the crowdsourcing system:

• GovernanceController’s backend APIs use HTTP methods like GET and
POST to fetch components and add licenses and submit votes, respectively, in
accordance with RESTful principles.

• Every API endpoint functions statelessly and is assigned to a particular re-
source (such as components or licenses), enabling clients to communicate with
the system using common web protocols.

Benefits:

• RESTful APIs are popular and simple to integrate with many types of clients.
Since more services and customers can communicate with the API without
requiring a tight connection, they guarantee that the system will continue to
be scalable.

• REST APIs’ stateless design makes it easier to distribute the system over
several servers and improves its scalability.

33

Design principles

5.7 DTO (Data Transfer Object) Pattern

Pattern: Reducing the amount of data transmitted between the client and server is
possible by using the DTO pattern to move data across levels of an application while
making sure that only pertinent data is passed (Pantaleev and Rountev 2007)

Application in the crowdsourcing system:

A DTO that contains license data (declared, discovered, and concluded licenses) and
relevant flags (such as vote and concluded license flags) is the GovernanceCom-
ponent class. Only the essential data is included in the lightweight format that is
returned with this object to the frontend.

Benefits:

The system improves data transfer by lowering the payload size and enhancing
performance through the use of DTOs. Furthermore, it offers an extra degree of
abstraction, guaranteeing that database structures and underlying models remain
hidden from the client.

5.8 Strategy for Extensibility

Principle: The system is designed with extensibility in mind, allowing for fu-
ture improvements without requiring large architectural modifications (Simons et
al. 1999)

Application in the crowdsourcing system:

The modular design of the layers (frontend, service, repository) and the use of
patterns like dependency injection and the repository pattern allow for easy modi-
fication. For instance, the controller and repository levels remain unaffected if new
license types or voting procedures are incorporated into the service layer.

Benefits: This tactic guarantees that the system will continue to be flexible as
new needs or features arise. Developers can incorporate new services or increase
functionality with little effect on already-built components.

34

Design principles

5.9 Why do these design principles and patterns
work for crowdsourcing license correction
system

• Scalability: The crowdsourcing system can accommodate more users and
components as the project grows because of the separation of concerns and
usage of RESTful APIs.

• Maintainability: Every component of the crowdsourcing system is easier to
maintain when the single responsibility principle is followed because modifica-
tions to one do not affect modifications to others.

• Security: By abstracting delicate database activities, the repository pattern
makes sure that direct access to the data is verified and regulated. Addition-
ally, stateless client-server interactions are guaranteed by RESTful principles,
which improve security.

• Testability: The system is very testable thanks to dependency injection and
the DTO pattern. The use of lightweight DTOs guarantees that the logic stays
testable without relying on complex database interactions, and components
may be mocked simply during testing.

• Flexibility: The crowdsourcing system’s modular design and layer decoupling
enable for future improvements without requiring extensive overhaul.

35

Implementation

6 Implementation

6.1 Overview

With the design principles in place, a layered architecture of frontend, backend
(controller, service and repository layer) (O’Reilly-Team 2024) is used to implement
the the crowdsourcing license correction functionality. This chapter explains the
technical details of the implementation, describing the primary functions and how
all these layers communicate with each other. The implementation makes use of
modern frameworks such as React (TypeScript) for the frontend, SpringBoot (Java)
for the backend and PostgresSQL for the database.

6.2 Add license functionality

Users are allowed to add new licenses for a given package. The client, backend
and repository layers work together to validate, process and save the newly added
license. The following steps outline how this feature is implemented in each layer.

Frontend implementation

The frontend provides a input to the user who wants to enter a new license and sub-
mit this data to the back end for validation and storage. The primary UI element
here is a dialog box where the user provides license information and comments. Fol-
lowing form submission, the frontend sends the backend a POST request containing
the license information.

36

Implementation

Feedback is given to the user to let them know whether the operation succeeded or
failed. Following submission, the user interface shows the licenses along with the
recently added data.

Controller layer

The backend controller class GovernanceController handles the POST request
coming from the frontend. Whenever a new license is submitted, the controller
executes the addLicense method, which retrieves the package ID, license text and
comments from the user interface along with the user details and then passes them
as input values to the service layer.

To confirm whether the user has the right identification and is authorized, the con-
troller additionally authenticates session data. The frontend receives an HTTP 200
response if the check is successful. The controller sends an error message accordingly
in the event of validation or processing problems.

Service layer

The service layer class DependencyServiceImpl is responsible for the actual logic
for adding a discovered license. Initially, it checks whether the discovered license
in the package is already present in the system. If the package does not contain
the license, then the relevant information is passed on to the repository layer (pack-
age Id, discovered license, user ID, a comment, and the initial status flag set to
"temporary.")

If the operation was successful, the service will send the message to the controller
which in turn will forward this information back to the frontend. Thus, the service
layer makes sure that only valid or legitimate data is handled and saved.

Repository layer

The repository layer class ComponentRepository manages communication with
the database. A method addLicense for adding a license is given, which involves

37

Implementation

keeping the newly found license in the relevant table user_license_findings. Us-
ing this method, the user_license_findings table is updated with the package
ID, license, user ID, comment, timestamp, and "temporary" flag.

The repository layer spares the service and controller levels from having to commu-
nicate directly with the database by abstracting database operations. The division
of responsibilities enhances the system’s maintainability and scalability, since any
changes to the database structure or queries are handled at the repository level
without interfering with other components.

6.3 Voting mechanism implementation

One essential component of the crowdsourced license correction system is the voting
mechanism. Users can vote on licenses they find, giving their approval (upvoting)
or disapproval (downvoting) to a license that they themselves have added along with
licenses that another user has submitted. The voting process not only collects feed-
back from the community but also determines whether a license should move from
a discovered status to a concluded status for the community based on a threshold
of upvotes. This section describes how this voting process will be put into practice,
including how to handle all system data flow, update the finished license, and flag
votes.

Frontend implementation

Voting user interface The user interface places the two primary icons (up and
down) beside each license. The system displays a dialog window to confirm the
vote when a user selects one of these buttons. Users can write a statement in this
dialog box to explain why they are casting their vote, and that message is sent to
the backend with the vote.

The vote data is sent by the frontend as a POST request to the backend following
submission. The user interface is updated with the backend response, displaying the
license’s current status as well as any changes made by the vote (such as shifting it
to a concluded status).

38

Implementation

Controller layer

When users cast their votes, the GovernanceController’s voteLicense method re-
sponds to the incoming POST requests from the frontend. After the voting data
has been processed, it is sent to the service layer for additional business logic.

The following are overseen by the controller:

• Extracting the package ID, found license, vote type, and user details from the
request and using them as input.

• Verifying the user’s identification and confirming their eligibility to cast a vote.

• Sending the vote data to the service layer so that it may be processed and
returned to the frontend with a suitable answer (success or failure).

Service layer

The vote processing and license status updating are handled by the service layer class
LicenseServiceImpl. The method voteDiscoveredLicense handles the voting
logic, comprising the following critical steps:

1. Validating the vote: The service first checks whether the user’s vote and the
most recent vote previously done by the same user for the exact same license,
package and distribution unit and version is the same. If it is not equal, the
system proceeds with storing the new vote. If they have, the system will
update their previous vote.

2. Storing the vote: The license information is stored in the database along
with the vote type i.e. up or down. The user’s ID and the package details are
also stored to track the vote.

3. Counting votes: The service counts the number of upvotes and downvotes to
determine the net votes for the license after saving the vote. The net vote count
is important so as to confirm the change in license’s status from discovered to
concluded.

39

Implementation

4. Updating the license status: : The license is marked as "temporarily con-
cluded" and moved to suggested licenses for the community if the net vote
difference is more than a predetermined threshold (for example, +10 upvotes).
This status indicates that the license is pending further assessment by the
system or an administrator before being formally marked as finished.

Repository layer

When a vote is cast, the repository class ComponentRepository inserts the vote
details into the user_license_votes table. This table tracks each vote, associating
it with the specific package, license, and user.

In addition, the repository handles the complex query operations required to de-
termine the overall upvotes and downvotes for a particular discovered license. By
asking this question, the system makes sure that if a license has met the requirements
to be marked as suggested license.

6.4 Component loading implementation

The Component loading feature is essential for providing the user with up-to-
date governance data , such as declared, discovered, and concluded licenses for each
package or component. This section will describe how the frontend receives the
data from backend that has been retrieved and enhanced with additional governance
information.

Controller layer

Retrieving governance components for a particular distribution unit and version is
handled by the GovernanceController’s components method. This method:

• Obtains the distUnitId and distUnitVersion from the incoming request.

• Calls the service layer to retrieve the distribution unit’s component parts.

40

Implementation

Following component retrieval, the controller adds governance data to each compo-
nent, such as:

• Declared license: Taken from the metadata of the package.

• Discovered license: Based on the licenses submitted by the community,
flagged and voted on as well.

• Concluded license: This information is included if the license has reached
suggested findings(temporary concluded or concluded) status.

Service layer

The logic to retrieve and enhance the component data is implemented by the De-
pendencyServiceImpl class. After interacting with the repository layer to obtain
the raw data, each component receives governance information before the outcome
is sent back to the controller.

Key responsibilities of this service layer include:

• Retrieving component data: The repository is used by the service layer to
retrieve component data from the database.

• Enriching data: The service layer calls helper methods to enrich each compo-
nent with governance groups for declared, discovered, and concluded licenses.
These groups provide the licenses context, including information on which
license family or categories they fall under.

• Handling license flags: In order for the user interface to show the user this
information, the service additionally makes sure that any flags connected to
concluded licenses are returned with the license.

Repository layer

The repository layer class ComponentRepository handles the complex database
queries to retrieve the relevant component data. The findAllByDistUnitIdAnd-
DistUnitVersionAndUserI method is responsible for fetching the components,
including:

41

Implementation

• Declared licenses.

• Discovered licenses, along with their associated votes and flags.

• Concluded licenses and their respective flags.

To offer a full view of each component’s governance state, this approach builds
a big query that aggregates data from several tables in the database, including
mainly components, packages, user_license_findings, user_license_votes and
others.

After the data is retrieved by the repository, it is transferred to the service layer for
further enrichment before being sent to the controller.

Frontend handling

The extracted components are shown on the governance tab in the user interface.
Each package contains:

• The declared license

• The discovered license

• The concluded license (blurry indicating as suggested license, upon double
clicking and submitting, it performs both the add license and vote license
mechanism.)

This provides a thorough picture of the licenses with their status for each packages,
allowing the users to perform any of the described functions above.

6.5 User management and flagging by admin

Administrators can use the system’s features for user management and license
flagging. These tasks are done manually in the database by changing particular
flags, as there isn’t a dedicated admin interface. This section explains the database
operations that administrators use to manage users and licenses.

42

Implementation

Admin user management

When a user is suspected of being malicious or a troll (for example, by continuously
providing false or irrelevant licenses), the administrator has the ability to take action
by changing the person’s status directly in the database. The steps below describe
how this operates:

• Flagging a User: The administrator modifies the user’s record in the database
by altering its record status to ’D’.

• Restricting User Actions: After a user is reported, the system verifies
their eligibility before allowing them to vote or contribute licenses. When
someone is reported as a troll i.e. their record status ’D’, the system stops
their contributions from being seen by the community.

Managing license flags

There are several uses for the license-related flags:

• Temporary flag: Shows that a license is not yet finalized but has passed
the voting threshold so it is visible on the user interface. Admins have the
option to personally approve or reject these licenses in response to community
feedback.

• Disapproved flag: Shows that a license has been reported as needing to be
removed and shouldn’t be seen by users any more.

• Final Conclusion flag: Raised when a license is concluded that is, once it
has received final approval.

The accuracy and applicability of the discovered and concluded licenses in the sys-
tem depend on these flags. To make sure the system runs properly, administrators
manually manage these flags in the database.

43

Implementation

6.6 Error handling

In order for the system to properly handle unforeseen problems like invalid inputs,
server errors, and database failures; error handling is an essential component. This
is how the system’s various tiers implement error management.

Frontend

Errors resulting from network problems and user input are handled by the frontend.
For instance:

• The frontend verifies the input and shows the relevant error messages if a user
tries to submit an invalid license in terms of empty license information.

• The frontend detects the error and notifies the user that the operation could
not be completed if the backend returns an error (such a 500 Internal Server
Error).

This guarantees that consumers may adjust their behavior and are informed of any
problems in real time.

Controller layer

Error handling is done at the controller layer to handle exceptions and return the
proper HTTP status codes. Typical error types addressed are as follows:

• Invalid inputs: The controller returns a 400 Bad Request status and an error
message detailing the reason for the failure if a user enters missing or erroneous
data.

• Resource not found: The controller provides a 404 Not Found response in
the event that a requested package or license cannot be located.

By doing this, a better user experience is made possible by ensuring that the frontend
receives structured and relevant error notifications.

44

Implementation

Service layer

Error management at the service layer is concentrated on business logic exceptions,
like:

• Validation errors: The service throws a validation exception, which the
controller detects and handles correctly, if a license does not match specific
requirements (such as a empty license information).

• Database errors: The service detects the error and sends the relevant mes-
sage to the controller in the event that a database operation fails (for example,
because of a constraint violation).

This layer makes sure that improper actions are detected early and corrected before
they affect the functionality or performance of the system.

Repository layer

To manage SQL exceptions, database activities in the repository layer are encap-
sulated in try-catch blocks. Repository errors propagate back through the service
and controller layers when a query fails, for example, due to a missing record or
constraint violation. For the purposes of auditing and debugging, the repository
also logs errors.

6.7 Performance optimizations

The crowdsourcing license correction system is designed to handle and manage huge
datasets efficiently, and numerous optimizations are implemented to guarantee seam-
less operation, even when a substantial number of users participate and assess li-
censes.

45

Implementation

Database query optimization

The repository layer uses optimized queries to retrieve data efficiently:

• Indexing: To speed up lookups and minimize query execution time, impor-
tant database fields including package_purl, discovered_license, and vote_type,
are indexed.

• Aggregation queries: To reduce the amount of database transactions, opti-
mal aggregation queries are used to retrieve vote counts and other summary
statistics.

These optimizations make sure the system stays responsive and effective even with
an increase in the number of packages and licenses.

Pagination and lazy loading

To prevent the frontend from becoming overloaded with big datasets, the system
provides paging and slow loading:

• Pagination: The system reduces the amount of data exchanged between the
server and frontend by returning only a fraction of the results when obtaining
components or license data, based on the current page number and limit.

• Lazy loading: This technique speeds up the initial load time and cuts down
on pointless network traffic by only loading extra data (such license details)
when needed.

In summary, the architecture of the crowdsourcing license findings was implemented
using a layered architecture with a React and TypeScript frontend, a Spring Boot
and Java backend, and a PostgreSQL database. The system allows users to add
new licenses, vote on existing ones, and view license information, all while ensuring
data validation and efficient communication between layers. Admin functionalities
were implemented for user management and license flagging directly through the
database. Throughout the implementation, close attention was given to error han-
dling and performance optimizations like database indexing and pagination to make
sure the system is robust and responsive.

46

Evaluation

7 Evaluation

In this chapter, the system is put to the test by evaluating how well it meets both
the functional and non-functional requirements described earlier. All the impor-
tant features like adding new licenses, the voting mechanism, and the process of
concluding licenses from both individual and community perspectives to see if they
function as intended. Administrative capabilities were also tested such as license
flagging by admins to ensure they effectively help maintain the system’s integrity.
On the non-functional side, aspects like performance, security, and scalability to
determine if the system can handle real-world demands were tested. Finally, some
of the limitations were also outlined, offering insights into areas where the system
could be improved.

7.1 Functional requirements evaluation

The functional evaluation was conducted based on the core features of the system.
Each key functionality was tested to ensure it works as intended and meets user
expectations.

47

Evaluation

License contribution

Figure 4: Navigating the user interface

Figure 5: Adding a license "GPL" along with comments

Figure 6: Successfully added GPL license

Voting mechanism

Users were able to upvote or downvote licenses and provide comments for their
decisions.

48

Evaluation

Figure 7: Approving/Upvoting a discovered license

Figure 8: Approval/Upvoted successfully

Figure 9: Disapproving/Downvoting discovered license

49

Evaluation

Figure 10: Disapproval/Downvote successful

Concluded license: Same user

User was successfully suggested a concluded license if the same user has added the
concluded license for the same package but for a different distribution unit.

Figure 11: Same user(eldrin), same package (pkg:npm/debug@2.6.9), different dis-
tribution unit getting suggested a license since he concluded a license
in the other distribution unit

Figure 12: User marking/voting GPL license as concluded in this distribution unit
as well

50

Evaluation

Figure 13: Task successful

Concluded license: Community

Another user was successfully suggested a concluded license if the net difference
reached the threshold of 10 upvotes across multiple users in the system.

Figure 14: JSON License has a net difference of 9 upvotes which is 1 vote less than
the threshold in package "pkg:npm/depd@2.0.0".

Figure 15: User "Eldrin" upvoting the JSON license making the net difference to
10 upvotes.

51

Evaluation

Figure 16: Another user "Issac" is being suggested the JSON license as it has
reached the threshold.

Figure 17: User Issac has now added the JSON license.

License flagging by admins

The system includes the ability for admins to manually flag or disapprove licenses
in the database. Admins were able to:

• Mark licenses as disapproved by setting a flag in the database.

• Flag users as trolls if they consistently contributed malicious or incorrect li-
censes, preventing those users contribution to be counted among the commu-
nity.

7.2 Non-functional requirements evaluation

In addition to functional testing, the system was evaluated against several non-
functional criteria, including performance, security, scalability, and usability.

52

Evaluation

• Performance

The performance of the system was measured based on response times and
system throughput. Key results include:

– Response times: The response time of the system remains unchanged
after crowdsourcing functionality was introduced indicating that it does
not affect the performance.

– Concurrency: The system was tested with multiple concurrent users
contributing and voting on licenses. It scaled effectively, with no signifi-
cant degradation in performance.

Caching mechanisms implemented in the repository layer, such as vote counts
and component data, contributed to the system’s performance, reducing the
number of database queries and improving overall speed.

• Security

– User management: Admins could successfully flag users and prevent
them from contributing further licenses to the community, ensuring that
malicious users could not disrupt the community.

• Scalability

An increasing number of users and licenses were intented to be handled by the
system as it scaled. Key results from scalability testing include:

– Database Efficiency: The repository layer’s queries were optimized
to handle large datasets efficiently. Indexing on key columns like pack-
age_purl and discovered_license helped improve query performance.

– Pagination: The system’s use of pagination in component loading helped
maintain performance, even when handling large numbers of packages.

The system’s architecture is well-positioned to scale as the number of packages,
licenses, and users grows.

53

Evaluation

7.3 Limitations

Despite its strengths, the system has several limitations:

• Admin Overhead: The system relies on admins manually approving or dis-
approving licenses, which can become time-consuming if the number of sub-
missions grows. Automating some aspects of admin tasks could improve scal-
ability.

• Dependence on Community Participation: The system’s effectiveness
depends on active community participation. If the user base is small or inac-
tive, the system may struggle to identify and conclude licenses efficiently.

• Potential for Malicious Contributions: Although mechanisms are in place
to flag and block malicious users, there is still a risk of spam or incorrect con-
tributions overwhelming the system, especially in the absence of a dedicated
admin interface.

54

Conclusion

8 Conclusion

8.1 Conclusion

In this thesis, a crowdsourcing-based licensing correction system that is coupled
with Software Composition Analysis (SCA) tool was designed and developed.
The objective was to increase the accuracy of open-source software (OSS) license
findings because this is a crucial job that ensures compliance with legal and reg-
ulatory requirements. Because of the continually changing open-source ecosystem,
traditional license scanners such as ScanCode and FOSSology, while good at rec-
ognizing established licenses, frequently have trouble with new or updated licenses.
The purpose of this thesis was to close this gap by adding human judgment to the
license correction process.

The system allows users to contribute discovered licenses, vote on the accuracy of
those licenses, and provide comments explaining their decisions. When enough up-
votes are cast for a license, it is designated as "concluded license," awaiting adminis-
trative approval. Admins can also regulate and report malicious users and improper
votes using the tools built into the system. The overall accuracy of license identi-
fication is improved by combining administrative control with a community-driven
approach.

The system’s assessment showed that both functional and non-functional require-
ments were satisfactorily addressed. The crowdsourcing method made it easier to
identify licenses that automated programs had overlooked, resulting in a more accu-
rate and trustworthy license database. Strong user interactions and efficient admin
controls to regulate user behavior characterized the voting system. Additionally, the
system managed security issues including some malicious input and user authenti-
cation, and it operated well under pressure.

55

https://scatool.com/about/
https://github.com/aboutcode-org/scancode-toolkit
https://github.com/fossology/fossology

Conclusion

The significance of crowdsourcing in enhancing the identification of open-source
licenses was also emphasized in the thesis. The system remains up to date with new
and evolving licenses, something that automated systems by themselves are unable
to handle, thanks to community engagement. Even if the system has shown to be
successful, there is still room for development, especially when it comes to scaling
and simplifying administrative duties.

8.2 Future work

Even though the system’s current implementation serves its intended function, there
are a number of ways to improve it going forward, including scalability, usability,
and overall effectiveness.

Scaling the crowdsourcing system

The system will have to develop to accommodate more license contributions, votes,
and user interactions as the open-source ecosystem expands and new OSS compo-
nents appear.

Dedicated admin interface

Currently, admin tasks are carried out directly in the database. These tasks include
controlling harmful contributions, flagging users, and reviewing and approving li-
censes. Although practical, this manual method could become ineffective as the
number of users increases.

Incorporating machine learning and large language models (LLMs)

The current system allows users to contribute, vote, and comment on licenses only
through human input. Large Language Models (LLMs) and machine learning may
be added to the system in the future to improve license detection accuracy and
expedite user engagement.

56

Bibliography

Bibliography

Black-Duck-Team (2023). Black Duck Software Composition Analysis (SCA) tool |
Black Duck. Available at https://www.blackduck.com/software-composition-

analysis-tools/black-duck-sca.html.

Domar Bolmstam, S., S. Hanifi, K. Skolan, F. Elektroteknik, and O. Datavetenskap
(2020). Security Guidelines for the Usage of Open Source Software. Avaialable at
https://www.diva-portal.org/smash/get/diva2:1463731/FULLTEXT01.pdf.

Duan, R., A. Bijlani, M. Xu, T. Kim, and W. Lee (2017). “Identifying Open-Source
License Violation and 1-day Security Risk at Large Scale”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
Avaialable at https://dl.acm.org/doi/pdf/10.1145/3133956.3134048.

Fendt, O. and M. C. Jaeger (2019). “Open Source for Open Source License Com-
pliance”. In: Open Source Systems. Ed. by F. Bordeleau, A. Sillitti, P. Meirelles,
and V. Lenarduzzi. Cham: Springer International Publishing, pp. 133–138.

Fontana, R., B. Kuhn, E. Moglen, M. Norwood, D. Ravicher, K. Sandler, J. Vasile,
and A. Williamson (2008). A Legal Issues Primer for Open Source and Free Soft-
ware Projects. Avaialable at https://softwarefreedom.org/resources/2008/

foss-primer.pdf.

FOSSology-FAQ (2024). FOSSology FAQ. Avaialable at https://wiki.fossology.

org/faq.

FOSSology-Setup (2024). FOSSology Setup. Available at https://github.com/

fossology/fossology/wiki/Install-from-Source.

FOSSology-Wiki (2024). FOSSology Documentation. Avaialable at https://github.
com/fossology/fossology/wiki.

57

https://www.blackduck.com/software-composition-analysis-tools/black-duck-sca.html
https://www.blackduck.com/software-composition-analysis-tools/black-duck-sca.html
https://www.diva-portal.org/smash/get/diva2:1463731/FULLTEXT01.pdf
https://dl.acm.org/doi/pdf/10.1145/3133956.3134048
https://softwarefreedom.org/resources/2008/foss-primer.pdf
https://softwarefreedom.org/resources/2008/foss-primer.pdf
https://wiki.fossology.org/faq
https://wiki.fossology.org/faq
https://github.com/fossology/fossology/wiki/Install-from-Source
https://github.com/fossology/fossology/wiki/Install-from-Source
https://github.com/fossology/fossology/wiki
https://github.com/fossology/fossology/wiki

Bibliography

Harutyunyan, N., A. Bauer, and D. Riehle (2019). “Industry requirements for FLOSS
governance tools to facilitate the use of open source software in commercial prod-
ucts”. In: Journal of Systems and Software 158. Avaialable at https://osr.

cs.fau.de/wp- content/uploads/2019/08/jss- 2019- harutyunya- bauer-

riehle.pdf, p. 110390.

HU, D., L. ZHAO, and J. CHENG (2024). “Reputation management in an open
source developer social network: An empirical study on determinants of positive
evaluations”. In: Decision support systems 53. Avaialable at http://pascal-

francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26074049,
pp. 526–533.

Kemppainen, P. (2023). Managing 3rd Party Software Components with Software
Bill of Materials. Tech. rep. Available at https://trepo.tuni.fi/bitstream/

handle/10024/148790/KemppainenPaavo.pdf?sequence=2. Tampere University.

Li, L., W. Chou, W. Zhou, and M. Luo (2016). “Design Patterns and Extensibility
of REST API for Networking Applications”. In: IEEE Transactions on Network
and Service Management 13.1. Available at https://ieeexplore.ieee.org/

document/7378522, pp. 154–167.

Morris, P. and M. Martin (2004). Open Source Software Licenses: Perspectives of
the End User and the Software Developer. Avaialable at https://www.mmmlaw.

com/files/documents/publications/article_238.pdf.

Noda, N. and T. Kishi (2001). “Design pattern concerns for software evolution”. In:
Available at https://dl.acm.org/doi/pdf/10.1145/602461.602498, pp. 158–
161.

O’Reilly-Team (2024). Software Architecture in Practice, 4th Edition [Book]. Avail-
able at https://www.oreilly.com/library/view/software-architecture-

in/9780136885979/. www.oreilly.com.

Pantaleev, A. and A. Rountev (2007). “Identifying Data Transfer Objects in EJB
Applications”. In: Fifth International Workshop on Dynamic Analysis (WODA
’07), pp. 5–5.

58

https://osr.cs.fau.de/wp-content/uploads/2019/08/jss-2019-harutyunya-bauer-riehle.pdf
https://osr.cs.fau.de/wp-content/uploads/2019/08/jss-2019-harutyunya-bauer-riehle.pdf
https://osr.cs.fau.de/wp-content/uploads/2019/08/jss-2019-harutyunya-bauer-riehle.pdf
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26074049
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26074049
https://trepo.tuni.fi/bitstream/handle/10024/148790/KemppainenPaavo.pdf?sequence=2
https://trepo.tuni.fi/bitstream/handle/10024/148790/KemppainenPaavo.pdf?sequence=2
https://ieeexplore.ieee.org/document/7378522
https://ieeexplore.ieee.org/document/7378522
https://www.mmmlaw.com/files/documents/publications/article_238.pdf
https://www.mmmlaw.com/files/documents/publications/article_238.pdf
https://dl.acm.org/doi/pdf/10.1145/602461.602498
https://www.oreilly.com/library/view/software-architecture-in/9780136885979/
https://www.oreilly.com/library/view/software-architecture-in/9780136885979/

Bibliography

Phipps, S. and S. Zacchiroli (2020). “Continuous Open Source License Compliance”.
In: arXiv preprint arXiv:2011.08489. Available at https://arxiv.org/pdf/2011.
08489.

Rana, M. E. and E. Khonica (2021). “Impact of Design Principles and Patterns on
Software Flexibility: An Experimental Evaluation Using Flexible Point (FXP)”.
In: Journal of Computer Science.

Al-Samman, A. (2020). “Modeling FLOSS Dependencies in Products”. In: Open
Source Software. Available at https://oss.cs.fau.de/wp-content/uploads/

2020/10/al-samman_2020.pdf.

Samman, A., A. Bauer, and D. Riehle (2024). MODELING FLOSS DEPENDEN-
CIES IN PRODUCTS. Available at https://oss.cs.fau.de/wp- content/

uploads/2020/10/al-samman_2020.pdf.

ScanCode-Wiki (2024). ScanCode Toolkit Documentation. Avaialable at https://

scancode-toolkit.readthedocs.io.

Simons, A., K. Hung, and M. Snoeck (1999). “Using Design Patterns to Reveal the
Competence of Object-Oriented Methods in System-Level Design”. In: Computer
Systems: Science Engineering - CSSE 14.

SPDX-Concluded-License-Info (2023). SPDX Specification v2.3 - Concluded License
Field. Accessed: 2024-10-06.

SPDX-Document-Info (2022). Clause 6: Document Creation Information - specifica-
tion v2.3.0. Available at https://spdx.github.io/spdx-spec/v2.3/document-

creation-information. Github.io.

SPDX-License-List-Info (2022). Annex A: SPDX License List - specification v2.3.0.
Available at https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list.
Github.io.

Wagner, M. (2023). “JavaScript User Interface License Compliance Best Practices”.
In: Open Source Software. Available at https://oss.cs.fau.de/wp-content/

uploads/2023/06/Wagner_2023.pdf.

Wolter, T., A. Barcomb, D. Riehle, and N. Harutyunyan (2022). “Open Source Li-
cense Inconsistencies on GitHub”. In: ACM Transactions on Software Engineering

59

https://arxiv.org/pdf/2011.08489
https://arxiv.org/pdf/2011.08489
https://oss.cs.fau.de/wp-content/uploads/2020/10/al-samman_2020.pdf
https://oss.cs.fau.de/wp-content/uploads/2020/10/al-samman_2020.pdf
https://oss.cs.fau.de/wp-content/uploads/2020/10/al-samman_2020.pdf
https://oss.cs.fau.de/wp-content/uploads/2020/10/al-samman_2020.pdf
https://scancode-toolkit.readthedocs.io
https://scancode-toolkit.readthedocs.io
https://spdx.github.io/spdx-spec/v2.3/document-creation-information
https://spdx.github.io/spdx-spec/v2.3/document-creation-information
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list
https://oss.cs.fau.de/wp-content/uploads/2023/06/Wagner_2023.pdf
https://oss.cs.fau.de/wp-content/uploads/2023/06/Wagner_2023.pdf

Bibliography

and Methodology. Avaialable at https://dirkriehle.com/wp-content/uploads/
2022/10/License_Inconsistencies_on_Github.pdf.

Yang, H. Y., E. Tempero, and H. Melton (2008). “An Empirical Study into Use
of Dependency Injection in Java”. In: 19th Australian Conference on Software
Engineering (aswec 2008). Available at https://dl.acm.org/doi/pdf/10.1145/

602461.602498, pp. 239–247.

60

https://dirkriehle.com/wp-content/uploads/2022/10/License_Inconsistencies_on_Github.pdf
https://dirkriehle.com/wp-content/uploads/2022/10/License_Inconsistencies_on_Github.pdf
https://dl.acm.org/doi/pdf/10.1145/602461.602498
https://dl.acm.org/doi/pdf/10.1145/602461.602498

Declaration of authorship

Declaration of authorship

I confirm that I have written this thesis unaided and without using sources other than
those listed and that this thesis has never been submitted to another examination
authority and accepted as part of an examination achievement, neither in this form
nor in a similar form. All content that was taken from a third party either verbatim
or in substance has been acknowledged as such.

Erlangen, 18.10.2024 Eldrin Sanctis

61

	Declaration of originality
	License
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Problem statement and the business value of accurate open-source license scanning
	1.2 How crowdsourcing can improve license identification accuracy
	1.3 Copyright corrections
	1.4 User limitations in code and package analysis

	2 Literature review
	2.1 Introduction to open-source license management
	2.2 Existing software solutions for license scanning
	2.2.1 ScanCode toolkit
	2.2.2 FOSSology
	2.2.3 Black Duck by synopsys

	2.3 Use cases for license scanning tools
	2.4 Concluded license and the role of SPDX
	2.4.1 Understanding concluded licenses
	2.4.2 The role of SPDX in license management

	2.5 Importance of Crowdsourcing License and Copyright Scanner Corrections
	2.6 Problem-solving and relevance
	2.7 Drawbacks of crowdsourcing approach

	3 Requirements
	3.1 Functional requirements
	3.2 Nonfunctional requirements

	4 Architecture
	4.1 High-level overview
	4.2 User Interface (UI) for license contribution and voting
	4.3 Crowdsourcing logic layer
	4.4 Admin Intervention for review and validation
	4.5 Data storage for contributions and voting

	5 Design principles
	5.1 Overview
	5.2 Separation of Concerns (SoC)
	5.3 Single Responsibility Principle (SRP)
	5.4 Dependency Injection
	5.5 Repository Pattern
	5.6 RESTful API Design
	5.7 DTO (Data Transfer Object) Pattern
	5.8 Strategy for Extensibility
	5.9 Why do these design principles and patterns work for crowdsourcing license correction system

	6 Implementation
	6.1 Overview
	6.2 Add license functionality
	6.3 Voting mechanism implementation
	6.4 Component loading implementation
	6.5 User management and flagging by admin
	6.6 Error handling
	6.7 Performance optimizations

	7 Evaluation
	7.1 Functional requirements evaluation
	7.2 Non-functional requirements evaluation
	7.3 Limitations

	8 Conclusion
	8.1 Conclusion
	8.2 Future work

	Bibliography
	Declaration of authorship

