
Optimizing internal data
representation in Jayvee

BACHELOR THESIS

Jonas Zeltner

Submitted on 21 August 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Johannes Jablonski, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 21 August 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 21 August 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Jayvee is a simple language for describing data pipelines. The execution of these
pipelines necessitates the handling of tabular data. Previously, Jayvee utilized
TypeScript’s data structures to represent such data. This thesis develops a new
table implementation for the Jayvee interpreter.

We present the architectural design and implementation of such a prototype. It
uses the Polars library to adhere to the Apache Arrow specification. Additionally,
the library sqlite-loader-lib, written in Rust, is integrated into this architecture,
to accelerate the export of tables.

The evaluation demonstrates, that the new implementation has the potential to
increase the Jayvee interpreter’s maximum input size from 475 Megabyte above
2.5 Gigabyte and its processing speed by a factor of between 3.60 and 18.22.

iii

iv

Contents

1 Introduction 1
1.1 The Jayvee language . 1

2 Literature Review 3
2.1 Tabular data memory layout . 3
2.2 Apache Arrow . 4
2.3 Polars . 5

3 Requirements 7
3.1 Functional requirements . 7
3.2 Non-functional requirements . 7

4 Architecture 9
4.1 Interpreter Overview . 9
4.2 General approach . 10

4.2.1 Possible implementations of Arrow 11
4.3 Type conversion . 12
4.4 Creating a table implementation based on Polars 12

4.4.1 Table . 13
4.4.2 PolarsTable . 14
4.4.3 TableColumn . 16

4.5 Adapting and creating block types 18
4.5.1 TableInterpreter . 20
4.5.2 FileToTableInterpreter . 20
4.5.3 LocalFileToTableExtractor 21
4.5.4 TableTransformer . 22
4.5.5 SQLiteLoaderExecutor . 23
4.5.6 sqlite-loader-lib . 25

4.6 Transforms . 27
4.7 Expressions . 27

4.7.1 Operator evaluators . 28

v

5 Implementation 31
5.1 Type Conversion . 31

5.1.1 Conversion from DataType to ValueType 31
5.1.2 Conversion from ValueType to DataType 31
5.1.3 InternalValueRepresentation 32

5.2 Table . 32
5.2.1 Implementation details . 33

5.3 TableColumn . 33
5.3.1 PolarsTableColumn . 33

5.4 New block executors . 34
5.4.1 Selecting the correct block executor 34
5.4.2 TableInterpreterExecutor 34

5.5 FileToTableInterpreter . 37
5.5.1 FileToTableInterpreterExecutor 37
5.5.2 LocalFileToTableExtractor 37

5.6 TableTransformer . 38
5.6.1 PolarsTableTransformer 38

5.7 TransformExecutor . 38
5.7.1 PolarsTransformExecutor 39
5.7.2 Expressions . 41

5.8 SQLiteLoaderExecutor . 42
5.9 sqlite-loader-lib . 44

6 Evaluation 47
6.1 Data source . 47

6.1.1 Requirements . 47
6.1.2 Chosen dataset . 47

6.2 Parameters . 48
6.3 The evaluation tool . 49

6.3.1 Running a configuration 49
6.3.2 Evaluation pipelines . 49

6.4 Maximum size of the input data 52
6.5 Execution Duration . 52
6.6 Differences in the resulting tables 56

6.6.1 Floating point values . 56
6.6.2 Rows including NULL . 56

6.7 Reevaluating the requirements . 56
6.7.1 Functional requirements 56
6.7.2 Non-functional requirements 57

7 Conclusions 59

Appendices 61

vi

A Tables . 63
A.1 Evaluation results . 63
A.2 Other tables . 66

B Software bill of materials (SBOM) 68
C Lists . 68

C.1 Languages with Apache Arrow libraries 68
C.2 Configuration files modified to successfully build the inter-

preter . 69
D Figures . 70
E Listings . 72

References 73

vii

viii

List of Figures

1.1 The basic structure of a pipeline. 1

2.1 A table’s is representation in row-oriented and columnar memory
(The Apache Software Foundation, n.d.-a). 4

2.2 Key Concepts of an Arrow Table (Shiran, 2019). 5
2.3 Illustration demonstrating Arrow enhances interoperability between

processes (Ahmad et al., 2021). 6

4.1 The general structure of the Jayvee interpreter. Many subclasses
and implementations have been omitted for readability. 10

4.2 The activity diagram overview of the interpreter. 11
4.3 Overview of the classes relevant for the table implementation. . . 13
4.4 The abstract class Table. 14
4.5 The class PolarsTable. 16
4.6 The replaced interface TableColumn. 17
4.7 The class TableColumn. 17
4.8 The class PolarsTableColumn. 18
4.9 The class TsTableColumn. 19
4.10 The Jayvee execution extensions. 19
4.11 The class diagram of AbstractBlockExecutor. 20
4.12 The class diagram of TableInterpreterExecutor. 21
4.13 The class diagram of FileToTableInterpreter. 22
4.14 The class diagram of LocalFileToTableExtractorExecutor. . . 22
4.15 Jayvee pipelines using either only original block types, FileTo c

TableInterpreter or LocalFileToTableInterpreter. 23
4.16 The class diagram of TableTransformerExecutor. 24
4.17 The class diagram of PolarsTableTransformerExecutor. 24
4.18 The class diagram of SQLiteLoaderExecutor. 25
4.19 The Rust components used by the interpreter. 25
4.20 The executors for the class SQLiteLoader 26
4.21 The class diagram of PolarsTransformExecutor. 28
4.22 The class diagram of EvaluationContext. 29

ix

4.23 Assuming the only operations were round and plus, this is how
the evaluators would be structured. 29

5.1 How the correct block executor is selected at runtime. 35
5.2 Sequence diagram of the method calls between PolarsTableTrans c

formerExecutor and PolarsTransformExecutor. 40
5.3 Activity diagram of the function jayveeExpressionToPolars(c

...). expr represents the input Jayvee expression. 41
5.4 The method calls relevant to transforming a table. 43
5.5 The activity diagram of the function loadSqlite(...). 45

6.1 The initial section of Jayvee pipelines in Jayvee files starting with
TS or PLOB. Presents the block types and their associated IOType. 50

6.2 The transform section of pipelines with none, some or many trans-
forms. The block types have been omitted for readability. 51

6.3 Maximum input sizes for each backend. 53
6.4 no transforms. 54
6.5 some transforms. 54
6.6 many transforms. 55
6.7 The processing speed of TS compared to PLOBRS. 55

1 The process, by which the evaluation tool identifies the correct
source file. 70

2 The evaluation tool’s activity diagram. 71

x

List of Tables

1 Average execution duration and standard deviation for a pipeline
with no transforms (10 repetitions). 63

2 Average duration of the block LiquorLoader for a pipeline with
no transforms (10 repetitions). 63

3 Average execution duration and standard deviation for a pipeline
with some transforms (10 repetitions). 64

4 Average execution duration and standard deviation for a pipeline
with some transforms (10 repetitions). 64

5 The result of the average execution time of TS divided by that of
PLOBRS. 65

6 Jayvee interpreter crashes. 65
7 Jayvee operators and the Polars expressions they are transformed

to. a represents the first parameter, b the second, and c the third. 66
8 Source code references. 67
9 The type guard mechanism of each InternalValueRepresentation. 67
10 SBOM. 68

xi

xii

List of Listings

1 Multiplying the values in the columns ”a” and ”b” of a DataFrame. 15
2 Pseudocode of the old algorithm the interpreter used, to execute

transforms. 27
3 Excerpt from primitive-value-type-provider.ts. 33
4 Pseudocode of the function toPolarsDataTypeWithLogs(...). . 35
5 Pseudocode of the method constructSeries(...). 36
6 Pseudocode of the method doExecuteTransform(...). 39
7 A Jayvee snippet defining a block with type TableTransformer

and its transform . 42
8 Pseudocode illustrating the manner in which the evaluation tool

executes a configuration . 72

xiii

xiv

Acronyms

ETL extract, transform, load

URL uniform resource locator

CSV Comma-seperated values

IPC Inter-process communication

SQL Structured Query Language

ODbL Open Data Commons Open Database License

API application programming interface

JSON JavaScript Object Notation

regex regular expression

CLI command-line interface

MB Megabyte

GB Gigabyte

UTF-8 8-Bit Universal Coded Character Set Transformation Format

xv

xvi

1 Introduction

Each year the European Union publishes a report on the maturity of open data
offerings by its member states. Publications Office of the European Union et al.
(2023) show an increase in average maturity scores since 2018. The use of this
open data is diminished by the often significant technical knowledge required to
work with it. Lowering this barrier of entry is the major motivation behind the
JValue Project (JValue Contributors, n.d.-c) in general and its language, Jayvee,
specifically (JValue Contributors, n.d.-b).

1.1 The Jayvee language
The Jayvee language enables the description and subsequent execution of data
pipelines. A pipeline is a sequence of executable blocks to perform operations on
data. These blocks are categorized in extractors, transformers and loaders.

Extractor Transformer Loader

Figure 1.1: The basic structure of a pipeline.

Extractors bring the data into the pipeline and make it available for the other
types of blocks. Jayvee supports retrieving data from a local file (LocalFile c

Extractor) or a uniform resource locator (URL) (HttpExtractor).

Transformers modify the data between extractor and loader.

Loaders export data to somewhere outside the pipeline, such as a SQLite file
(SQLiteLoader), postgres database (PostgresLoader) or Comma-seperated val-
ues (CSV) file (CSVFileLoader).

A more detailed description of Jayvee’s core concepts has been provided by JValue
Contributors (n.d.-a).

Jayvee’s goal is to enable everyone to describe extract, transform, load (ETL)
pipelines (JValue Contributors, n.d.-b).

1

1. Introduction

2

2 Literature Review

Ahmad et al. (2021) created their own memory format based on Apache Arrow to
process genome data. They found that Arrow improved the use of the available
hardware, and led to fewer cache misses. Arrow performed better than both
ramDisk and Unix pipes. The overall execution time was 4.85 times faster with
Arrow.

Peltenburg et al. (2021) developed Fletchgen, which can generate hardware in-
terfaces designed for Arrow workloads.

Grossman et al. (2022) used Apache Arrow to build SHMEM-ML, a machine
learning library. Arrow enabled ”zero copy data sharing” with other libraries.
They were able to accelerate model training by a factor of 38, compared to the
industry average.

2.1 Tabular data memory layout
When sequentially processing tabular data, a fundamental challenge arises: how
to organize the two-dimensional data onto a linear layout, either on disk, or in
memory. Two primary approaches have been developed to address this challenge
(Floratou, 2019):

row-oriented, row-storage The values are saved one row after another.

columnar, column-storage The values are saved column after column.

See Figure 2.1 for a visual comparison.

The earliest instances of columnar storage formats were initially developed for use
in databases, with MonetDB (Boncz, 2002) being a notable example. By 2013
these formats had become widely implemented across the industry (Abadi et al.,
2013). In approximately 2011 initial research was conducted into the potential
applications of columnar storage in the context of Big Data frameworks, which
culminated in the development of Apache Parquet and Apache ORC, both disk-
based columnar formats (Floratou, 2019).

3

2. Literature Review

(a) An example table in …

(b) …row-oriented mem-
ory. (c) …columnar memory.

Figure 2.1: A table’s is representation in row-oriented and columnar memory
(The Apache Software Foundation, n.d.-a).

In 2016, The Apache Foundation initiated Apache Arrow, which specifies a colum-
nar storage layout in memory (Ahmad et al., 2021).

Columnar storage has advantages over row-oriented storage:

• column specific compression (Abadi et al., 2013)

• less memory usage (Abadi et al., 2013)

• faster read times (Floratou, 2019)

2.2 Apache Arrow
Apache Arrow is often used synonymously with the memory format it defines.
This format is language agnostic, columnar and in memory. It has implementa-
tions in many languages (The Apache Software Foundation, n.d.-a) (see subsec-
tion C.1 for a list).

In the Arrow specification (The Apache Software Foundation, n.d.-b), a table is
called record batch. They are comprised of Arrow arrays which represent columns.
These Arrow arrays are different from TypeScript arrays, as they cannot contain

4

2. Literature Review

different data types. An Arrow array’s actual data is split across a series of Arrow
buffers, which represent continuous space in memory. Arrow record batches also
have Arrow schemas, which contain the batch’s metadata (see Figure 2.2).

Arrow has a more granular type system than TypeScript. This allows for a more
precise control of memory. Arrow types can have parameters. For example in-
stead of TypeScript’s type number, Arrow has (un)signed integers with a bit width
parameter, decimals with width, scale and precision as parameters, and floating
point numbers with a precision parameter. The specification includes a physical
memory layout for each type (The Apache Software Foundation, n.d.-b).

Additionally, the Arrow specification defines an Inter-process communication
(IPC) file format, that allows saving Arrow record batches on disk (see Fig-
ure 2.3).

At the time of writing this thesis, there are 48 projects powered by Apache Arrow
(The Apache Software Foundation, n.d.-d).

Figure 2.2: Key Concepts of an Arrow Table (Shiran, 2019).

2.3 Polars
Polars is built on top of the Rust implementation of the Arrow specification.
It incorporates convenient abstractions such as DataFrame and Series. Ad-
ditionally, it uses NAPI-RS to provide a TypeScript application programming
interface (API) that preserves the performance of the Rust library. It promises
”up to 50x performance” (Polars Contributors, n.d.-e).

5

2. Literature Review

Figure 2.3: Illustration demonstrating Arrow enhances interoperability between
processes (Ahmad et al., 2021).

6

3 Requirements

3.1 Functional requirements
interoperability This allows the data to be used by multiple different applica-

tions without complex conversion.

columnar A columnar format has advantages outlined in section 2.1, including
faster read times and less memory usage.

feature toggle We must be able to (de)activate the new features at runtime.
This makes comparing the new features easier.

compatibility The electric vehicles example must complete without errors. This
example is executed, by running the command-line interface (CLI) com-
mand npm run example:vehicles-polars inside the project directory.
The .sqlite files produced by the different implementations must be iden-
tical.

modularization Should it be necessary to write code in a language other than
TypeScript, this code must be placed in an external library usable from
TypeScript.

extensibility The functionality of the chosen data representation must be ex-
tensible.

3.2 Non-functional requirements
performance The main goal of this thesis is to optimize Jayvee’s in-memory

representation. We expect this to result in either a decrease in the exe-
cution time for Jayvee models, or an extension of the Jayvee interpreter’s
capabilities.

7

3. Requirements

code style The source code adheres to the project’s code style. This is enforced
by running npm run lint. For Rust source code, we use the defaults from
rustfmt and clippy.

maturity We aim to create a prototype, not a mature implementation.

The fulfillment of these requirements is evaluated in section 6.7.

8

4 Architecture

The objective of this thesis is to optimize Jayvee’s internal data representation.
This necessitates modifying the Jayvee interpreter, the program, that parses
Jayvee source files and executes the defined pipelines.

In order to improve the class diagrams’ readability, some parameters and return
types have been abbreviated with ”…”.

4.1 Interpreter Overview
This section provides an overview of how the interpreter executes a Jayvee pipeline
and the involved classes, illustrated by Figure 4.1. How the interpreter parses a
Jayvee source file is not relevant for the purpose of this thesis.

Once the parsing process is complete, the interpreter obtains a series of pipeline
definitions, which consist of block definitions. Block definitions include a block
type. The interpreter uses this block type to find an executor for the block, which
is a class that implements the interface BlockExecutor. The interpreter then
executes these executors in the order specified in the pipeline definition. The
output of the preceding block executor is always the input for the subsequent
one.

Inputs and outputs are instances of classes that implement the interface IOType c

Implementation. This includes the Table class, which will be used to integrate
Apache Arrow into the Jayvee interpreter.

One of Jayvee’s core features is the transformation of tables with the Table c

Transformer block type. Consequently, we will devote particular attention to
this functionality. The executor for blocks of type TableTransformer is Table c

TransformerExecutor. It creates and executes the TransformExecutor, which
evaluates the transform’s expression for every row of the table and returns the
resulting column. This column is then added to the input table by Table c

TransformerExecutor

9

4. Architecture

I BlockExecutor

I BlockExecutorClass

I IOTypeImplementation

C TableA AbstractBlockExecutor

C TableTransformerExecutor

C TransformExecutor

I OperatorEvaluator

A DefaultBinaryOperatorEvaluator A DefaultUnaryOperatorEvaluator

C AdditionOperatorEvaluator C RoundOperatorEvaluator

I OperatorEvaluatorRegistry

C DefaultOperatorEvaluatorRegistry

input

output

creates and executes

looks up operator

maps operator to an implementation of

Figure 4.1: The general structure of the Jayvee interpreter. Many subclasses
and implementations have been omitted for readability.

Expressions are evaluated by the function evaluateExpression(...). Expres-
sions with parameter(s) (unary, binary, ternary) are called operators. They have
evaluator classes that implement the interface OperatorEvaluator. The func-
tion evaluateExpression(...) finds the correct evaluator with the help of the
OperatorEvaluatorRegistry.

4.2 General approach
We add an alternative table implementation, based on the Apache Arrow frame-
work (section 2.2), to the interpreter. This means, the interpreter will contain
two table implementations at the same time. Dooley and Kazakova (2024) rec-
ommend the strategy pattern for this situation, because it will ensure that both
implementations share a common interface and that the different implementa-
tions can be chosen dynamically.

We also adapt the interpreter to take advantage of the new features introduced
by the new table (see Figure 4.2b). But, because the original implementation
needs to be preserved here too, the strategy pattern is a good approach again.

10

4. Architecture

start interpreter

parse model

get block executor

call executor

save output as input for the next block

for each block

for each pipeline

(a) Main diagram

block has multiple executors
yes no

–use-polars CLI flagtrue false

pick Polars
executor

pick TypeScript
executor

pick general
executor

(b) get block executor picks the
specified implementation

Figure 4.2: The activity diagram overview of the interpreter.

4.2.1 Possible implementations of Arrow
Implementation from scratch

The most direct approach would be a new implementation of the Arrow speci-
fication. This would afford the advantage of having full control over the imple-
mentation.

However, it is not guaranteed, that a sufficient amount can be implemented within
the timeframe of the thesis. Furthermore, this implementation may not perform
as well as an existing, more mature implementation, which may also be more
correct.

Apache Arrow in TypeScript

There is an Arrow library written in TypeScript (The Apache Software Founda-
tion, n.d.-a), which is the language of the Jayvee interpreter. This implementation
is comparable to those in other languages regarding supported data types, but
it lags behind with support for other Apache frameworks (The Apache Software
Foundation, n.d.-c), which takes away one of Arrow’s strengths.

11

4. Architecture

Polars

As described in section 2.3, Polars is a high level library built on top of Apache
Arrow, which also offers useful abstractions such as DataFrames, that hide the
Arrow data types. These abstractions make it easier for developers unfamiliar
with Arrow to contribute to Jayvee.

Polars is written in Rust, but offers a TypeScript API, which enables the Jayvee
interpreter to use Polars. For these reasons, we choose to build the new table
implementation on top of Polars.

4.3 Type conversion
Jayvee types, e.g. text, boolean or decimal (JValue Contributors, n.d.-a), are
represented by the interface ValueType, They are useful, because Jayvee types
do not map directly to TypeScript types. For example, when a value inside a table
has the TypeScript type number, an object implementing the interface ValueType
denotes, whether the value is a Jayvee integer or a Jayvee decimal.

Polars’ types are represented by the class DataType. The class DataType is
not compatible with the interface ValueType, which leaves us with two possible
approaches.

Replace ValueType with DataType. We decided against this approach, because
it enforces the Polars implementation at compile time, which breaks the
feature toggle requirement.

Convert between ValueType and DataType when needed. The TypeScript im-
plementation can ignore the conversion and keep using ValueType as before.
Because of the feature toggle requirement, we choose this approach.

For details on how this conversion mechanism is implemented, see section 5.1.

4.4 Creating a table implementation based on
Polars

The usual application of the strategy pattern would create an interface (Dooley &
Kazakova, 2024) that both the old and the new table classes implement. Instead,
we utilize an abstract class, to allow for code-sharing between the table subclasses.
We can still define functionality for both subclasses using abstract methods.

Jayvee already contains a class Table that implements the interface IOType c

Implementation<IOType.TABLE>. We move all the functionality from Table to
the class TsTable and create a new abstract class Table.

12

4. Architecture

Figure 4.3 visualizes the table architecture described in the following subsections.

polars

C DataFrame C Series

I IOTypeImplementation
T extends IOType = IOType

A Table A TableColumn
T

C PolarsTable C TsTable C PolarsTableColumn
T

C TsTableColumn
T

IOTypeImplementation<IOType.TABLE>

1

many

df

1

1

series

1

1

Figure 4.3: Overview of the classes relevant for the table implementation.

4.4.1 Table
This class implements the interface IOTypeImplementation<IOType.TABLE> to
be allowed as an input or output for blocks. Its methods are based on those of
the original class Table. See Figure 4.4 for a class diagram.

Differences between the old class Table and the new abstract class
Table

The methods getRow(...), addRow(...), dropRow(...) and dropRows(...)
are not part of the abstract class Table. These methods work with rows, so their
usage would make the columnar data representation obsolete. They still exist in
the TsTable class to satisfy the compatibility requirement.

In order to meet the requirement feature toggle, it is necessary to distinguish the
concrete table implementation. Therefore, we have implemented the type guards
isPolars() and isTypescript().

Given the difficulties in executing operations with side effects in parallel (Gordon

13

4. Architecture

A Table

«getter»nRows(): number
«getter»nColumns(): number
«getter»columns(): ReadonlyArray<TableColumn>
withColumn(column: TableColumn): Table
getColumn(name: string): TableColumn | undefined
clone(): Table
acceptVisitor<R>(visitor: IoTypeVisitor<R>): R
isPolars(): this is PolarsTable
isTypescript(): this is TsTable
generateDropTableStatement(tableName: string): string
generateInsertValuesStatement(tableName: string): string
generateCreateTableStatement(tableName: string): string

Figure 4.4: The abstract class Table.

et al., 2021), it is preferable to clone tables rather than mutate them. To satisfy
the compatibility requirement, a new method, withColumn(...) is created to
implement this behavior. The method TsTable.addColumn(...) preserves the
old behavior.

Because of the fact, that the Polars and TypeScript implementations of the
method generateDropTableStatement(...) are identical, we implement it as a
non-abstract method in Table.

4.4.2 PolarsTable
Polars’ DataFrame already has table functionality, such as the ability to add,
remove and transform columns. However, DataFrame’s methods aren’t the same
as those required by Table. To solve this, we create a wrapper class Polars c

Table, that extends Table and thereby implements IOTypeImplementation<IO c

Type.TABLE>, allowing PolarsTable to be used as an input or output for block
executors.

PolarsTable extends Table’s abstract methods by calling DataFrames methods,
which is a characteristic of the adapter pattern (Dooley & Kazakova, 2024). In
the terminology of the adapter pattern, Table is the target, PolarsTable the
adapter and DataFrame the adaptee.

14

4. Architecture

It is notable, that when Table is parameter or return type in an abstract method
in Table, the overriding method in PolarsTable replaced that with Polars c

Table. For example,

abstract clone(): Table

becomes

override clone(): PolarsTable

New functionality enabled by Polars

In addition to the abstract methods from Table, PolarsTable also implements
methods that take advantage of Polars’ features unavailable to the TypeScript
implementation.

The method withColumn(...) is overloaded with a second signature, that can
handle Polars expressions. Polars expressions are a way to describe a series of
operations, that result in one or more columns, with automatic optimization and
parallelization (Polars Contributors, n.d.-c). Listing 1 contains an example of
how Polars expressions can be chained.

use { pl } from 'nodejs-polars';
// Creation of the DataFrame was omitted
const dataFrame = ...;
// When the expression is applied to a DataFrame, `pl.col(...)`

selects a column, based on the name↪→

const first = pl.col("a")
const second = pl.col("b")
// When the expression is applied, `mul` multplies all values

from expression `first` with those from `second`↪→

const product = first.mul(second)
// When the expression is applied, `alias("c")` renames the

column to "c".↪→

const renamed = product.alias("c");
// withColumn applies the expression and returns a DataFrame,

containing the column computed by the expression.↪→

const newDataFrame = dataFrame.withColumn(renamed)
// `newDataFrame` contains a column "c". "c" contains the values

of column "a" multplied with the values from column "b"↪→

Listing 1: Multiplying the values in the columns ”a” and ”b” of a DataFrame.

The methods writeIpc(...) and writeIpcTo(...) convert the table to the
Arrow IPC format, writing either into a buffer or a file.

15

4. Architecture

C PolarsTable

df: polars.DataFrame
valueTypeProvider: ValueTypeProvider

PolarsTable(df, valueTypeProvider)
«getter»nRows(): number
«getter»nColumns(): number
«getter»columns(): readonly PolarsTableColumn[]
getTypes(): ValueType[]
generateInsertValuesStatement(tableName: string): string
generateCreateTableStatement(tableName: string): string
withColumn(column: PolarsTableColumn): PolarsTable
withColumn(expr: polars.Expr): PolarsTable
getColumn(name: string): PolarsTableColumn | undefined
clone(): PolarsTable
acceptVisitor<R>(visitor: IoTypeVisitor<R>): R
isPolars(): this is PolarsTable
isTypescript(): this is TsTable
toString(): string
writeIpc(options?: WriteIPCOptions): Buffer
writeIpcTo(destination: string | Writable, options?: WriteIPCOptions): void

Figure 4.5: The class PolarsTable.

One of the challenges is, that adding a column into a DataFrame object loses
that column’s ValueType, because the DataFrame uses Polars’ DataType. This
is problematic, because the class TableColumn expects a ValueType for its con-
structor.

The solution is to convert the Polars DataType object into a ValueType object
using the conversion mechanism in section 5.1. This conversion requires a Value c

TypeProvider object, which is saved as one of PolarsTable’s properties. Refer
to Figure 4.5 for the class diagram.

4.4.3 TableColumn
Analogous to the class Table, we create an abstract class TableColumn that has
two subclasses, TsTableColumn and PolarsTableColumn

Compared to the old interface TableColumn (Figure 4.6), the new abstract class
no longer defines how the values of the column are saved. It used to be a Type-
Script array, but now this decision is left to the subclasses of TableColumn.

We utilize a generic type parameter, to remain close to the original implementa-
tion and to be more specific on the return type of the method valueType().

16

4. Architecture

I TableColumn
T extends InternalValueRepresentation

values: T[]
valueType: ValueType

Figure 4.6: The replaced interface TableColumn.

A TableColumn
T extends InternalValueRepresentation

«getter»valueType(): ValueType<T>
«getter»length(): number
«getter»name(): string
«setter»name(newName: string)
clone(): TableColumn<T>
isPolars(): this is PolarsTableColumn<T>
isTypescript(): this is TsTableColumn<T>

Figure 4.7: The class TableColumn.

The type guards isPolars() and isTypescript() were added.

Figure 4.7 contains a diagram of this class.

PolarsTableColumn

The method DataFrame.getColumn(...) returns an instance of the Polars class
Series, which means that Series represents a column in Polars. To make Series
useful, we create a class adapter with the target TableColumn and the adaptee
Series.

One challenge here is, that Series does not have a generic type parameter. This
limitation can be addressed in two ways:

• Create the class PolarsTableColumn without a type parameter and extend
the abstract class TableColumn<InternalValueRepresentation>.

• Create the class PolarsTableColumn<T> with a type parameter and extend
the abstract class TableColumn<T>.

The second approach is preferable, because it allows us to preserve the generic
type parameter of the property _valueType: ValueType<T> (see Figure 4.8).

17

4. Architecture

C PolarsTableColumn
T extends InternalValueRepresentation

_valueType: ValueType<T>;
_series: polars.Series

PolarsTableColumn(_series, _valueType)
«getter»valueType(): ValueType<T>
«getter»series(): Readonly<pl.Series>
«getter»length(): number
«getter»name(): string
«setter»name(newName: string)
clone(): PolarsTableColumn<T>
isPolars(): this is PolarsTableColumn<T>
isTypescript(): this is TsTableColumn<T>

Figure 4.8: The class PolarsTableColumn.

It should be noted, that T does not indicate the actual type of the values stored
in the column, as would be the case for Array<T>. This detail is left to Series.
T specifies what type the column’s values would be, if it were implemented in
TypeScript. This is used to narrow down the type of _valueType.

TsTableColumn

For the class TsTableColumn (see Figure 4.9), the type parameter T behaves in the
expected way, it denotes the type of the values saved in the column. TsTable c

Column can also be looked at through the lens of the adapter pattern. Then,
TableColumn is the target, TsTableColumn the adapter and T[] the adaptee.

In addition to the abstract methods of TableColumn, TsTableColumn also has
methods that allow users to use the wrapped array functionality, push(...),
at(...) and drop(...).

4.5 Adapting and creating block types
The executors for Jayvee blocks are organized in extensions that extend the ab-
stract class JayveeExecExtension (see Figure 4.10). The Jayvee interpreter uses
the method createBlockExecutor(...) to get an implementation of the inter-
face BlockExecutor. This is the method, that chooses either the existing block

18

4. Architecture

C TsTableColumn
T extends InternalValueRepresentation

name: string
_valueType: ValueType<T>;
_values: T[]

TsTableColumn(_name, _valueType, _values)
«getter»valueType(): ValueType<T>
«getter»length(): number
«getter»name(): string
«setter»name(newName: string)
clone(): TsTableColumn<T>
isPolars(): this is PolarsTableColumn<T>
isTypescript(): this is TsTableColumn<T>
push(value: T)
at(index: number): T | undefined
drop(index: number): T | undefined

Figure 4.9: The class TsTableColumn.

executors or the new block executors that are described in this section. For details
on the implementation of this method, see subsection 5.4.1.

A JayveeExecExtension

C StdExecExtension C TabularExecExtension C RdbmsExecExtension

Figure 4.10: The Jayvee execution extensions.

The only class implementing BlockExecutor is the abstract class Abstract c

BlockExecutor. It exists as an intermediary between BlockExecutor and the
concrete classes implementing it. Classes extending AbstractBlockExecutor,
instead of implementing BlockExecutor, benefit from its general implementation
of the method execute(...), that leaves the execution behavior to the method
doExecute(...) (see Figure 4.11).

19

4. Architecture

I BlockExecutor
I extends IOType, O extends IOType

«readonly»inputType: I
«readonly»outputType: O

execute(input: IOTypeImplementation<I>, context): Result<IOTypeImplementation<O>>

A AbstractBlockExecutor
I extends IOType, O extends IOType

AbstractBlockExecutor(inputType, outputType)
logBlockResult(result: IOTypeImplementation, context)
doExecute(input: IOTypeImplementation<I>, context): Result<IOTypeImplementation<O>>

Figure 4.11: The class diagram of AbstractBlockExecutor.

4.5.1 TableInterpreter
The block type TableInterpreter converts a Sheet, Jayvee’s representation
for CSV data, into a table. We create an abstract class TableInterpreter c

Executor that extends AbstractTableInterpreter<IOType.SHEET, IOType. c

TABLE> (Figure 4.12). For implementation details, see subsection 5.4.2. Table c

Interpreter has two subclasses, TsTableInterpreter, which contains the old
behavior, and the new PolarsTableInterpreter.

This architecture, like the table architecture in section 4.4, follows the strat-
egy pattern from Dooley and Kazakova (2024). The usual strategy interface is
split up into BlockExecutor, AbstractBlockExecutor and TableInterpreter c

Executor, while the concrete strategy is either TsTableInterpreterExecutor
or PolarsTableInterpreterExecutor.

In order to facilitate code sharing, we use static methods to implement behavior
that is useful for other executors as well.

4.5.2 FileToTableInterpreter
Blocks with the type FileToTableInterpreter receive a BinaryFile, which con-
tains a TypeScript ArrayBuffer and converts that into a table. This combines the
block types TextFileInterpreter, CSVInterpreter and TableInterpreter.

Merging these block types allows us to utilize Polars’ builtin CSV parsing func-
tionality, instead of relying on the fast-csv library, like CSVInterpreter, which
means less indirection when reading a CSV file.

20

4. Architecture

A TableInterpreter

doExecute(inputSheet: Sheet, context: R.ExecutionContext): R.Result<R.Table>
constructAndValidateTable(...): Table
deriveColumnDefinitionEntriesWithoutHeader(...): ColumnDefinitionEntry[]
deriveColumnDefinitionEntriesFromHeader(...): ColumnDefinitionEntry[]
parseAndValidateValue(...): InternalValueRepresentation | undefined

A AbstractBlockExecutor
I extends IOType, O extends IOType

C PolarsTableInterpreterExecutor

«readonly»type: ’PolarsTableInterpreter’ = ’PolarsTableInterpreter’;

constructAndValidateTable(...): PolarsTable
constructSeries(...): pl.Series

AbstractBlockExecutor<IOType.SHEET, IOType.TABLE>

Figure 4.12: The class diagram of TableInterpreterExecutor.

Adding a block type

To add this block type to the Jayvee language, its definition is put in the file
FileToTableInterpreter.jv (refer to Table 8 for the full path). Running the
command npm run generate creates class definitions necessary for this block
type to be used in the Jayvee interpreter.

We also create an executor for the new block type (Figure 4.13). All methods
except doExecute(...) are static, making them reusable by other executors.

In practice, the only executor using these, is LocalFileToTableExtractor c

Executor. Because there is no preexisting implementation of this executor, we do
not need an additional abstract class and can extend AbstractBlockExecutor
directly.

4.5.3 LocalFileToTableExtractor
The block type LocalFileToTableExtractor combines LocalFileExtractor
and FileToTableInterpreter. This removes another layer of indirection for
parsing CSV data, letting Polars handle the entire the process.

21

4. Architecture

C FileToTableInterpreterExecutor

«readonly»type : ’FileToTableInterpreter’;

FileToTableInterpreterExecutor()
doExecute(file: BinaryFile, context: ExecutionContext): Result<Table>
colsAndSchema(context: ExecutionContext): { ... }
csvOptions(context: ExecutionContext): Partial<ReadCsvOptions>
deriveColumnDefinitionEntriesFromHeader(...): ColumnDefinitionEntry[]

A AbstractBlockExecutor
I extends IOType, O extends IOType

AbstractBlockExecutor<IOType.FILE, IOType.Table>

Figure 4.13: The class diagram of FileToTableInterpreter.

C LocalFileToTableExtractorExecutor

«readonly»type : ’LocalFileToTableExtractor’;

FileToTableInterpreterExecutor()
doExecute(file: BinaryFile, context: ExecutionContext): Result<Table>

A AbstractBlockExecutor
I extends IOType, O extends IOType

AbstractBlockExecutor<IOType.NONE, IOType.Table>

Figure 4.14: The class diagram of LocalFileToTableExtractorExecutor.

The process of adding the block type to Jayvee is the same as described in sub-
section 4.5.2, the only difference being that the definition file is placed in Local c

FileToTableExtractor.jv (see Table 8). Figure 4.14 contains the executor’s
class diagram.
Figure 4.15 illustrates, how the block types introduced in subsection 4.5.2 and
subsection 4.5.3 transform CSV input into a table.

4.5.4 TableTransformer
We still follow the strategy pattern (section 4.2), so, we create another abstract
class TableTransformer (Figure 4.16) with two subclasses TsTableTransformer
and PolarsTableTransformer (Figure 4.17).

22

4. Architecture

:LocalFileExtractor

:TextFileInterpreter

:CSVFileInterpreter

:TableInterpreter

None

File

TextFile

Sheet

Table

(a) Only original block
types.

:LocalFileExtractor

:FileToTableInterpreter

None

File

Table

(b) FileToTable c
Interpreter.

:LocalFileInterpreter

None

Table

(c) LocalFileToTable c
Extractor.

Figure 4.15: Jayvee pipelines using either only original block types, FileTo c

TableInterpreter or LocalFileToTableInterpreter.

As usual the created abstract class contains some shared behavior, in this case
logColumnOverwriteStatus(...) and checkInputColumnsExist(...).

Blocks with type TableInterpreter use Jayvee transforms to compute an output
column from a series of input columns. Jayvee transforms are executed by c

TransformExecutors (see section 4.6).

4.5.5 SQLiteLoaderExecutor
Jayvee blocks with type SQLiteLoader load their input table into a SQLite
database. Its output IOType is None, so no blocks in the pipeline can come
after a block with type SQLiteLoader. The abstract SQLiteLoaderExecutor
(Figure 4.18) offers a general implementation, utilizing methods defined in the
abstract Table class. This approach includes serializing all the data contained in

23

4. Architecture

A AbstractBlockExecutor
I extends IOType, O extends IOType

A TableTransformerExecutor

TableTransformerExecutor()
logColumnOverwriteStatus(...)
checkInputColumnsExist(...): Result<undefined>

AbstractBlockExecutor<IOType.TABLE, IOType.TABLE>

Figure 4.16: The class diagram of TableTransformerExecutor.

C PolarsTableTransformerExecutor

«readonly»type : ’PolarsTableTransformer’;

checkInputColumnsMatchTransformInputTypes(...): Result<Map<string, polars.Expr»
doExecute(inputTable: PolarsTable, context: ExecutionContext): Result<PolarsTable>

Figure 4.17: The class diagram of PolarsTableTransformerExecutor.

the input table into a Structured Query Language (SQL) query with type string.
We consider this to be a non-optimal representation of the data and improve it
in subsection 4.5.6.

SQLiteLoaderExecutor has three subclasses: TsSQLiteLoaderExecutor doesn’t
override the super class’ methods to preserve the original TypeScript implemen-
tation. PolarSQLiteLoaderExecutor doesn’t override the super class’ methods,
because Polars’ NodeJS API does not offer any database functionality at the
time of writing this thesis. The different behavior results from different overrides
of the methods generateCreateTableStatement and generateInsertValues c

Statement in the classes PolarsTable and TsTable.

RustSQLiteLoaderExecutor

RustSQLiteLoaderExecutor avoids serializing the input table’s data into a SQL
query string, by relying on an external library, sqlite-loader-lib.

24

4. Architecture

A AbstractBlockExecutor
I extends IOType, O extends IOType

A SQLiteLoaderExecutor
T extends Table

SQLiteLoaderExecutor()
doExecute(table: T, context: ExecutionContext): R.Result<None>
executeLoad(...):Result<None>
runQuery(db: sqlite3.Database, query: string): sqlite3.RunResult

AbstractBlockExecutor<IOType.TABLE, IOType.NONE>

Figure 4.18: The class diagram of SQLiteLoaderExecutor.

4.5.6 sqlite-loader-lib
Polars’ core functionality is written in Rust, which Polars Contributors (n.d.-e)
describe as allowing ”for high performance with fine-grained control over mem-
ory”. For this reason, we choose Rust to implement sqlite-loader-lib (see Fig-
ure 4.19).

TypeScript

Rust

Jayvee interpreter

sqlite-loader-lib polars

arrow

Figure 4.19: The Rust components used by the interpreter.

Polars uses NAPI-RS (Polars Contributors, n.d.-d), which compiles a Rust li-
brary to a NodeJS addon (NAPI-RS Contributors, n.d.-a). With this, the Jayvee
interpreter, written in TypeScript, can use functions from a library written in
Rust.

25

4. Architecture

I BlockExecutorClass
T extends BlockExecutor

C RustSQLiteLoaderExecutor C PolarsSQLiteLoaderExecutorC TsSQLiteLoaderExecutor

A SQLiteLoaderExecutor
T extends Table

A AbstractBlockExecutor
I extends IOType, O extends IOType

I BlockExecutor

SQLiteLoader<PolarsTable> SQLiteLoader<PolarsTable>SQLiteLoader<TsTable>

AbstractBlockExecutor<IOType.TABLE, IOType.NONE>

Figure 4.20: The executors for the class SQLiteLoader

We were not able to pass the table to the library as a function parameter.
This would require redefining the class PolarsTable inside sqlite-loader-lib using
NAPI-RS. Instead, the class RustSQLiteLoaderExecutor saves its input table
into an Arrow IPC file on disk. sqlite-loader-lib can then read this file and recon-
struct the table.

Because the library only exists to execute a single task, it only exposes one
function:

loadSqlite(ipcPath: string, tableName: string, sqlitePath:
string, dropTable: boolean): void↪→

Its parameters are the path of the Arrow IPC file and the properties of the SQ c

LiteLoader block.

At the time of writing this thesis, Polars’ Rust implementation doesn’t offer
database export either. As a consequence, sqlite-loader-lib uses a separate library
to interface with a SQLite database. This library, known as Connector Arrow,
enables the writing of Arrow record batches into a SQLite database table (Eržen,
2024). Connector Arrow relies on the rusqlite library to support SQLite databases
(Eržen, 2024).

See section 5.9 for the implementation.

Figure 4.20 contains a diagram of all classes connected to loading the table into
SQLite.

26

4. Architecture

newColumn = ... # An empty column
expression = transform.expression
for row in inputColumns:

... # add row to evaluation context
let value = evaluateExpression(expression, context)
newColumn.add(newColumn)
... # remove row from evaluation context

return newColumn

Listing 2: Pseudocode of the old algorithm the interpreter used, to execute
transforms.

4.6 Transforms
The TableTransfromerExecutor class creates an instance of a concrete subclass
of TransformExecutor to compute a new column for it’s input table. For Polars c

TableTransformerExecutor this is an instance of PolarsTransformExecutor
(Figure 4.21), for TsTableTransformerExecutor this is TsTransformExecutor.

Originally, TransformExecutor would compute the new column by following the
algorithm outlined in Listing 2. It applies the Jayvee expression to each row in
the input columns and returns a column.

The new approach transforms the Jayvee expression into a Polars expression, that
the PolarsTableTransformer can apply to its input table. So, we add the new
function jayveeExpressionToPolars(...) (see section 4.7), which is similar to
the existing evaluateExpression(...), but it returns a Polars expression, not
a final value.

A detailed explanation of this process can be found at section 5.7.

4.7 Expressions
Polars Contributors (n.d.-c) separate Jayvee expressions into three categories:
literals, variables, operators.

literal Concrete values, e.g. 5, "sometext" or true. Their evaluation does not
differ from the original implementation.

variable Represents a value defined in the evaluation context (Figure 4.22).
Variables are used to refer to columns inside of transforms.

operator Transforms one to three Jayvee expressions into one result. The
evaluation context contains a registry of operator evaluators (see subsec-
tion 4.7.1)

27

4. Architecture

A TransformExecutor
I, O

«readonly»transform: TransformDefinition
«readonly»context: ExecutionContext

TransformExecutor(transform, context)
getInputDetails(): PortDetails[]
getOutputDetails(): PortDetails
getPortDetails(kind: TransformPortDefinition[’kind’]): { ... }[]
getOutputAssignment(): TransformOutputAssignment
executeTransform(input: I, context: ExecutionContext): O | undefined
doExecuteTransform(input: I, context: ExecutionContext): O | undefined;

C PolarsTransformExecutor

addInputColumnsToContext(...)
doExecuteTransform(...): pl.Expr | undefined

TransformExecutor<Map<string, PolarsInternal>, PolarsInternal>

Figure 4.21: The class diagram of PolarsTransformExecutor.

Jayvee expressions are transformed to Polars expressions using the function
jayveeExpressionToPolars(...) (see subsection 5.7.2).

4.7.1 Operator evaluators
Evaluators implement the interface OperatorEvaluator.

We create a new interface PolarsOperatorEvaluator, that defines one method,
polarsEvaluate(...) and extends the existing OperatorEvaluator. As a con-
sequence, all classes that implement PolarsOperatorEvaluator are also required
to implement the properties defined by OperatorEvaluator. This ensures, that
the existing TypeScript implementation remains available.

All classes, that previously implemented OperatorEvaluator interface, now im-
plement PolarsOperatorEvaluator (see Figure 5.7.2).

We deliberately did not follow the strategy pattern approach here. Jayvee cur-
rently has 32 evaluator operators. The strategy pattern requires two additional
classes per evaluator, one for the abstract class and one for the Polars imple-
mentation. This would increase the number of evaluator classes to 96. Because
of this, we considered implementing one additional method per evaluator the
simpler option.

Figure 4.23 visualizes the inheritance structure for operator evaluators.

28

4. Architecture

C EvaluationContext

«readonly»variableValues: Map<string, InternalValueRepresentation | pl.Expr>
valueKeywordValue: InternalValueRepresentation | undefined;

«readonly»runtimeParameterProvider: RuntimeParameterProvider;
«readonly»operatorRegistry: OperatorEvaluatorRegistry;
«readonly»valueTypeProvider: valueTypeProvider;

getValueFor(...): InternalValueRepresentation | pl.Expr | undefined
setValueForReference(...): void
deleteValueForReference(refText: string): void
getValueForReference(...): InternalValueRepresentation | pl.Expr | undefined

hasValueForRuntimeParameter(key: string): boolean
getValueForRuntimeParameter<I extends InternalValueRepresentation>(...): I | undefined

setValueForValueKeyword(value: InternalValueRepresentation)
deleteValueForValueKeyword()
getValueForValueKeyword(...): InternalValueRepresentation | undefined

Figure 4.22: The class diagram of EvaluationContext.

C AdditionOperatorEvaluator C RoundOperatorEvaluator

A DefaultUnaryOperatorEvaluator
O, TA DefaultBinaryOperatorEvaluator

L, R, T

I PolarsOperatorEvaluator
E

I OperatorEvaluator
E

I OperatorEvaluatorRegistry

C DefaultOperatorEvaluatorRegistry

’+’

1

1

’round’

1

1

Figure 4.23: Assuming the only operations were round and plus, this is how
the evaluators would be structured.

29

4. Architecture

30

5 Implementation

This chapter presents implementation of the architecture described in chapter 4.
In instances where this thesis makes reference to filenames, the corresponding
path can be found in Table 8.

In general, we prefer methods, such as map(...), over for loops, because they
are, in our experience, less error-prone and result in more readable code.

5.1 Type Conversion
As described in section 4.3, we implement a conversion mechanism between a
Polars’ DataType and Jayvee’s ValueType.

5.1.1 Conversion from DataType to ValueType
The class ValueTypeProvider, located in primitive-value-type-provider c

.ts, implements this method:

fromPolarsDType(dtype: polars.DataType): ValueType

It uses the method DataType.equals(...), instead of the operator ===, for
a more accurate comparison of between instances of DataType. To make this
apparent immediately, if statements instead of switch-case are used.

The Polars type system is more granular than that of Jayvee, which results in
some instances of DataType, that yield the same ValueType. For instance, both
polars.Float32 and polars.Float64 return Decimal.

Not every Polars DataType has a corresponding Jayvee ValueType. Due to the
limited timeframe of this thesis, those are unsupported and throw an error.

5.1.2 Conversion from ValueType to DataType
The interface ValueType, located in value-type.ts, defines this method:

toPolarsDataType(): polars.DataType | undefined

31

5. Implementation

Classes, that implement ValueType, but are not supported by Polars, implement
this method to return undefined.

5.1.3 InternalValueRepresentation
In many cases, the return type of Polars methods, that return concrete values,
is any. However, the Jayvee interpreter expects such a value to have the type
InternalValueRepresentation. To narrow down the returned type any, we
expand the existing type guards, implemented in typeguards.ts, to handle in-
puts with the type unknown. Table 9 contains a list of internal types and the
mechanism their type guard uses.

5.2 Table
The overview of existing classes and their relations is given in section 4.4. In
this section, we describe the new table implementation and the changes to the
original one:

To reduce the code in the source file, table.ts and the modularization require-
ment, we move the abstract class TableColumn and its subclasses PolarsTable c

Column and TsTableColumn into a new file, table-column.ts.

Wrapping methods

The following PolarsTable methods wrap methods of the Polars’ class Data c

Frame:

• writeIpc(...), writeIpcTo(...)

• nRows(), nColumns()

• clone()

• toString()

Non wrapping methods

Besides these wrapping methods, it is necessary for PolarsTable to implement
the following additional methods to remain compatible with the original imple-
mentation:

• getTypes()

• withColumn(...)

• generateInsertValuesStatement(...)

32

5. Implementation

• generateCreateTableStatement(...)

• columns(), getColumn(...)

5.2.1 Implementation details
PolarsTable.clone() does not clone the attribute PolarsTable.valueType c

Provider, because it should be treated as a Singleton (see Listing 3).

/**
* Should be created as singleton due to the equality comparison

of primitive value types.↪→

* Exported for testing purposes.
*/
export class ValueTypeProvider {

Listing 3: Excerpt from primitive-value-type-provider.ts.

Because SQL insert values statements expect rows of data, the method Polars c

Table.generateInsertValuesStatement() transposes the columnar DataFrame
into a row-oriented format, before converting that to SQL.

The methods PolarsTable.columns() and PolarsTable.getColumn(...) re-
turn object(s) of the class PolarsTableColumn. Their construction uses the con-
version method from subsection 5.1.1 using the class PolarsTables’s attribute,
valueTypeProvider.

The method withColumn(...) faces the challenge of having to discern, whether
its parameter is of the type PolarsTableColumn or pl.Expr. However, the Type-
Script compiler is aware, that the property series only existsn in the class
PolarsTableColumn and not pl.Expr. Consequently, this property in combi-
nation with the TypeScript operator in (MDN Contributors, 2024b) is used to
differentiate the parameter’s type.

5.3 TableColumn
As described in section 5.2, the class TableColumn and its subclasses are imple-
mented in table-column.ts.

5.3.1 PolarsTableColumn
Some attribute names are prefixed with an underscore to prevent naming conflicts
between the attribute and its getter and setter.

33

5. Implementation

PolarsTableColumn is a thin wrapper around polars.Series. It doesn’t have
any methods, that aren’t getters, setters or wrappers around equivalent Series
methods or attributes.

The method PolarsTableColumn.clone() excludes the attribute PolarsTable c

Column.valueType, because, as explained in subsection 5.2.1, objects of the class
ValueType should not be cloned.

TsTableColumn

All properties are prefixed with an underscore to prevent a naming conflict be-
tween the property and its getter and setter.

TsTableColumn.clone() produces a deep clone of the attribute _values. Based
on our experience, the usual way to accomplish this is the global function struc c

turedClone(...). This approach caused the interpreter to crash at runtime,
reporting a DataCloneError. We suspect, that the cause has to do with limita-
tions of structuredClone(...) described by MDN Contributors (2024a).

This issue was addressed by serializing the column to JavaScript Object No-
tation (JSON), and subsequently parsing it, thereby creating deep copies. To
retrieve the type information lost during this process, the type guards described
in section 5.1 were utilized.

5.4 New block executors

5.4.1 Selecting the correct block executor
The method getExecutorForBlockType(...) in extension.ts is modified, to
look for a different block type than its parameter specifies. Refer to Figure 5.1
for a diagram.

5.4.2 TableInterpreterExecutor
TableInterpreterExecutor is implemented in table-interpreter-executor c

.ts. This file also contains the function

toPolarsDataTypeWithLogs(valueType: ValueType, logger: Logger):
polars.DataType↪→

Its purpose is, to convert a Polars DataType into a Jayvee ValueType. It was
determined, that an unsupported ValueType should be included in the table as
an unparsed string, while still logging an error. To this end, the function converts
an unsupported ValueType to the default value of pl.Utf8 (see Listing 4).

34

5. Implementation

–use-polars CLI flagtrue false

blockTypeName = ’PolarsTableInterpreter’ blockTypeName = ’TsTableInterpreter’

–use-polars CLI flagtrue false

blockTypeName = ’PolarsTableTransformer’ blockTypeName = ’TsTableTransformer’

blockTypeName = ’RustTableTransformer’

blockTypeName = ’PolarsTableTransformer’

–use-rusqlite CLI flag true

–use-polars CLI flag true

blockTypeName = ’TsTableTransformer’

blockTypeName === ’TableInterpreter’ true

blockTypeName === ’TableTransformer’ true

blockTypeName === ’SQLiteLoader’ true

false

Figure 5.1: How the correct block executor is selected at runtime.

def toPolarsDataTypeWithLogs(valueType, logger):
dataType = valueType.toPolarsDataType()
if dataType is undefined:

... # Log the error using logger
return polars.Utf8

return dataType

Listing 4: Pseudocode of the function toPolarsDataTypeWithLogs(...).

35

5. Implementation

def constructSeries(rows, columnEntry, context):
valueType = columnEntry.valueType
dataType = toPolarsTypeWithLogs(valueType, context.logger)
values = [] # Empty list
for row in rows:

cell = row[columnEntry.sheetColumnIndex]
value = this.parseAndValidateValue(cell,

valueType, context)↪→

columnData.add(value)

return polars.Series(columnEntry.ColumnName, values,
dataType)↪→

Listing 5: Pseudocode of the method constructSeries(...).

The methods deriveColumnDefinitionEntriesWithoutHeader(...), derive c

ColumnDefinitionEntriesFromHeader(...) and parseAndValidateValue(... c

) remain unchanged, because they do not rely on the table implementation.

The method doExecute(...) merely preprocesses the block’s properties, leaving
the concrete algorithm to TableInterpreterExecutor’s subclasses.

PolarsTableInterpreterExecutor

The static attribute type is set to the value 'PolarsTableInterpreter'. The
method getExecutorForBlockType(...) compares this attribute to the block
type from the jayvee source file. As a consequence of the alterations, made to
the block executor selection process in subsection 5.4.1, the interpreter is now
searching for the PolarsTableInterpreter instead of TableInterpreter, if the
--use-polars command line interface CLI flag is enabled.

PolarsTableInterpreterExecutor’s objective is, to transform the existing, row-
oriented, CSV data into a columnar table format. This is addressed by iterating
over all rows multiple times, with each iteration constructing only one column
(see Listing 5). This process yields a list of Polars Series, which are then utilized
to construct a columnar Polars DataFrame.

The method constructAndValidateTable(...) skips the first row of the input
data, if the block property header is set to true. The use of the ternary if
statement is justified by the fact that, it allows rows to be declared as a constant.

36

5. Implementation

5.5 FileToTableInterpreter
As the block type FileToTableInterpreter is a combination of TextFile c

Interpreter, CSVInterpreter and TableInterpreter (see subsection 4.5.2),
the block type definition (FileToTableInterpreter.jv) includes the proper-
ties from these blocks. One property, TextFileInterpreter’s lineBreak, is no
longer supported, due to the fact, that line splitting is handled by Polars, which
does not support line breaks based on a regular expression (regex).

5.5.1 FileToTableInterpreterExecutor
The block executor FileToTableInterpreterExecutor is implemented in file- c

to-table-interpreter-executor.ts.

Given the close relationship between the block FileToTableInterpreter and
TableInterpreter (see subsection 4.5.2), it is reasonable to share code with c

TableInterpreterExecutor, in order to enhance both consistency and maintain-
ability. Specifically, the method TableInterpreterExecutor.deriveColumn c

DefinitionEntriesWithoutHeader(...) and the function toPolarsDataType c

WithLogs(...) were reused.

Polars only supports the 8-Bit Universal Coded Character Set Transformation
Format (UTF-8) encoding, with the option to either crashing when an error
occurs, or incorrectly decoding the text. This is different from the original im-
plementation, which supports more encodings. Because this block’s objective is
to let Polars handle text parsing, this is also a limitation of the block type File c

ToTableInterpreter. Given that this is a new block type, we do not consider
this limitation to violate the compatibility requirement.

The method doExecute(...) is deemed sufficiently straightforward, to not need
a separate method, such as TableInterpreterExecutor.constructAndValidate c

Table(...).

5.5.2 LocalFileToTableExtractor
As described in subsection 4.5.3, the block type LocalFileToTableExtractor
is based on FileToTableInterpreter. As a consequence, the block type defini-
tion, located in LocalFileToTableExtractor.jv includes all of FileToTable c

Interpreter’s properties.

The class LocalFileToTableExtractorExecutor, implemented in local-file- c

to-table-extractor-executor.ts, reuses the method csvOptions(...) from
the class FileToTableInterpreterExecutor.

It is not feasible to share code with LocalFileExtractorExecutor, because the

37

5. Implementation

TypeScript compiler identifies a circular dependency. As a result, the method
doExecute(...) has to reimplement a check preventing upward path traversal.

5.6 TableTransformer
The executors for the block type TableTransformer are implemented in table- c

transformer-executor.ts.

5.6.1 PolarsTableTransformer
In Jayvee, the name of a transform input variable may differ from the name of
corresponding column. Additionally, the transform’s input variables may have a
ValueType that is incompatible with the column of the input table.

These issues are addressed by the method checkInputColumnsMatchTransform c

InputTypes(...). It verifies that the variable and column ValueType is compat-
ible and links each input variable to the corresponding Polars column expression.
When applied to a DataFrame this pl.col(name) expression enables the trans-
formation of the values in column name (Polars Contributors, n.d.-b).

The method PolarsTransformExecutor.executeTransform(...) returns a Po-
lars expression, not a table column. This has two consequences:

1. alias(outputColumnName) is appended to the Polars expression, to ensure
the final column has the correct name.

2. The method PolarsTable.withColumn(...) is used to apply the expres-
sion to the table. This is possible, because one of the overload signatures,
that allows passing Polars expressions.

TsTableTransformerExecutor

Although the TypeScript implementation is beyond the scope of this thesis, it
is noteworthy, that the method TsTableTransformerExecutor.createOutput c

Table(...) utilizes TsTable.addColumn(...) rather than the new TsTable c

.withColumn(...). This approach is necessitated by the compatibility require-
ment.

5.7 TransformExecutor
Transform executors are implemented in transform-executor.ts.

As explained in section 4.6 we will use Polars expressions to execute transforms.

38

5. Implementation

def doExecuteTransform(variableToColumnName, context):
inputDetails = this.getInputDetails()
outputDetails = this.getOutputDetails()
this.addInputColumnsToContext(

inputDetails,
variableToColumnName,
context.evaluationContext

)

try:
expr = jayveeExpressionToPolars(

this.getOutputAssignment().expression,
context.evaluationContext

)
except Error:

return

targetPolarsDataType =
outputDetails.valueType.toPolarsDataType()↪→

This casts the type of the resulting column to the type
defined for the output.↪→

expr = expr.cast(targetPolarsDataType)

return expr

Listing 6: Pseudocode of the method doExecuteTransform(...).

5.7.1 PolarsTransformExecutor
Subsection 5.6.1 describes, how a transform’s variable input name is linked with a
Polars expression representing the corresponding column. addInputColumnsTo c

Context(...) adds these links to the evaluation context (see Figure 4.22), which
allows them to be used when evaluating the transform’s expression.

The transform executor has to ensure, that the computed column has the correct
ValueType. To this end, the method doExecuteTransform(...) converts this
target ValueType to a target DataType and appends cast(target) to the Polars
expression (see Listing 6).

Figure 5.2 contains a visualization of the calls between PolarsTableTransformer c

Executor and PolarsTransformExecutor.

39

5. Implementation

:PolarsTableTransformerExecutor

:PolarsTableTransformerExecutor

:PolarsTransformExecutor

:PolarsTransformExecutor

execute(inputTable, context)

executeTransform(
columns,
context
)

jayveeExpressionToPolars(
jayvee expression
)

expr: pl.Expr

expr.cast(pl.f64)

inputTable.withColumn(
expr.cast(pl.f64).alias(’out’)
)

Figure 5.2: Sequence diagram of the method calls between PolarsTableTrans c

formerExecutor and PolarsTransformExecutor.

40

5. Implementation

yes
expr is a variable

retrieve the value of expr from context

value has type InternalValueRepresentation
yes no

return pl.lit(value) return value

yes
expr is a literal expr is an operator

evaluate the value of expr

value === undefinedtrue false

return undefined return pl.lit(value)

obtain the fitting operator
evaluator

evaluate the Jayvee expression
to a Polars expression

return the Polars expression

Figure 5.3: Activity diagram of the function jayveeExpressionToPolars(c

...). expr represents the input Jayvee expression.

5.7.2 Expressions
As explainded in section 4.7, Jayvee expression are either literals, variables or op-
erators. The function jayveeExpressionToPolars(...), located in evaluate- c

expression.ts, transforms Jayvee expressions into Polars expressions depending
on this category (see Figure 5.3).

It utilizes an instance of the class EvaluationContext (Figure 4.22) to retrieve
a variable’s value, or to find an operator’s evaluator. pl.lit represents a value
literal that can be uses as a Polars expression. It is useful in expressions such as:

pl.lit(10).minus(pl.col("somecolumn"))

Operator evaluators

Table 7 contains a table linking every Jayvee operator with the Polars expression
it evaluates to. Many Jayvee operators have an equivalent Polars expressions.
For those that do not, we provide a list of explanations here:

xor Use a logically equivalent term comprised of the expressions and(...), or(c

...) and not().

sqrt Use the mathematically equivalent expression pow(1/2).

round Polars’ expression round expects the number of digits after the comma
as a parameter. In order to remain compatible with the TypeScript imple-
mentation, this number is set to 0.

41

5. Implementation

transform tr {
from x oftype integer;
from y oftype integer;
to z oftype decimal;
z: x + y;

}
block B oftype TableTransformer {

inputColumns: ['a', 'b'];
outputColumn: 'c';
uses: tr;

}

Listing 7: A Jayvee snippet defining a block with type TableTransformer and
its transform

There are also Jayvee operators that are not supported by the new implementa-
tion:
root, pow, replace, matches The Polars expressions for these operators ex-

pect single values and do not support columns as parameters.
asBoolean Polars supports converting between strings and numeric types with

the expression cast(...). This approach is not supported for booleans
(Polars Contributors, n.d.-a).

The sequence diagram in Figure 5.4 depicts, how the block B from Listing 7 would
execute its transform.

5.8 SQLiteLoaderExecutor
SQLiteLoaderExecutor is implemented in sqlite-loader-executor.ts.

The method executeLoad(...) provides a general implementation that works
for the both classes TsTable and PolarsTable, because it uses the abstract Table
class’ methods to generate SQL queries. These methods are:

• Table.generateDropTableStatement(...)

• Table.generateCreateTableStatement(...)

• Table.generateInsertValuesStatement(...)

PolarsSQLiteLoaderExecutor and TsSQLiteLoaderExecutor do not override
this default implementation.

42

5. Implementation

:PolarsTableTransformerExecutor

:PolarsTableTransformerExecutor

:PolarsTransformExecutor

:PolarsTransformExecutor

:EvaluationContext

:EvaluationContext

:AdditionOperatorEvaluator

:AdditionOperatorEvaluator

execute(inputTable, transform)

executeTransform({
x: pl.col(’a’),
y: pl.col(’b’)
})

map x to pl.col(’a’)

map y to pl.col(’b’)

evaluate x + y

get x

pl.col(’a’)

get y

pl.col(’b’)

pl.col(’a’)
.add(pl.col(’b’))

pl.col(’a’)
.add(pl.col(’b’))
.cast(pl.f64)

inputTable.withColumn(
pl.col(’a’)
.add(pl.col(’b’))
.cast(pl.f64)
.alias(’c’)
)

Figure 5.4: The method calls relevant to transforming a table.

43

5. Implementation

The subclass RustSQLiteLoaderExecutor overrides the method executeLoad(c

...). Its implementation writes the table to dataframe.arrow (the .arrow ex-
tension is recommended by the Arrow specification (The Apache Software Foun-
dation, n.d.-b)), using PolarsTable’s writeIpcTo(...) method. Then it calls
the loadSQLite(...) function implemented in sqlite-loader-lib.

5.9 sqlite-loader-lib
The library sqlite-loader-lib is implemented in a new directory outside the Jayvee
repository. Attempts were made to implement sqlite-loader-lib within the Jayvee
repository. Regrettably, these efforts were unsuccessful. The reason for this is,
that interpreter’s build system was unable to integrate with NAPI-RS.

NAPI-RS Contributors (n.d.-b) provide simple setup instructions for a library
built with NAPI-RS. lib.rs contains the functionality. To compile the library,
the CLI command:

npm run build

is executed.

As described in subsection 4.5.6, sqlite-loader-lib only exposes the function load c

Sqlite(...) (see 5.5). Due to the experimental nature of this library, we do not
implement complex error recovery. When an error occurs, it is used to construct
an instance of the napi::Error struct. NAPI-RS can convert this instance into
an Error object usable by TypeScript.

subsection 4.5.6 describes, why tables cannot be passed to sqlite-loader-lib as
function parameters. This also applies to Jayvee’s class Logger, meaning it is
inaccessible from the Rust library. As an alternative, log messages are printed
using the Rust macro println!(...), which is similar to TypeScript’s console c

.log(...).

Integrating sqlite-loader-lib into the interpreter

sqlite-loader-lib is made available to the Jayvee interpreter by the CLI command

npm install --save <PATH TO sqlite-loader-lib>

The Jayvee interpreter’s build process includes merging the entire source code
into a single file. This is not feasible, given that the library is only accessible to
the build process as a binary file, rather than as source code.

In order to instruct the build process to exclude sqlite-loader-lib from the final
source code file, we append the string "sqlite-loader-lib" to the JSON array
targets.build.options.external inside the files listed in subsection C.2.

44

5. Implementation

Also ensures the table data
is available on disk. Open the Arrow IPC file

Open a connection to
the SQLite database

Drop the table from
the database

yes
The dropTable block property is true

no

Create the table in
the database

Prepare the database connection
for appending to the table

Read an Arrow record batch from
the Arrow IPC file

Append record batch to the table

update the number of inserted lines

The Arrow IPC file is not read completely

Log number of inserted lines

Figure 5.5: The activity diagram of the function loadSqlite(...).

45

5. Implementation

46

6 Evaluation

The Evaluation will focus on the execution time of Jayvee pipelines, and how it
has changed due to the optimizations described in previous chapters.

6.1 Data source
Jayvee pipelines require a data input with the following requirements.

6.1.1 Requirements
CSV format The dataset has to be available in a CSV format, because the

interpreter can only create tables from CSV data.

openness The dataset must have a license compliant with the Open Definition
(Open Knowledge Foundation, n.d.-b). Open Knowledge Foundation (n.d.-
a) provides a list of recommended and compliant licenses.

6.1.2 Chosen dataset
The selected dataset is entitled ”Brewery Operations and Market Analysis” (Napa,
2023). The dataset does not contain real world data. The dataset is licensed
under the Open Data Commons Open Database License (ODbL). All data is
contained in a single CSV file, eliminating the need for table joins, which are not
supported by Jayvee.

Dataset biases

An examination of the dataset revealed no evidence of bias that would distort
the results.

47

6. Evaluation

6.2 Parameters
To measure the performance of the new implementation, the evaluation includes
the execution of the Jayvee interpreter with different configurations. A configu-
ration is characterized by the enabled optimizations, the amount of transforms
in the pipeline, and the number of rows in the input CSV file.

We define the following backends:

TS TypeScript. The baseline for the evaluation. The terms ”TS backend” and
”baseline” are used interchangeably.

PL Polars. Enables the Polars implementations of tables, columns, block execu-
tors and transforms.

PLOB Polars-One-Block. Enables PL, plus the LocalFileToTableExtractor
block (see subsection 4.5.3).

PLRS Polars-Rusqlite. Enables PL, plus the RustSQLiteLoaderExecutor ex-
ecutor and the sqlite-loader-lib library (see subsection 4.5.6).

PLOBRS Polars-One-Block-Rusqlite. Enables PL, plus LocalFileToTable c

Extractor, plus RustSQLiteLoaderExecutor.

This backend is not usable for every pipeline. For example, pipelines that
download files instead of reading a local one, it cannot use the block Local c

FileToTableExtractor. However, more blocks analogous to this one could
be created to be used in such cases.

We create three pipelines with the following amount of transforms:

none The pipeline does not transform the data.

some There are four transforms in the pipeline.

many There are eight transforms in the pipeline.

In the remainder of this chapter, the term ”some transforms” refers to the pipeline
with four transforms. Similarly, the term ”many transforms” refers to a pipeline
with eight transforms.

We set six values for the amount of input rows: 56250, 112500, 225000, 4500000,
900000 and 1800000

A configuration picks one value from each category.

48

6. Evaluation

6.3 The evaluation tool
In order to automate the execution of the Jayvee interpreter with the correct
configurations, a CLI program is created, the evaluation tool (see Figure 2).
The tool creates a list of all possible configurations and runs each of them 10
times, saving the execution duration. It also uses sqldiff CLI program (SQLite
Contributors, n.d.), to verify that the created databases are identical. Barton
(2022) provides example code, showing how to time execution duration in Rust.

6.3.1 Running a configuration
Running a configuration involves creating a source file with the correct amount
of lines, selecting the correct Jayvee source file, and passing the location of the
source and destination files as command line arguments.

The head CLI program outputs the first lines of a file (MacKenzie & Meyering,
2024). Except for the header line, one line in the CSV file represents one row of
data. Consequently, executing the CLI command

head --lines=<NUMBER_OF_ROWS + 1> brewery_data_all.csv >
l-<NUMBER_OF_ROWS + 1>.csv↪→

generates a CSV file with the requisite number of rows.

Given that there are three distinct numbers of transform amounts, three sepa-
rate Jayvee source files are created. For each of these, a variant incorporating the
LocalFileToTableExtractor block is required, resulting in a total of six. Fig-
ure 1 outlines the process by which the evaluation tool select the correct source
file.

The path of the CSV data source, as well as the path of the destination database,
are passed to the Jayvee interpreter via runtime parameters (JValue Contributors,
n.d.-d).

Given that the interpreter is required to be executed via a shell command, it
was determined, that shell commands would be preferred over libraries for other
functionality, such as comparing .sqlite files, or creating the input data files.

Listing 8 outlines the whole process of running a configuration.

6.3.2 Evaluation pipelines
This subsection describes the Jayvee pipelines that get executed during the eval-
uation.

49

6. Evaluation

:LocalFileExtractor

:TextFileInterpreter

:CSVInterpreter

:TableInterpreter

(a) TS

:LocalFileToTableExtractor

(b) PLOB

Figure 6.1: The initial section of Jayvee pipelines in Jayvee files starting with
TS or PLOB. Presents the block types and their associated IOType.

In total, there are six different pipelines, each with its own file. The pipelines
differ in two ways: how they extract the data from the data file and how many
transforms are in the pipeline. The former way is visualized in Figure 6.1, the
latter in Figure 6.2.

The following is an explanation of the transforms used inside the evaluation
pipelines.

AddColumnOne Adds a column filled with the value one.

BitPlusVol Adds a column containing the sum of the columns ”Bitterness” and
”Volume_Produced”.

UpdatePHLevel Multiplies the ”ph_Level” column by 10000.

SoldSqrt Adds a column containing the square root values of the ”Total Sales”
column.

The implementation of string operations, such as lowercase, was not completed
until after the conclusion of the evaluation process. Consequently, the aforemen-
tioned pipelines only contain numeric operations.

50

6. Evaluation

LiquorLoader

(a) none

AddColumnOne

BitPlusVol

UpdatePHLevel

SoldSqrt

LiquorLoader

(b) some

AddColumnOne

BitPlusVol

UpdatePHLevel

SoldSqrt

AddColmumnOneDuplicate

BitPlusVolDuplicate

UpdatePHLevelDuplicate

SoldSqrtDuplicate

LiquorLoader

(c) many

Figure 6.2: The transform section of pipelines with none, some or many trans-
forms. The block types have been omitted for readability.

51

6. Evaluation

6.4 Maximum size of the input data
During the evaluation process, we encountered Jayvee interpreter crashes (see
Table 6). We observed, that reducing the size of the input file appeared to
prevent these crashes. We subsequently narrowed down the exact limit to a
range of 100000 lines, or 25 Megabyte (MB). This limit depends on the enabled
optimizations and the amount of transforms in the pipeline (see Figure 6.3).

Table 6 contains a table of maximum file sizes for each configuration and a snippet
of the crash’s error message. Because the biggest data input (1800000 rows)
exceeds the limits for pipelines with some or many transforms, we introduce a
seventh data input with 1300000 rows. The configurations with many transforms
will only process data inputs with 900000 rows or lower.

Based on our knowledge of the interpreter, the ”Invalid string length” error orig-
inates from a NodeJS limit on the maximum length of a string. The observation,
that the error occurs during the loading of the table into the SQLite database,
suggests, that the string limit may be exceeded during the generation of the SQL
queries.

The error message ”JavaScript heap overflow”, which also occurs is the SQLite c

Loader block, indicates that the heap can not contain the data and the SQL
queries.

The error message ”Cannot make a string longer than 0x1fffffe8 characters.” is
emitted, during the execution of a block with type TextFileInterpreter.

The PLOBRS backend processed 10000000 rows (2.5 Gigabyte (GB)) without
crashing.

Considering these results, we conclude, that enabling optimizations increases the
amount of data, that the Jayvee interpreter is able to process.

6.5 Execution Duration
In this section, we will compare the execution duration of the configurations
defined in section 6.2. We group the configurations based on the number of
transforms in the executed pipeline.

Figure 6.4, Figure 6.5 and Figure 6.6 illustrate the average execution time for
each backend. The precise numbers can be found in subsection A.1.

PL It is somewhat unexpected, that the PL backend performs worse than the
TS baseline twice. To investigate this, the debug outputs of both these
configurations (Table 2) were compared. It was observed, that the duration

52

6. Evaluation

none some many0.8

1

1.2

1.4

1.6

1.8

2

·106

amount of transforms

ro
w
s
in

th
e
in
pu

t
da

ta

input size limits

TS
PL

PLOB
PLRS

Figure 6.3: Maximum input sizes for each backend.

of the block LiquorLoader approximately doubled when the backend PL
was enabled. We determined this to be the cause of the worse performance.

We observed, that with no transforms, PL was 1.33 times slower than the
baseline TS. With some transforms, this factor decreased to 1.09. With
many transforms PL was 1.07 times faster than the baseline TS. This trend
suggests, that the Polars implementation of table transforms is superior to
the original TypeScript one.

PLOB The PLOB backend performs better than the baseline on all tested
pipelines and inputs. This indicates, that the block type LocalFileTo c

TableExtractor (subsection 4.5.3) is a more effective method of parsing
local CSV data, than the existing block types.

PLRS The PLRS backend also performs better than the baseline on all tested
pipelines and inputs. This is compelling evidence, that the combination of
the executor RustSQLiteLoaderExecutor and the library sqlite-loader-lib is
superior to the original implementation. Furthermore, PLRS outperforms
than PL in all tested situations. This means, that the external library is
more effective than the approach described in section 5.8.

PLOBRS The PLOBRS backend combines the optimizations from the PLOB
and PLRS backends, thereby achieving the highest processing speed.

Figure 6.7 shows the factor, by which PLOBRS is faster than the baseline.
The three curves are monotonously rising, which evidences the assertion,
that as the number of rows increases, the PLOBRS backend’s processing

53

6. Evaluation

speed compared to TS increases. Furthermore, it can be observed, that the
curve representing a pipeline with many transforms, lies above the curve
representing some transforms, which itself lies above the curve representing
no transforms. This evidence substantiates the claim, that the greater the
number of transforms in a pipeline, the faster the PLOBRS backend is in
comparison to the TS baseline.

Due to the fact, that the PLOB, PLRS, and PLOBRS backends have been demon-
strated to be faster than the TS baseline in all tested circumstances, we conclude
that they are successful optimizations. The PL backend can only be considered
an optimization, if the pipeline has sufficient transforms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0

0.5

1

1.5
·105

rows

tim
e
in

m
s

TS
PL

PLOB
PLRS

PLOBRS

Figure 6.4: no transforms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0

0.5

1

1.5
·105

rows

tim
e
in

m
s

TS
PL

PLOB
PLRS

PLOBRS

Figure 6.5: some transforms.

54

6. Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

0

0.5

1

1.5
·105

rows

tim
e
in

m
s

TS
PL

PLOB
PLRS

PLOBRS

Figure 6.6: many transforms.

0 0.5 1 1.5

·106

5

10

15

rows

T
S
/
PL

O
B
R
S

none
some
many

Figure 6.7: The processing speed of TS compared to PLOBRS.

55

6. Evaluation

6.6 Differences in the resulting tables
The backends PL, PLOB, PLRS and PLOBRS yield tables that differ from those
produced by the original implementation in two notable ways: floating point
numbers and rows with NULL.

6.6.1 Floating point values
During the evaluation process, it was observed, that seemingly random floating-
point numbers in the final tables exhibited slight discrepancies. To investigate
this phenomenon, a pipeline with some transforms and an input of 900000 rows,
was executed, once with the TS backend and once with the PL backend. The PL
backend was selected, because it includes the least amount of changes compared
to the baseline.

A comparison of the resulting tables revealed a total of 838 differing values, indi-
cating that one such value occurs approximately every 1074 rows. Additionally,
it was observed, that the differing values were confined to columns generated by
transforms. The value emitted by the Polars backend was found to deviate from
the value emitted by the TypeScript backend by an average of 8.53×10−9. This
led to the conclusion that there are discrepancies in the floating point opera-
tions implemented by TypeScript and Polars. However, the underlying cause and
potential solution to this discrepancy remain uncertain.

6.6.2 Rows including NULL

The original TypeScript implementation either discards rows containing NULL, or
replaces them with an empty string. This is inconsistent with the new imple-
mentation, which allows for NULL values in tables. While this issue has not been
resolved due to the time constraints of this thesis, but we are optimistic that it
can be addressed in the future.

6.7 Reevaluating the requirements
In order to evaluate the success of this thesis, it is necessary to revisit the defined
requirements and determine whether they have been met.

6.7.1 Functional requirements
interoperability The standardized Apache Arrow IPC format is used by Rust c

SQLiteLoaderExecutor and sqlite-loader-lib (see subsection 4.5.6). This
requirement is fulfilled.

56

6. Evaluation

columnar The class PolarsTable uses the Polars library, which implements the
Apache Arrow specification, a columnar format (see subsection 4.4.2). This
requirement is fulfilled.

feature toggle The implementation can be chosen with the interpreter’s CLI
flags --use-polars and --use-rusqlite (see subsection 5.4.1). This re-
quirement is fulfilled.

compatibility The electric vehicles example completes without errors. How-
ever, discrepancies still exist:

• Not all operators are supported by the new implementation (see Ta-
ble 7).

• It is not possible to convert every Jayvee ValueType to a Polars c

DataType, nor vice versa (see section 5.1).

• The tables produced by the new implementations are not consistent
with the old implementation (see section 6.6).

Consequently, this requirement remains unfulfilled.

modularization The Rust library sqlite-loader-lib is usable from TypeScript
through NAPI-RS (see subsection 4.5.6). This requirement is fulfilled.

extensibility RustSQLiteLoaderExecutor, using sqlite-loader-lib, exports a c

DataFrame into an SQLite database. Such functionality is not yet imple-
mented in Polars (see subsection 4.5.6). This requirement is fulfilled.

We conclude, that all functional requirements, except for compatibility, have been
met.

6.7.2 Non-functional requirements
performance The optimizations afforded by the new implementation enhance

processing speeds (see section 6.5) and the new implementation is capable
of processing more input data without crashing (see section 6.4). This
requirement is fulfilled.

code style npm run lint only throws errors for files out of the scope of this
thesis. Rust’s linter clippy and formatter rustfmt do not report any issues.
This requirement is fulfilled.

maturity This thesis implemented a prototype. This requirement is fulfilled.

We conclude, that all non-functional requirements have been met.

57

6. Evaluation

58

7 Conclusions

In this thesis, we created an alternative table implementation for the Jayvee
interpreter. This prototype is based on the Polars library. By using this library,
the prototype implements the Apache Arrow specification.

The strategy pattern is used, to allow for the original implementation to be
preserved alongside the implementation presented in this thesis. It also allows
the interpreter’s users to choose the implementation at runtime.

The external library sqlite-loader-lib was developed. This library implements
database functionality that is not present in Polars. sqlite-loader-lib was shown
to be more performant than the other approaches. However, we suspect, that an
implementation of database functionality within the Polars library, may poten-
tially be even more performant.

The new optimizations, enabled by the new implementation, were shown to in-
crease the maximum input size, 475 MB of the Jayvee interpreter. With all
optimizations enabled, the 2.5 GB evaluation dataset could be completely pro-
cessed.

We also demonstrated, that simply replacing the table implementation is not
enough to reduce the average duration of a pipeline. When more optimizations
were enabled, the new implementation was always faster than the old one. With
all optimizations enabled, the speedup factor was between 3.60 and 18.22. This
factor increased with a larger input and more pipelines.

Further work is required to address the identified compatibility issues. It is
believed that the remaining unsupported Jayvee operators can be implemented
and that NULL values can be handled appropriately. However, the cause and
potential solution for the seemingly random differences in floating-point numbers
remain unclear.

59

7. Conclusions

60

Appendices

61

Appendix A: Tables

A Tables

A.1 Evaluation results

Table 1: Average execution duration and standard deviation for a pipeline with
no transforms (10 repetitions).

rows TS PL PLOB PLRS PLOBRS
56250 3724 ms 4581 ms 2531 ms 3102 ms 1035 ms

43 ms 54 ms 35 ms 45 ms 24 ms
112500 6488 ms 8323 ms 4231 ms 5390 ms 1221 ms

80 ms 78 ms 52 ms 83 ms 29 ms
225000 12202 ms 16118 ms 7739 ms 10126 ms 1963 ms

174 ms 513 ms 69 ms 1148 ms 362 ms
450000 25701 ms 34125 ms 14976 ms 21270 ms 2740 ms

1305 ms 1314 ms 196 ms 1121 ms 608 ms
900000 47064 ms 63728 ms 30211 ms 37705 ms 4526 ms

696 ms 1157 ms 533 ms 932 ms 1270 ms
1300000 68801 ms 93559 ms 42888 ms 54562 ms 6060 ms

1091 ms 823 ms 335 ms 1116 ms 1837 ms
1800000 96513 ms 139939 ms 64660 ms 74755 ms 8184 ms

1785 ms 9652 ms 4557 ms 7137 ms 2081 ms

Table 2: Average duration of the block LiquorLoader for a pipeline with no
transforms (10 repetitions).

rows TS PL PL / TS
56250 850 ms 1857 ms 2.18
112500 1892 ms 3677 ms 1.94
225000 3591 ms 7356 ms 2.05
450000 7341 ms 14549 ms 1.98
900000 14830 ms 30934 ms 2.09
1300000 22516 ms 46691 ms 2.07
1800000 24720 ms 61527 ms 2.49

63

Appendix A: Tables

Table 3: Average execution duration and standard deviation for a pipeline with
some transforms (10 repetitions).

rows TS PL PLOB PLRS PLOBRS
56250 4495 ms 4825 ms 2804 ms 3144 ms 1106 ms

88 ms 124 ms 97 ms 128 ms 108 ms
112500 8283 ms 8952 ms 4756 ms 5479 ms 1305 ms

187 ms 243 ms 175 ms 198 ms 143 ms
225000 15346 ms 16881 ms 8544 ms 9894 ms 1789 ms

563 ms 165 ms 106 ms 111 ms 286 ms
450000 32467 ms 36874 ms 16524 ms 21076 ms 2396 ms

1359 ms 2415 ms 164 ms 191 ms 90 ms
900000 60755 ms 67674 ms 33375 ms 37910 ms 4323 ms

581 ms 761 ms 389 ms 465 ms 804 ms
1300000 95102 ms 99959 ms 49007 ms 57910 ms 6252 ms

2985 ms 1243 ms 576 ms 2558 ms 1487 ms

Table 4: Average execution duration and standard deviation for a pipeline with
some transforms (10 repetitions).

rows TS PL PLOB PLRS PLOBRS
56250 5722 ms 5421 ms 3064 ms 3545 ms 1178 ms

206 ms 158 ms 46 ms 103 ms 22 ms
112500 11097 ms 10348 ms 5248 ms 5997 ms 1383 ms

450 ms 401 ms 84 ms 134 ms 36 ms
225000 18750 ms 17914 ms 9470 ms 10051 ms 1668 ms

155 ms 889 ms 87 ms 195 ms 35 ms
450000 38264 ms 35151 ms 18147 ms 24406 ms 2627 ms

992 ms 954 ms 537 ms 712 ms 111 ms
900000 81900 ms 72515 ms 35656 ms 38963 ms 4518 ms

1168 ms 2056 ms 2845 ms 1246 ms 1017 ms

64

Appendix A: Tables

Table 5: The result of the average execution time of TS divided by that of
PLOBRS.

rows no transforms some transforms many transforms
56250 3.60 4.06 4.86
112500 5.31 6.35 8.02
225000 6.22 8.58 11.24
450000 9.34 13.55 14.57
900000 10.40 14.06 18.22
1300000 11.35 15.22 -
1800000 11.80 - -

Table 6: Jayvee interpreter crashes.

configuration number of rows file size error message
TS-no 2000000 rows 500 MB Invalid string lenght.
TS-so 1400000 rows 350 MB JavaScrip heap overflow.
TS-ma 1000000 rows 250 MB JavaScrip heap overflow.
PL-no 1900000 rows 475 MB JavaScrip heap overflow.
PL-so 1900000 rows 475 MB JavaScrip heap overflow.
PL-ma 1800000 rows 450 MB Invalid string length.
PLOB-no 2000000 rows 500 MB Invalid string lenght.
PLOB-so 1800000 rows 450 MB Invalid string length.
PLOB-ma 1800000 rows 450 MB Invalid string length.
PLRS 2100000 rows 525 MB Cannot make a string longer than

0x1fffffe8 characters.

65

Appendix A: Tables

A.2 Other tables

Table 7: Jayvee operators and the Polars expressions they are transformed to.
a represents the first parameter, b the second, and c the third.

Jayvee operator Polars expression
a + b a.plus(b)
asText a a.cast(Text.toPolarsDataType())
asDecimal a a.cast(Decimal.toPolarsDataType())
asInteger a a.cast(Integer.toPolarsDataType())
a and b a.and(b)
ceil a a.ceil()
a / b a.div(b)
a == b a.eq(b)
floor a a.floor()
a >= b a.gtEq(b)
a > b a.gt(b)
a in b a.isIn(b)
a != b a.neq(b)
a <= b a.ltEq(b)
a < b a.lt(b)
lowercase a a.str.toLowerCase()
-a a.mul(-1)
a % b a.modulo(b)
a * b a.mul(b)
!a a.not()
a or b a.or(b)
+a a
round a a.round(0)
sqrt a a.pow(1/2)
a - b a.minus(b)
uppercase a a.str.toUpperCase()
a xor b a.and(b.not()).or(a.not().and(b))
asBoolean a unsupported
a matches b unsupported
a pow b unsupported
a replace b with c unsupported
a root b unsupported

66

Appendix A: Tables

Table 8: Source code references.

file name containing folder relative to the project root
electric-vehicles.jv example/
table.ts libs/execution/src/lib/types/io-types/
table-colummn.ts libs/execution/src/lib/types/io-types/
primitive-value-type-provider.ts libs/language-server/src/lib/ast/wrappers/value-type/primitive/
value-type.ts libs/language-server/src/lib/ast/wrappers/value-type/
typeguards.ts libs/language-server/src/lib/ast/expressions/
table-interpreter-executor.ts libs/extensions/tabular/exec/src/lib/
extension.ts libs/execution/src/lib/
FileToTableInterpreter.jv libs/language-server/src/stdlib/builtin-block-types/
file-to-table-interpreter-executor.ts libs/extensions/tabular/exec/src/lib/
LocalFileToTableExtractor.jv libs/language-server/src/stdlib/
local-file-to-table-extractor-executor.ts libs/extensions/tabular/exec/src/lib/
table-transformer-executor.ts libs/extensions/tabular/exec/src/lib/
transform-executor.ts libs/execution/src/lib/transforms/
evaluate-expression.ts libs/language-server/src/lib/ast/expressions/
sqlite-loader-executor.ts libs/extensions/rdbms/exec/src/lib/
lib.rs src/

Table 9: The type guard mechanism of each InternalValueRepresentation.

type mechanism
string typeof
number typeof
boolean typeof
RegExp instanceof
CellRangeLiteral langium generated type guard
ConstraintDefinition langium generated type guard
ValuetypeAssignment langium generated type guard
BlockTypeProperty langium generated type guard
TransformDefinition langium generated type guard
AtomicInternalValueRepresentation any of the above
InternalValueRepresentation[] Both Array.isArray(…) and the Internal-

ValueRepresentation type guard
InternalValueRepresentation Either AtomicInternalValueRepresenta-

tion or InternalValueRepresentation[]

67

Appendix B: Software bill of materials (SBOM)

B Software bill of materials (SBOM)

Table 10: SBOM.

name version used in url
nodejs-polars 0.11.0 jayvee https://www.npmjs.com/

package/nodejs-polars
arrow 51 sqlite-loader-lib https://crates.io/crates/

arrow
connector_arrow 0.4.2 sqlite-loader-lib https://crates.io/crates/

connector_arrow
napi 2 sqlite-loader-lib https://crates.io/crates/

napi
napi-derive 2 sqlite-loader-lib https://crates.io/crates/

napi-derive
napi-build 2 sqlite-loader-lib https://crates.io/crates/

napi-build
rusqlite 0.31.0 sqlite-loader-lib https://crates.io/crates/

rusqlite
package-template f653a34 sqlite-loader-lib https://github.com/

napi-rs/package-template
clap 4.5.7 evaluation tool https://crates.io/crates/

clap
itertools 0.13.0 evaluation tool https://crates.io/crates/

itertools
head 9.5 evaluation tool https://www.gnu.org/

software/coreutils/
sqldiff 3.46.0 evaluation tool https://sqlite.org/sqldiff.

html
texlive 2024.2 thesis document https://tug.org/texlive/
plantuml 1.2023.13 thesis document https://plantuml.com/

C Lists

C.1 Languages with Apache Arrow libraries
C++, C#, Go, Java, JavaScript, Julia, Rust, Swift, C, MATLAB, Python, R
and Ruby (The Apache Software Foundation, n.d.-a).

68

https://www.npmjs.com/package/nodejs-polars
https://www.npmjs.com/package/nodejs-polars
https://crates.io/crates/arrow
https://crates.io/crates/arrow
https://crates.io/crates/connector_arrow
https://crates.io/crates/connector_arrow
https://crates.io/crates/napi
https://crates.io/crates/napi
https://crates.io/crates/napi-derive
https://crates.io/crates/napi-derive
https://crates.io/crates/napi-build
https://crates.io/crates/napi-build
https://crates.io/crates/rusqlite
https://crates.io/crates/rusqlite
https://github.com/napi-rs/package-template
https://github.com/napi-rs/package-template
https://crates.io/crates/clap
https://crates.io/crates/clap
https://crates.io/crates/itertools
https://crates.io/crates/itertools
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://sqlite.org/sqldiff.html
https://sqlite.org/sqldiff.html
https://tug.org/texlive/
https://plantuml.com/

Appendix C: Lists

C.2 Configuration files modified to successfully build the
interpreter

• libs/interpreter-lib/project.json

• libs/extensions/std/exec/project.json

• apps/interpreter/project.json

• libs/extensions/rdbms/exec/project.json

69

Appendix D: Figures

D Figures

PLOB or PLOBRS enabled
yes TS, PL or PLRS enabled

plob-no.jv ts-no.jv

PLOB or PLOBRS enabled
yes TS, PL or PLRS enabled

plob-so.jv ts-so.jv

no transforms
yes

some transforms

PLOB or PLOBRS enabled
yes TS, PL or PLRS enabled

plob-ma.jv ts-ma.jv

many transforms

Figure 1: The process, by which the evaluation tool identifies the correct source
file.

70

Appendix D: Figures

start timer

Run Jayvee interpreter with the configuration

stop timer and save duration

not done
10 timesdone

Calculate average and
standard deviation

not done
For each optimizationdone

Print an error

yes
sqldiff reports differences

no

not done

For each combination of
rowcount and amount of transforms

done

Figure 2: The evaluation tool’s activity diagram. 71

E Listings

def run_config(interpreter_dir, rowcount, transforms, backend):
source = f"l-{rowcount}.csv"
run f"head --lines=${rowcount}

brewery_data_all.csv > {source}"↪→

source_file = ... # Omitted the source file
selection.↪→

destination =
f"{backend}-{transforms}-{rowcount}.sqlite"↪→

command = f"node dist/apps/interpreter/main.js
{source_file} -e SRC={source} -e SRC
{destination}";

↪→

↪→

if backend != "TS":
command += " --use-polars"

if backend == "PLOBRS" or backend == "PLRS":
command += " --use-rusqlite"

start = now()
execute(command)
duration = now() - start
return duration

Listing 8: Pseudocode illustrating the manner in which the evaluation tool
executes a configuration

72

References

Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., & Madden, S. (2013). The
design and implementation of modern column-oriented database systems.
Foundations and Trends® in Databases, 5(3), 197–280. https://doi.org/
10.1561/1900000024

Ahmad, T., Ahmed, N., Al-Ars, Z., & Hofstee, H. P. (2021). Optimizing perfor-
mance of gatk workflows using apache arrow in-memory data framework.
BMC Genomics, 21(10), 683. https://doi.org/10.1186/s12864-020-07013-y

Barton, C. (2022, January 4). How to benchmark programs in rust? Retrieved
August 9, 2024, from https://stackoverflow.com/a/40953863

Boncz, P. (2002, May). Monet: A next-generation database kernel for query-
intensive applications [Doctoral dissertation].

Dooley, J. F., & Kazakova, V. A. (2024). Design patterns. In Software devel-
opment, design, and coding: With patterns, debugging, unit testing, and
refactoring (pp. 275–311). Apress. https://doi.org/10.1007/979-8-8688-
0285-0_13

Eržen, A. M. (2024, June 20). Connector arrow. Retrieved August 8, 2024, from
https://crates.io/crates/connector_arrow

Floratou, A. (2019). Columnar storage formats. In S. Sakr & A. Y. Zomaya (Eds.),
Encyclopedia of big data technologies (pp. 464–469). Springer International
Publishing. https://doi.org/10.1007/978-3-319-77525-8_248

Gordon, C. S., Parkinson, M. J., Parsons, J., Bromfield, A., & Duffy, J. (2021).
Uniqueness and reference immutability for safe parallelism. SIGPLAN
Not., 47 (10), 21–40. https://doi.org/10.1145/2398857.2384619

Grossman, M., Poole, S., Pritchard, H., & Sarkar, V. (2022). Shmem-ml: Lever-
aging openshmem and apache arrow for scalable, composable machine
learning. In S. Poole, O. Hernandez, M. Baker & T. Curtis (Eds.), Open-
shmem and related technologies. openshmem in the era of exascale and
smart networks (pp. 111–125). Springer International Publishing. https:
//doi.org/10.1007/978-3-031-04888-3_7

JValue Contributors. (n.d.-a). Core concepts. Retrieved August 5, 2024, from
https://jvalue.github.io/jayvee/docs/user/core-concepts

73

https://doi.org/10.1561/1900000024
https://doi.org/10.1561/1900000024
https://doi.org/10.1186/s12864-020-07013-y
https://stackoverflow.com/a/40953863
https://doi.org/10.1007/979-8-8688-0285-0_13
https://doi.org/10.1007/979-8-8688-0285-0_13
https://crates.io/crates/connector_arrow
https://doi.org/10.1007/978-3-319-77525-8_248
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1007/978-3-031-04888-3_7
https://doi.org/10.1007/978-3-031-04888-3_7
https://jvalue.github.io/jayvee/docs/user/core-concepts

References

JValue Contributors. (n.d.-b). Jayvee. Retrieved July 13, 2024, from https ://
jvalue.com/jayvee

JValue Contributors. (n.d.-c). The jvalue project [Open data, easy and social].
Retrieved July 13, 2024, from https://jvalue.com/

JValue Contributors. (n.d.-d). Runtime parameters. Retrieved August 9, 2024,
from https://jvalue.github.io/jayvee/docs/user/runtime-parameters

MacKenzie, D., & Meyering, J. (2024, March). Head(1) [User commands]. Re-
trieved August 9, 2024, from https://man.archlinux.org/man/head.1

MDN Contributors. (2024a, May 31). The structured clone algorithm. Retrieved
August 4, 2024, from https://developer.mozilla.org/en-US/docs/Web/
API/Web_Workers_API/Structured_clone_algorithm#things_that_
dont_work_with_structured_clone

MDN Contributors. (2024b, July 30). Expressions and operators. Retrieved Au-
gust 14, 2024, from https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Expressions_and_operators#in

Napa, A. (2023). Brewery operations and market analysis. Retrieved July 12,
2024, from https : / /www . kaggle . com/datasets / ankurnapa /brewery -
operations-and-market-analysis-dataset/data

NAPI-RS Contributors. (n.d.-a). Napi-rs. Retrieved August 8, 2024, from https:
//napi.rs/

NAPI-RS Contributors. (n.d.-b). Napi-rs/package-template. Retrieved August 8,
2024, from https://github.com/napi-rs/package-template

Open Knowledge Foundation. (n.d.-a). Conformant licenses. Retrieved July 19,
2024, from http://opendefinition.org/licenses/

Open Knowledge Foundation. (n.d.-b). Open definition 2.1. Retrieved August 9,
2024, from https://opendefinition.org/od/2.1/en/

Peltenburg, J., van Straten, J., Brobbel, M., Al-Ars, Z., & Hofstee, H. P. (2021).
Generating high-performance fpga accelerator designs for big data analyt-
ics with fletcher and apache arrow. Journal of Signal Processing Systems,
93(5), 565–586. https://doi.org/10.1007/s11265-021-01650-6

Polars Contributors. (n.d.-a). Casting. Retrieved August 7, 2024, from https :
//docs.pola.rs/user-guide/expressions/casting/

Polars Contributors. (n.d.-b). Column selections. Retrieved August 6, 2024, from
https://docs.pola.rs/user-guide/expressions/column-selections/

Polars Contributors. (n.d.-c). Expressions. Retrieved August 3, 2024, from https:
//docs.pola.rs/user-guide/concepts/expressions/

Polars Contributors. (n.d.-d). Nodejs-polars/cargo.toml. Retrieved August 17,
2024, from https : / / github . com/pola - rs / nodejs - polars / blob /main /
Cargo.toml#L18-L21

Polars Contributors. (n.d.-e). Polars [Dataframes for the new era]. Retrieved July
31, 2024, from https://pola.rs/

Publications Office of the European Union, Page, M., Hajduk, E., Lincklaen Ar-
riëns, E., Cecconi, G., & Brinkhuis, S. (2023). Open data maturity re-

74

https://jvalue.com/jayvee
https://jvalue.com/jayvee
https://jvalue.com/
https://jvalue.github.io/jayvee/docs/user/runtime-parameters
https://man.archlinux.org/man/head.1
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm#things_that_dont_work_with_structured_clone
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm#things_that_dont_work_with_structured_clone
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm#things_that_dont_work_with_structured_clone
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_operators#in
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_operators#in
https://www.kaggle.com/datasets/ankurnapa/brewery-operations-and-market-analysis-dataset/data
https://www.kaggle.com/datasets/ankurnapa/brewery-operations-and-market-analysis-dataset/data
https://napi.rs/
https://napi.rs/
https://github.com/napi-rs/package-template
http://opendefinition.org/licenses/
https://opendefinition.org/od/2.1/en/
https://doi.org/10.1007/s11265-021-01650-6
https://docs.pola.rs/user-guide/expressions/casting/
https://docs.pola.rs/user-guide/expressions/casting/
https://docs.pola.rs/user-guide/expressions/column-selections/
https://docs.pola.rs/user-guide/concepts/expressions/
https://docs.pola.rs/user-guide/concepts/expressions/
https://github.com/pola-rs/nodejs-polars/blob/main/Cargo.toml#L18-L21
https://github.com/pola-rs/nodejs-polars/blob/main/Cargo.toml#L18-L21
https://pola.rs/

References

port 2023 (tech. rep.). Publications Office of the European Union. https:
//doi.org/doi/10.2830/384422

Shiran, T. (2019). It’s time to replace odbc & jdbc. Retrieved July 13, 2024, from
https://www.dremio.com/blog/is-time-to-replace-odbc-jdbc

SQLite Contributors. (n.d.). Sqldiff.exe [Database difference utility]. Retrieved
August 9, 2024, from https://sqlite.org/sqldiff.html

The Apache Software Foundation. (n.d.-a). Apache arrow overview. Retrieved
July 30, 2024, from https://arrow.apache.org/overview/

The Apache Software Foundation. (n.d.-b). Arrow columnar format. Retrieved
July 31, 2024, from https://arrow.apache.org/docs/format/Columnar.
html

The Apache Software Foundation. (n.d.-c). Implementation status. Retrieved July
14, 2024, from https://arrow.apache.org/docs/status.html

The Apache Software Foundation. (n.d.-d). Project and product names using
”apache arrow”. Retrieved July 14, 2024, from https ://arrow.apache .
org/powered_by/

75

https://doi.org/doi/10.2830/384422
https://doi.org/doi/10.2830/384422
https://www.dremio.com/blog/is-time-to-replace-odbc-jdbc
https://sqlite.org/sqldiff.html
https://arrow.apache.org/overview/
https://arrow.apache.org/docs/format/Columnar.html
https://arrow.apache.org/docs/format/Columnar.html
https://arrow.apache.org/docs/status.html
https://arrow.apache.org/powered_by/
https://arrow.apache.org/powered_by/

	Introduction
	The Jayvee language

	Literature Review
	Tabular data memory layout
	Apache Arrow
	Polars

	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Interpreter Overview
	General approach
	Possible implementations of Arrow

	Type conversion
	Creating a table implementation based on Polars
	Table
	PolarsTable
	TableColumn

	Adapting and creating block types
	TableInterpreter
	FileToTableInterpreter
	LocalFileToTableExtractor
	TableTransformer
	SQLiteLoaderExecutor
	sqlite-loader-lib

	Transforms
	Expressions
	Operator evaluators

	Implementation
	Type Conversion
	Conversion from DataType to ValueType
	Conversion from ValueType to DataType
	InternalValueRepresentation

	Table
	Implementation details

	TableColumn
	PolarsTableColumn

	New block executors
	Selecting the correct block executor
	TableInterpreterExecutor

	FileToTableInterpreter
	FileToTableInterpreterExecutor
	LocalFileToTableExtractor

	TableTransformer
	PolarsTableTransformer

	TransformExecutor
	PolarsTransformExecutor
	Expressions

	SQLiteLoaderExecutor
	sqlite-loader-lib

	Evaluation
	Data source
	Requirements
	Chosen dataset

	Parameters
	The evaluation tool
	Running a configuration
	Evaluation pipelines

	Maximum size of the input data
	Execution Duration
	Differences in the resulting tables
	Floating point values
	Rows including NULL

	Reevaluating the requirements
	Functional requirements
	Non-functional requirements

	Conclusions
	Appendices
	Tables
	Evaluation results
	Other tables

	Software bill of materials (SBOM)
	Lists
	Languages with Apache Arrow libraries
	Configuration files modified to successfully build the interpreter

	Figures
	Listings

	References

