
Framework Migration of a
Cloud-based Web App Backend

MASTER THESIS

Marco Martin Härtl

Submitted on 30 September 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Dr. Andreas Kaufmann

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 30 September 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 30 September 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Software undergoes an evolutionary process in which it adapts to changing re-
quirements and opportunities. This thesis exemplifies and actively shapes the
evolution of QDAcity, a cloud-based web application for qualitative data analysis
in research. One dimension of this evolution is the technology stack, which fre-
quently changes due to the rapid advancement in software development. New
or changing requirements, along with inadequate or missing maintenance of de-
pendencies, increase pressure on development teams. After about 10 years, it
became necessary to replace the existing backend framework of QDAcity because
support for the framework and the underlying cloud infrastructure was discontin-
ued. Thus, this thesis describes the migration of QDAcity’s backend framework
to a more modern and long-term supported solution, which also lays the found-
ation for restructuring the cloud infrastructure. The focus is particularly on
cost-sensitive preservation of all functionality of the web application and ensur-
ing non-functional requirements. The transition to a new backend framework
varies with each product and, therefore, requires a migration plan tailored to
QDAcity, which is presented here. Additionally, the outcomes of the software
architecture and technical design are presented and evaluated. Furthermore, the
opportunities for further modernization of the technology stack arising from the
migration are discussed.

iii

iv

Contents

1 Introduction 1
1.1 Product QDAcity . 1
1.2 Thesis Goals . 1
1.3 Thesis Type . 2
1.4 Thesis Structure . 2

2 Requirements 3
2.1 Functional Requirements . 3

2.1.1 API Specification . 4
2.1.2 API Security . 5
2.1.3 API Client for Manual Testing 6

2.2 Non-Functional Requirements . 7
2.2.1 Technological Requirements 7
2.2.2 Quality Requirements . 8

3 Architecture 11
3.1 Solution Strategy . 11

3.1.1 System QDAcity . 11
3.1.2 Legacy Technology Stack 12
3.1.3 Migrated Technology Stack 13
3.1.4 Migration Plan . 14
3.1.5 Incremental Development 15

3.2 Backend . 15
3.2.1 Layered Backend Architecture 16
3.2.2 Spring Framework and Spring Boot 18
3.2.3 Spring Dependency Injection via IoC 18
3.2.4 Spring Web MVC . 19
3.2.5 Spring Security Filter Chain 20
3.2.6 OpenAPI Specification . 23
3.2.7 SwaggerUI and API Docs 23

3.3 Frontend . 24
3.3.1 Frontend Architecture . 25

v

3.3.2 Swagger Client . 26
3.4 Integration and Deployment . 26

3.4.1 Software Artifacts . 27
3.4.2 Cloud Infrastructure . 28
3.4.3 CI/CD Pipeline . 30

3.5 Technology Decisions . 31
3.5.1 Backend Framework . 31
3.5.2 Web Server as Servlet Container 33
3.5.3 API Client for Manual Testing 34
3.5.4 Frontend API Client . 35

3.6 Product Decisions . 36
3.6.1 Maven Multi-Module Setup 36
3.6.2 Authentication Providers 37
3.6.3 API Breaking Changes . 37
3.6.4 SwaggerUI Sub-Pages . 38

4 Design and Implementation 39
4.1 Backend . 39

4.1.1 Spring Boot Setup . 39
4.1.2 Web Server Configuration 41
4.1.3 Dependency Injection of Legacy Components 42
4.1.4 Exception Handling of Legacy Exceptions 43
4.1.5 Data Serialization for Compatibility 44
4.1.6 Authentication and Token Types 45
4.1.7 Endpoint Wrappers and Authorization 48
4.1.8 API Implementation and Specification 51

4.2 Frontend . 53
4.2.1 Swagger Client Setup . 54
4.2.2 Client Handling by QdacityApiClient 54
4.2.3 Client Execution by Promisizer 55
4.2.4 Endpoint Services . 56

5 Evaluation 59
5.1 Functional Requirements . 59

5.1.1 API Specification . 59
5.1.2 API Security . 60
5.1.3 API Client for Manual Testing 60

5.2 Non-Functional Requirements . 60
5.2.1 Technological Requirements 61
5.2.2 Quality Requirements . 61

6 Outlook 67
6.1 Future Work . 67

vi

6.1.1 Backend Build Optimization 67
6.1.2 Embedded Web Server . 68
6.1.3 Endpoint Wrappers Upgrade 69
6.1.4 API Adapters Excision . 69
6.1.5 Backend Modularization 70

6.2 Recommendations . 71
6.2.1 Endpoint Tests via Spring MockMvc 71
6.2.2 Authorization via Spring Security 72
6.2.3 Bean Validation via Spring and Hibernate 73
6.2.4 CES API Calls via Spring REST Clients 74

7 Conclusion 75

Appendices 77
A Endpoint Design and Implementation 79

A.1 Endpoint Processing Example 79
A.2 Endpoint Class Example 80
A.3 Endpoint Method Examples 81

B Endpoint Service Method Examples 82
C Performance Analysis . 83

C.1 CPU Utilization . 84
C.2 Memory Usage . 85
C.3 Response Count . 86
C.4 Response Latency . 87

References 89

vii

viii

List of Figures

2.1 FunctionalMASTeR template for functional requirements (SOPH-
ISTen, 2024) . 4

2.2 Custom template combining ConditionMASTeR, LogicMASTeR,
and EventMASTeR for requirement conditions (SOPHISTen, 2024) 4

2.3 PropertyMASTeR template for technological and quality require-
ments (SOPHISTen, 2024) . 7

3.1 UML component diagram of the QDAcity system 12
3.2 Partial UML component diagram of the QDAcity backend 16
3.3 Spring IoC Container receiving plain old java objects (POJOs) and

metadata to produce a fully configured system (Spring document-
ation) . 19

3.4 Spring WebApplicationContext inside DispatcherServlet contain-
ing Spring components (Spring documentation) 20

3.5 Spring SecurityFilterChains receiving requests from the FilterCha-
inProxy and DelegatingFilterProxy inside the FilterChain before
reaching the DispatcherServlet (Spring documentation) 21

3.6 Spring AuthenticationManager receiving an Authentication object
from the AbstractAuthenticationProcessingFilter and delegating it
to ProviderManagers and AuthenticationProviders for authentica-
tion (Spring documentation) . 22

3.7 Spring SecurityContextHolder containing the SecurityContext and
Authentication class (Spring documentation) 22

3.8 QDAcity SwaggerUI sub-page showing the DocumentEndpoint . . 24
3.9 Partial UML component diagram of the QDAcity frontend 25
3.10 UML-oriented manifestation diagram of the qdacity-api.war except

for the component mappings . 27
3.11 UML deployment diagram of QDAcity 29

4.1 UML class diagram of the authentication mechanism 46
4.2 UML class diagram of the QDAcity JWT header and payload . . 47
4.3 UML sequence diagram of the authentication mechanism 48

ix

4.4 UML class diagram of the document endpoint as an example . . . 49
4.5 QDAcity SwaggerUI operation window of insertDocument as an

example for manually testing and documenting the QDAcity API
operations . 53

4.6 UML activity diagram of the Promisizer logic 56

1 UML sequence diagram of the document endpoint as an example . 79
2 Metrics explorer window of the Google App Engine monitoring tool 83
3 Line chart visualizing the CPU utilization of QDAcity version 230

based on the Google Endpoints framework 84
4 Line chart visualizing the CPU utilization of QDAcity versions 231

to 236 based on the Spring Boot framework 84
5 Line chart visualizing the memory usage of QDAcity version 230

based on the Google Endpoints framework 85
6 Line chart visualizing the memory usage of QDAcity versions 231

to 236 based on the Spring Boot framework 85
7 Line chart visualizing the response count of QDAcity version 230

based on the Google Endpoints framework 86
8 Line chart visualizing the response count of QDAcity versions 231

to 236 based on the Spring Boot framework 86
9 Line chart visualizing the response latency of QDAcity version 230

based on the Google Endpoints framework 87
10 Line chart visualizing the response latency of QDAcity versions

231 to 236 based on the Spring Boot framework 87

x

List of Tables

3.1 Technology stack of new dependencies with the introduced versions 14
3.2 Comparison of Spring Boot and Dropwizard features based on

technologies according to the Spring and Dropwizard documenta-
tions . 32

3.3 Comparison of Spring Boot setups with Tomcat, Jetty, and Under-
tow according to some startup metrics collected via Spring Boot
Actuator (Baeldung article) . 33

3.4 Comparison of Spring Boot setups with Tomcat, Jetty, and Un-
dertow according to some benchmark metrics collected via Apache
Bench (Baeldung article) . 33

5.1 Evaluation of the functional requirements related to API responses 60
5.2 Evaluation of the functional requirements related to the API security 60
5.3 Evaluation of the functional requirements related to the API client

for manual testing . 60
5.4 Evaluation of the technological requirements 61
5.5 Evaluation of the quality requirements related to performance . . 62
5.6 Evaluation of the quality requirements related to compatibility . . 63
5.7 Evaluation of the quality requirements related to usability 64
5.8 Evaluation of the quality requirements related to reliability 64
5.9 Evaluation of the quality requirements related to security 64
5.10 Evaluation of the quality requirements related to maintainability . 65
5.11 Evaluation of the quality requirements related to portability . . . 65

xi

xii

Acronyms

API application programming interface

Auth authentication and authorization (no exact definition)

CaaS containers as a service

CD continuous delivery

CES Collaborative Editing Service

CI continuous integration

CPU central processing unit

CRUD create, read, update, delete

CSRF cross-site request forgery

DAO data access object

DB database

DevOps development and operations (no exact definition)

DI dependency injection

FRQ functional requirement

GAPI Google API

GCS Google Cloud Storage

Gen generation

HTML hypertext markup language

HTTP(S) hypertext transfer protocol (secure)

IaaS infrastructure as a service

ID identity

xiii

IoC inversion of control

ISO International Organization for Standardization

JAR Java archive

JSON JavaScript object notation

JSP Jakarta server pages

JWT JSON web token

JVM Java virtual machine

LTS long-term support

LDAP lightweight directory access protocol

MiB mebibyte

MVC model view controller

NPM Node package manager

OS operating system

PaaS platform as a service

PoC proof of concept

POJO plain old Java object

POM project object model

QDA qualitative data analysis

QRQ quality requirement

REST representational state transfer

SaaS software as a service

TLS transport layer security

TRQ technical requirement

UI user interface

UML unified modeling language

URL uniform resource locator

WAR web application archive

XML extensible markup language

YAML yet another markup language (no exact definition)

xiv

xv

xvi

1 Introduction

Software constantly evolves to meet changing needs and conditions. As new tech-
nologies emerge and requirements shift, software must adapt to stay relevant,
functional, maintainable, and secure. This ongoing process of software evolution
(Lehman, 1980) involves updating frameworks, tools, and infrastructure to ensure
that systems remain efficient, secure, and scalable in a rapidly changing environ-
ment. This thesis explores the challenges and strategies involved in migrating an
outdated backend framework to a modern solution, highlighting the importance
of maintaining core functionality while adapting to new technical demands. The
product QDAcity was chosen as an example of such a framework migration.

1.1 Product QDAcity

QDAcity1 [Q’dacity] is a powerful cloud-based web application tailored for qual-
itative data analysis2 (QDA), offering robust features such as interview analysis
and transcription via integrated speech-to-text software. Researchers can upload
relevant files, leverage analytic statistics, and benefit from automated evaluation
of the projects’ maturity to streamline their analysis. Designed for both indi-
vidual and collaborative group work, QDAcity allows users to efficiently manage
projects together, making it ideal for research teams working on shared data. The
tool also supports educational purposes, allowing instructors to organize courses
and offer practical exercises. With secured storage and backup, the platform
ensures data integrity while its cross-platform support allows for seamless access
without the need for installation.

1.2 Thesis Goals

The main goal of this thesis is the migration of the QDAcity backend from an out-
dated and no longer supported framework to a modern, powerful, and long-term

1https://qdacity.com
2https://qdacity.com/qualitative-data-analysis/

1

1. Introduction

supported framework. Moreover, this includes further technology changes in the
backend and frontend components and major system design refactorings. Unlike
the design, the QDAcity architecture, the system behavior, the application pro-
gramming interface (API), the integration, the deployment, and the surrounding
infrastructure should mostly remain unchanged. A very important aspect of this
work is the solution strategy with its migration plan, bridging the gap between
the legacy and the migrated state.

1.3 Thesis Type

The focus of this master thesis is on performing and presenting traditional en-
gineering work, which involves the design and implementation of software within
QDAcity as an example application. This so-called engineering thesis3 requires
the application of core engineering principles and technical expertise to develop
functional solutions. Through careful research, development, and analysis, the
thesis showcases the students’ ability to bridge theory with practical implement-
ation. This type of work not only highlights their skills in software engineering
but also their contribution to solving real-world engineering challenges.

1.4 Thesis Structure

The structure of the thesis starts with this introduction and proceeds with the
functional and non-functional requirements of the framework migration in chapter
2. Chapter 3 sketches the architecture of QDAcity, while chapter 4 gives insights
into the system design and the implementations, performed in the practical part
of this thesis. Finally, chapter 5 and chapter 6 present a critical review of the
solutions and tasks that remain, before drawing a final conclusion in chapter 7.

3https://oss.cs.fau.de/theses/structure-content/

2

2 Requirements

This chapter defines the functional (see chapter 2.1) and non-functional require-
ments (see chapter 2.2) of the backend framework migration. The structure
and wording of the requirements follow the MASTeR brochure (SOPHISTen,
2024), defining templates for requirements engineering. The following require-
ments present guidelines for the practical part of the thesis and objectives for the
evaluation in chapter 5.

2.1 Functional Requirements

This chapter describes the functional requirements of the migrated API and
backend configuration. Therefore, each requirement aligns with the Function-
alMASTeR template (SOPHISTen, 2024), which specifies a simple and precise
sentence order (see figure 2.1). The sentence starts with an optional condition in
the template structure of figure 2.2, while the second part is the declaration of
the system name, which should be unique. Next, a keyword is chosen from the set
of "shall", "should" or "will", which defines the legal obligation of the sentence.
Requirements with "shall" are musts, with "should" nice-to-have, and "will" is
optional. Requirements with "shall" are mandatory and must be fully imple-
mented. Requirements with "should", while not compulsory, represent wishes
and improve satisfaction if implemented. Requirements with "will" capture in-
tentions for future features and therefore are not necessary for this thesis. The
following part decides whether the functionality is an interface requirement, an
automatic system activity, or a user interaction based on the type of phrase that
is used (i.e., the phrases in figure 2.1 from top to bottom). At the end, the
sentence contains a process verb describing the function and an object.

The most important functional objective of a system migration is:

FRQ-1 As soon as the migration is completed, the new backend should provide
the user with the ability to use the web application as before.

Thus, the user should not even recognize the changes under the surface except
for some non-functional improvements.

3

2. Requirements

Figure 2.1: FunctionalMASTeR template for functional requirements (SOPH-
ISTen, 2024)

Figure 2.2: Custom template combining ConditionMASTeR, LogicMASTeR,
and EventMASTeR for requirement conditions (SOPHISTen, 2024)

2.1.1 API Specification

The following list contains all functional requirements of the QDAcity API.

FRQ-2 Each endpoint shall define a unique URL path mapping.

FRQ-3 Each endpoint shall define a unique group tag.

FRQ-4 Each endpoint operation shall define a unique operation ID.

FRQ-5 Each endpoint operation should define a summary containing the en-
dpoint tag and the endpoint operation ID.

FRQ-6 If authentication is required for an endpoint operation, the endpoint
operation shall define bearer authentication as a security requirement.

FRQ-7 If authentication is not required for an endpoint operation, the end-
point operation should define no authentication as a security requirement.

FRQ-8 Each endpoint operation shall define only one HTTP method.

FRQ-9 Each endpoint operation shall define a unique URL path mapping.

FRQ-10 Each endpoint operation shall accept only the defined path paramet-
ers, query parameters, headers, and the body from an HTTP request.

FRQ-11 If the result of an HTTP request is successful and has a valid content,
the endpoint operation shall return the HTTP response code 200 (OK) and
the HTTP response body.

4

2. Requirements

FRQ-12 If the result of an HTTP request is successful and has no content, the
endpoint operation shall return the HTTP response code 204 (No content)
and no HTTP response body.

FRQ-13 If a parameter or the body of an HTTP request is invalid, the end-
point operation shall return the HTTP response code 400 (Bad request) and
an error message in the HTTP response body.

FRQ-14 If the authentication result of an HTTP request is unauthenticated,
the endpoint operation shall return the HTTP response code 401 (Unauthor-
ized) and an error message in the HTTP response body.

FRQ-15 If the authorization result of an HTTP request is unauthorized, the
endpoint operation shall return the HTTP response code 401 (Unauthorized)
and an error message in the HTTP response body.

FRQ-16 If the mapping of an HTTP request to an endpoint operation is
not possible, the web server shall return the HTTP response code 404 (Not
found) and an error message in the HTTP response body.

FRQ-17 If the handling of an HTTP request is interrupted by an error, the
endpoint operation shall return by default the HTTP response code 500
(Internal server error) and an error message in the HTTP response body.

FRQ-18 If the result of an HTTP request is failed and has an error message,
the endpoint operation shall return this message in the HTTP response body.

2.1.2 API Security

The following list contains all functional requirements concerning the security
features of the QDAcity API.

FRQ-19 The backend shall be able to validate a JSON web token (JWT) sent
as a bearer token in the authorization header of an HTTP request.

FRQ-20 The backend shall be able to deliver a registered QDAcity ID token
for a login request with a valid Google ID token of a registered user account.

FRQ-21 The backend shall be able to deliver a registered QDAcity ID token
for a login request with a valid email and password of a registered user
account.

FRQ-22 The backend shall be able to deliver an anonymous QDAcity ID
token for a login request without any credentials.

FRQ-23 If access to an endpoint operation is allowed for Google ID tokens,
the backend shall be able to permit an HTTP request with a valid Google

5

2. Requirements

ID token of a registered user account.

FRQ-24 If access to an endpoint operation is allowed for registered QDAcity
ID tokens, the backend shall be able to permit an HTTP request with a valid
registered QDAcity ID token.

FRQ-25 If access to an endpoint operation is allowed for anonymous QDAcity
ID tokens, the backend shall be able to permit an HTTP request with a valid,
anonymous QDAcity ID token.

FRQ-26 If access to an endpoint operation is allowed without any tokens, the
backend shall be able to permit an HTTP request without any credentials
or tokens.

2.1.3 API Client for Manual Testing

The following list contains all functional requirements for an API client, which
allows the QDAcity team to test the QDAcity API manually.

FRQ-27 The API client for manual testing shall provide the developer with
the ability to prepare and send HTTP requests to the backend.

FRQ-28 The API client for manual testing shall provide the developer with
the ability to receive and inspect HTTP responses from the backend.

FRQ-29 The API client for manual testing should provide the developer with
the ability to use predefined structures of the HTTP request body.

FRQ-30 The API client for manual testing should provide the developer with
the ability to inspect the data models.

FRQ-31 The API client for manual testing should provide the developer with
the ability to acquire information about the endpoint operations.

FRQ-32 The API client for manual testing shall provide the developer with
the ability to authenticate and authorize HTTP requests.

FRQ-33 The API client for manual testing should provide the developer with
the ability to find endpoint operations via their operation ID.

FRQ-34 The API client for manual testing should provide the developer with
the ability to choose and display a specific endpoint.

6

2. Requirements

2.2 Non-Functional Requirements

After covering the functional requirements, this chapter presents the non-func-
tional requirements. These are divided into technological (see chapter 2.2.1) and
quality (see chapter 2.2.2) requirements. This distinction originates from the
MASTeR brochure (SOPHISTen, 2024), which also defines some more categor-
ies, not covered in this thesis. The technological and quality requirements use
the so-called PropertyMASTeR (see figure 2.3). Similarly to the functional re-
quirements, this template uses standardized keywords and phrases reducing the
uncertainty of misinterpretation and simultaneously sharpening the definition of
requirements.

Figure 2.3: PropertyMASTeR template for technological and quality require-
ments (SOPHISTen, 2024)

The PropertyMASTeR (SOPHISTen, 2024) starts with an optional condition in
the template structure of figure 2.2. The second building block defines the subject
of matter. Next, the legal obligation is specified by a keyword from the set "shall",
"should" or "will" and combined with a verb. At the end of the sentence, there
remains a property-value pair with a potentially optional qualifying expression
in between those two parts.

2.2.1 Technological Requirements

The technological requirements describe rules for the environment, quantity struc-
ture, interfaces, and components. In this context, the thesis uses only the envir-
onmental and interface-level requirements.

Environment

TRQ-1 The backend shall use the host platform Google App Engine Gen 2
with bundled Gen 1 services.

TRQ-2 The backend shall use the programming language Java version 8 for
compilation and version 17 at runtime for the Java virtual machine (JVM).

TRQ-3 The backend shall use the package manager Maven of major version
3.

7

2. Requirements

Interfaces

TRQ-4 The API of the backend shall be compliant with the API specification
standard OpenAPI version 3.0.

TRQ-5 The access control of the backend shall use the token format JWT.

2.2.2 Quality Requirements

The ISO 25010:20111 standard distinguishes between the product quality model
and quality in use. The latter interprets quality from the users’ point of view,
which is less applicable to APIs because the user certainly does not directly
interact with it. Apart from that, the product quality model describes quality
as a measurable characteristic of the software product. Therefore, the quality
dimensions of the ISO standard contain seven "true" non-functional categories
performance, compatibility, usability, reliability, security, maintainability, and
portability. The missing one would be functional suitability, which can be seen
as a part of functional requirements as it enforces the software to satisfy the real
functional needs of the user.

Performance

QRQ-1 The API client in the frontend shall cache the OpenAPI specification
until the API version changes.

QRQ-2 The web application hosted on App Engine shall not reach a CPU
utilization of more than 20%.

QRQ-3 The web application hosted on App Engine shall not reach a memory
usage of more than 600 mebibytes (MiB).

QRQ-4 The web application hosted on App Engine shall not reach a response
latency of more than 1s, at maximum 2s.

Compatibility

QRQ-5 Each endpoint operation should define its operation ID equal to the
operation name of the corresponding legacy endpoint operation.

QRQ-6 Each endpoint operation should define its URL path mapping equal
to the URL path mapping of the corresponding legacy endpoint operation.

QRQ-7 Each endpoint operation should define its HTTP method equal to the
HTTP method of the corresponding legacy endpoint operation.

1https://www.iso.org/standard/35733.html

8

2. Requirements

QRQ-8 Each endpoint operation should define its HTTP request parameters
equal to the HTTP request parameters of the corresponding legacy endpoint
operation.

QRQ-9 Each endpoint operation should define its HTTP request body equal
to the HTTP request body of the corresponding legacy endpoint operation.

QRQ-10 Each endpoint operation should define its HTTP response codes
equal to the HTTP response codes of the corresponding legacy endpoint
operation.

QRQ-11 Each endpoint operation should define its HTTP response body
equal to the HTTP response body of the corresponding legacy endpoint
operation.

QRQ-12 Each endpoint operation should define its required permissions equal
to the required permissions of the corresponding legacy endpoint operation.

Usability

QRQ-13 The API client for manual testing should provide local storage for
the ID token that is persistent across sub-pages and page reloads.

Reliability

QRQ-14 The web application hosted on App Engine shall allow a rollback to
an older app version as before with the legacy web application.

QRQ-15 The API of the backend should have an API version that is inde-
pendent of the app version.

Security

QRQ-16 The HTTP communication between API clients and the QDAcity
API shall ensure encryption via transport layer security (TLS).

QRQ-17 If data sent to an endpoint operation is confident, the endpoint op-
eration shall accept private data only via its HTTP request body.

QRQ-18 If an endpoint operation is permission-dependent, the endpoint op-
eration shall have permission control via the authorization mechanism.

QRQ-19 If the application host environment is a production App Engine in-
stance, the web application should set the lowest logging level to "info".

9

2. Requirements

QRQ-20 If the application host environment is a local devserver, a test App
Engine instance, or a pipeline job container, the web application should set
the lowest logging level to "debug".

QRQ-21 The backend should ensure that the number of vulnerable depend-
encies is equal to zero.

Maintainability

QRQ-22 The backend shall have an integration and deployment process that
is mostly automated and continuous via GitLab CI.

QRQ-23 The backend should reach a branch code coverage via tests of at
least 60%.

QRQ-24 The migration documentation should explain development-related
details in the GitLab Wiki.

QRQ-25 The migration documentation should explain project- or product-
related details in the GitLab Wiki.

QRQ-26 The migration documentation should explain each endpoint opera-
tion in the API client for manual testing.

QRQ-27 The migration documentation should explain the migration details
in this thesis.

Portability

QRQ-28 The web application hosted on App Engine shall possess an app
setup that is adaptable to native Google App Engine Gen 2 without bundled
Gen 1 services.

QRQ-29 The web application hosted on App Engine shall possess an app
integration that is adaptable to native Google App Engine Gen 2 without
bundled Gen 1 services.

QRQ-30 The web application hosted on App Engine shall possess an app
deployment that is adaptable to native Google App Engine Gen 2 without
bundled Gen 1 services.

10

3 Architecture

This chapter delineates the software architecture of QDAcity and provides a com-
prehensive overview of the fundamental system design, used technologies, pat-
terns, styles, and architectural decisions, that underpin the implementation. It
follows the overall structure of the arc421 template and thus encompasses the
solution strategy (see chapter 3.1) for the backend migration to a new technology
stack, the backend (see chapter 3.2) and frontend (see chapter 3.3) architecture
on a component level, the integration and deployment (see chapter 3.4) of the
project artifacts, and the architecture decisions (see chapters 3.5 and 3.6). It of-
fers a cohesive view of how these elements interact to achieve the intended system
objectives. Moreover, it establishes a clear understanding of the used components
and technologies, offering abstract and more detailed perspectives, which lay a
solid foundation for the subsequent chapter 4 about design and implementation.

3.1 Solution Strategy

The solution strategy outlines the general approach and provides a high-level
summary of the migration strategy, employed to address the primary require-
ments, both functional and non-functional. It serves as a guiding framework,
which influences the system’s structure and behavior, ensuring that the archi-
tecture effectively meets its intended goals. This chapter starts with a short
overview of the QDAcity system (see chapter 3.1.1), followed by a comparison of
the legacy and migrated technology stacks (see chapters 3.1.2 and 3.1.3). Lastly,
the chosen migration plan (see chapter 3.1.4) and the incremental development
approach (see chapter 3.1.5) cover the methodology of the migration process.

3.1.1 System QDAcity

The system QDAcity consists of three main components, a frontend, a backend,
and an additional service called Collaborative Editing Service (CES), as illus-
trated in figure 3.1. This component diagram and most following diagrams based

1https://arc42.org/overview

11

3. Architecture

on the unified modeling language2 (UML) distinguish four primary colors, blue
for the frontend, red for the CES, green for the added or migrated backend parts,
and orange for the legacy core of the backend. Beginning with the frontend, it
is a client-side web application that handles the user inputs and visualizes in-
formation via rendering an HTML document in the browser. The backend is
a server-side web service, which holds the most business logic and accesses the
data, stored in a database system (i.e., Google Datastore3). In between those two
modules, there is the CES. For some requests, it is a proxy between the frontend
and the backend, for others, it is a web service hosting the CES API. The API
can be accessed by the backend or frontend. The CES is used for retrieving and
storing data in Google Cloud Storage4 (GCS), concerning the collaborative work
of multiple users. Lastly, the frontend delivers a QDAcity user interface (UI) to
the user via a web client (i.e., the web browser).

Figure 3.1: UML component diagram of the QDAcity system

3.1.2 Legacy Technology Stack

The legacy QDAcity backend and frontend were hosted in a standard Java run-
time environment5 of Google App Engine Gen 2 with bundled Gen 1 services,
which are already deprecated. Hosting an application in a foreign cloud in-
frastructure like Google Cloud gains some provider-dependent services such as

2https://www.omg.org/spec/UML/
3https://cloud.google.com/datastore/docs/concepts/overview
4https://cloud.google.com/storage/docs
5https://cloud.google.com/appengine/docs/standard/java-gen2/runtime

12

3. Architecture

Google Datastore and Google Speech-to-Text6. The latter is a service converting
speech recordings to text transcripts. In addition, Google App Engine provides
a Jetty7 9 web server, which runs the servlets of QDAcity.

The legacy backend was based on the programming language Java 8 for compil-
ation, the JVM version 17 at runtime, and the Google Endpoints8 framework for
defining endpoints.

The legacy frontend was based on the programming language JavaScript ES6
and the React9 framework. Besides other dependencies, it contains Google API
(GAPI) Client10 for requesting the QDAcity API and Google APIs.

3.1.3 Migrated Technology Stack

The migrated technology stack (see table 3.1) of the QDAcity backend and fron-
tend still contains the Google App Engine Gen 2 with bundled Gen 1 services
because the legacy backend framework is not compatible with the native Google
App Engine Gen 2, but was necessary for the migration process (see chapter
3.1.4). Moreover, every used Google service and the Jetty 9 web server remain
the same.

The migrated backend is also based on Java 8 (and JVM 17), but on the Spring
Boot11 2 framework. Due to the migration process, it was necessary to use the
older major version 2 of Spring Boot because it no longer supports Java 8 since
major version 3, which is a prerequisite to the legacy backend code. These out-
dated versions should be upgraded in a future migration task following the Spring
Boot documentation. The Spring Boot framework encapsulates some modules
such as Spring Boot Starter Web, Security, Jetty, and Test for future Spring-based
test suites (see chapter 6.2.1). Some of them contain vulnerable sub-dependencies,
which were explicitly analyzed and fixed. Another newly introduced dependency
is SpringDoc-OpenAPI12, which combines OpenAPI, SwaggerUI, and other Swag-
ger dependencies for specifying and documenting the QDAcity API. The added
Lombok13 dependency compiles its annotations to Java code and thus streamlines
the application code.

The migrated frontend is still based on JavaScript ES6 and React but contains
a new API client called Swagger Client14 (also known as SwaggerJS) to access

6https://cloud.google.com/speech-to-text
7https://jetty.org
8https://cloud.google.com/endpoints/docs/frameworks/java
9https://react.dev

10https://github.com/google/google-api-javascript-client
11https://docs.spring.io/spring-boot/index.html
12https://springdoc.org/v1/
13https://projectlombok.org
14https://www.npmjs.com/package/swagger-client

13

3. Architecture

the Spring Boot backend via the QDAcity API. This was essential because the
backend is no longer based on the Google Endpoints framework and therefore not
accessible via GAPI Client, which handles only APIs recognized by Google.

Technology Dependency Version
Spring Boot spring-boot-dependencies 2.7.18

SpringDoc-OpenAPI springdoc-openapi-ui 1.8.0
Lombok lombok 1.18.32

Swagger Client swagger-client 3.28.2

Table 3.1: Technology stack of new dependencies with the introduced versions

3.1.4 Migration Plan

The migration plan shown below describes the steps that were needed to mod-
ernize the backend framework.

1. Integration of the new backend framework

(a) Preparation of the backend project

(b) Adaptation of the authentication and authorization mechanism

(c) Integration of new API client for development

(d) Customization of the exception handling and data serialization

(e) Duplication of the endpoint classes (facade pattern)

(f) Completion of the web server configuration (including frontend host-
ing)

2. Switch of the frontend to the new API client

(a) Preparation of the frontend project

(b) Addition of a new central API client

(c) Migration of the endpoint services and hard-coded fetches

(d) Adjustment of the token handling to the new client

(e) Integration of response interceptors to adapt the responses

3. Extraction of the legacy backend framework

Step one integrates the Spring Boot framework in parallel to the remaining legacy
Google Endpoints framework. Therefore, it prepares the backend project initially
and incorporates increasingly more modules of Spring Boot via an incremental
approach. This includes adapting the backend security as authentication and

14

3. Architecture

authorization, integrating a new API client for developers, customizing Spring
Boot’s exception handling, duplicating the endpoint classes, and completing the
setup of the Jetty web server. The duplication of the endpoint classes follows a
pattern called facade (Gamma et al., 1994), where a new endpoint layer is added
in front of the existing API. This has the advantage that the legacy API remains
unchanged and thus the Spring Boot backend can be hosted separately during the
migration process. As another benefit, the Spring Boot endpoint classes must not
copy the logic but can reuse the code of the legacy endpoints by simply calling
the corresponding methods.

Step two integrates a new API client in the frontend called Swagger Client. It
enables the frontend to request the new Spring Boot backend while preserving
the ability to call the legacy backend via the GAPI client. At first, the frontend
project is prepared by installing the new package and introducing a new central
logic for using the client. After the initial setup, the incremental migration of
the endpoint services and hard-coded fetches takes place. In the end, the token
handling must be adjusted and the API responses need adapter solutions for
compatibility with the legacy data formats and structures.

Step three extracts the legacy Google Endpoints framework and cleans the project
of QDAcity. Most of the tasks are already done but are not explicitly described
in this thesis because these are mindless work.

3.1.5 Incremental Development

The development process during the migration process follows an incremental
approach. This means that all development tasks should be well structured into
smaller work packages. The changes for these work packages are then reviewed,
merged, deployed, and released regularly, i.e., weekly or at least monthly. Thus,
it prevents a big bang release, where all migration work would culminate in a
single delivery at the end of the process. This would come with the big risk of
breaking the deadline or delaying the migration. The incremental development
approach is therefore favored to minimize this risk.

3.2 Backend

This chapter presents a detailed examination of the QDAcity backend on an ab-
stract level. The architecture is designed to facilitate efficient, scalable, and se-
cure communication between client applications and the server, adhering to some
principles of representational state transfer15 (REST). By leveraging a stateless,
modular approach, the backend architecture ensures robust performance and ease

15https://restfulapi.net

15

3. Architecture

of maintenance. This chapter explores the core components and layers of the ar-
chitecture (see chapter 3.2.1), including their interactions and responsibilities.
Later on, it provides a detailed view of the technologies (see chapters 3.2.2 to
3.2.7) employed for the design and implementation part in chapter 4.1.

3.2.1 Layered Backend Architecture

The QDAcity backend builds on the well-known layered system architecture
(Richards, 2015) and divides the application into three main tiers. First of all,
the presentation layer contains the API and the endpoints. The following applica-
tion layer encapsulates the business logic and the persistence layer communicates
with the database system (in the fourth database layer), in this case, Google
Datastore.

Figure 3.2 contains these layers represented by the endpoint layer, the business
layer, and the data access layer components.

Figure 3.2: Partial UML component diagram of the QDAcity backend

The architecture of the QDAcity backend comprises a mix of newly introduced
components and legacy components with a clear focus on handling authentic-
ation, authorization, data access, and API communication. The green-colored

16

3. Architecture

components represent the new additions to the QDAcity API module, while the
orange-colored ones signify the legacy components that continue to provide found-
ational services.

At the core of the backend is the filter layer, which serves as an entry point for
requests. As requests pass through this layer, the system filters them based on
predefined rules or conditions. The authentication component plays a critical
role at this point, as it ensures that the incoming requests are authenticated by
validating the identity of the user or system making the request. If an issue arises,
the exception handling component is responsible for capturing and managing any
errors or exceptions, preventing them from propagating further.

Once authentication is successful, the request is passed to the token validation
component, which is a part of the legacy system. This component ensures that
the request includes a valid token, verifying that the token is both legitimate and
still in effect. After token validation, control is handed over to the data access
layer, which facilitates access to the underlying data by ensuring that the backend
can retrieve or modify information as required by the API calls.

On the side of request processing, the endpoint layer represents the interface
between the backend and various services. It works closely with the data map-
ping and data validation components to ensure that the data in the requests is
correctly interpreted and validated before being processed further. Data map-
ping is important for converting data between different formats, while validation
ensures that the data conforms to the required standards and rules.

The authorization component, a legacy component, plays a critical role in ensur-
ing that once the users are authenticated, they also have the correct permissions
to access the requested resources or perform specific actions. This is distinct from
authentication and involves verifying the users’ access rights and roles. After this,
the request is processed through the business layer, which holds the business logic
of the application, ensuring that the operations performed adhere to the system’s
core functionality and rules.

Finally, the CES API client is responsible for communicating with the CES. It
connects the backend to CES endpoints that the QDAcity backend might need
to interact with, facilitating communication and data exchange between these
systems.

In summary, the QDAcity backend architecture ensures that each request is thor-
oughly authenticated, authorized, and validated while handling data mapping
and access with a clear separation between new and legacy components. This
separation allows for a modular and maintainable system where new functional-
ity can be added without disrupting the existing legacy infrastructure.

The QDAcity backend combines multiple levels of abstraction via the internal

17

3. Architecture

structure, the Spring Boot framework, and the Jetty web server. However, more
details on the design and implementation of the QDAcity backend are covered in
chapter 4.1.

3.2.2 Spring Framework and Spring Boot

The Spring16 framework delivers a programming and configuration model for
enterprise applications based on the Java programming language. It easily integ-
rates with most of the surrounding technologies and the deployment environment,
so that the developers can focus on the business logic of applications.

Spring Boot17 and Spring are often used as synonyms but mean completely dif-
ferent things. While Spring is a generic framework for Java applications (as
described before), Spring Boot is a wrapper around the Spring framework. It
provides an opinionated configuration of Spring modules, which can be custom-
ized as needed. Furthermore, Spring Boot also imports and configures third-party
dependencies, which it considers necessary or valuable. These dependencies and
some Spring modules get combined into bigger Spring Boot Starter dependencies,
which function as bundles for specific requirements, use cases, or even application
types and are plug-and-play solutions. This "just run" fashion of an application
framework is the core objective of Spring Boot.

Whereas, the Spring framework provides core technologies as dependency injec-
tion via the IoC container and Spring beans (see chapter 3.2.3). In addition,
it is extended with valuable modules like Spring Web MVC (see chapter 3.2.4)
that enable developing web applications as the QDAcity backend. Furthermore,
Spring Security (see chapter 3.2.5) helps add authentication and authorization
to the application. This variety of Spring modules and core technologies com-
bined with the pre-configuration via Spring Boot is distinctive to most other Java
frameworks, as detailed in chapter 3.5.1.

3.2.3 Spring Dependency Injection via IoC

Spring implements a dependency injection mechanism, where components define
their dependencies via properties, constructors, or factory methods. The com-
ponents do not instantiate these dependencies because the Spring IoC container18

does it automatically during application start-up (see figure 3.3). The interface
called ApplicationContext is a representation of the inversion of control (IoC)
principle, which is the exact opposite of Spring beans19. It controls the instan-
tiation of these beans and the location of their dependencies. Whereas, beans

16https://spring.io/projects/spring-framework
17https://spring.io/projects/spring-boot
18https://docs.spring.io/spring-framework/reference/core/beans/basics.html
19https://docs.spring.io/spring-framework/reference/core/beans/definition.html

18

3. Architecture

directly construct instances (e.g., service locator pattern (Fowler, 2003)) and do
not rely on the application context via IoC.

Figure 3.3: Spring IoC Container receiving plain old java objects (POJOs) and
metadata to produce a fully configured system (Spring documentation)

In the Spring framework, these beans are configured Java-based via so-called con-
figuration classes or annotation-based via configuration metadata on the compon-
ent classes. Additionally, XML configurations (e.g., web.xml) or combinations of
both are also possible but less common. The IoC container scans the application
for bean metadata and thus creates the beans in the right order so that every
bean gets its dependencies first. After this context preparation, all beans are
available and the application is ready for use (see figure 3.3).

This dependency injection mechanism via IoC leverages the overhead for explicit
instantiation of components (i.e., beans) from the bottom upwards. Furthermore,
it helps decoupling bean creation from the actual business logic and reduces the
risk of duplicate instances from the same class. For web applications such as the
QDAcity backend, there also is a specialized variant of the ApplicationContext
interface called WebApplicationContext.

3.2.4 Spring Web MVC

Spring Web MVC20 is a submodule of the Spring framework for servlet-stack web
applications and thus a web framework. The name contains the term model view
controller (MVC), which describes a design pattern used to separate the model
(i.e., data), the view (i.e., UI or API), and the controller (i.e., logic). (Fowler,
2003) Spring MVC is based on the servlet API and deployed to servlet containers
as Jetty (or Tomcat). As many other frameworks, Spring MVC follows the front
controller pattern (Fowler, 2003), where a central servlet called DispatcherServlet
handles the request processing on a high level and delegates the actual work to
the components. The DispatcherServlet requires a WebApplicationContext as its
IoC container, which is automatically provided by Spring Boot (see figure 3.4).

Commonly, the whole Spring web application is structured into layers. These
represent at first a representation or boundary layer called the controllers, which

20https://docs.spring.io/spring-framework/reference/web/webmvc.html

19

3. Architecture

Figure 3.4: Spring WebApplicationContext inside DispatcherServlet containing
Spring components (Spring documentation)

define the API and thus build the front door of the application. Secondly, the
logic layer holds all the business logic in so-called services. Lastly, the persistence
layer called repositories stores and retrieves data with some kind of database. In
the context of the QDAcity backend, only the Spring controllers are used at the
moment and combined with legacy business logic and data access via Objectify21.

3.2.5 Spring Security Filter Chain

Spring Security22 is an authentication and access-control framework, which de-
livers authentication and authorization mechanisms and protection against ex-
ploits. It provides solutions for reactive and servlet23 applications like the QDA-
city backend.

Such applications receive their workload via a servlet mapping from the web
server and every request goes through multiple filters before reaching the applic-
ation itself. These filters contain the DelegatingFilterProxy loading filter beans
from the ApplicationContext and forwarding requests to them (see figure 3.5).
A specialized Spring filter is the FilterChainProxy, which manages all Security-
FilterChains, registered in the ApplicationContext. Most applications need more
than one SecurityFilterChain because different parts of an API require different
security configurations (e.g., with and without authentication). Thereby, the Se-
curityFilterChain contains filters for request mapping, different authentication
mechanisms (e.g., email-password, OAuth 2.0, SAML), authentication providers
(e.g., Google, Facebook, Twitter), and authorization mechanisms for accessing
the user data and checking permissions for certain requests. Additionally, some
security filters protect the application against cyber attacks such as the cross-site

21https://github.com/objectify/objectify/wiki
22https://spring.io/projects/spring-security
23https://docs.spring.io/spring-security/reference/5.7/servlet/architecture.html

20

3. Architecture

request forgery (CSRF) attack (Alexenko et al., 2010), where an attacker forces
the user to execute malicious operations in the authenticated environment.

Figure 3.5: Spring SecurityFilterChains receiving requests from the FilterCha-
inProxy and DelegatingFilterProxy inside the FilterChain before reaching the
DispatcherServlet (Spring documentation)

The architecture of the Spring authentication mechanism itself starts right at
the filter level. Figure 3.6 visualizes the role of the AbstractAuthenticationPro-
cessingFilter within the SecurityFilterChain. When a request is made, the filter
intercepts it and triggers the authentication process. The Authentication ob-
ject, which contains user credentials, is passed to the AuthenticationManager for
verification. If authentication fails, control is passed to the failure chain, where
multiple handlers process the failure response. In case of success, the flow pro-
ceeds with steps that include session management and notification mechanisms.

Figure 3.6 also presents the relationship between the ProviderManager and the
AuthenticationManager, which may delegate authentication requests to one or
more ProviderManager instances. Each ProviderManager contains a set of au-
thentication providers responsible for validating credentials against different data
sources or mechanisms (e.g., lightweight directory access protocol (LDAP), in-
memory, etc.). The ProviderManager instances are structured hierarchically un-
der a parent AuthenticationManager, ensuring flexibility and modularity in hand-

21

3. Architecture

ling various authentication scenarios.

Figure 3.6: Spring AuthenticationManager receiving an Authentication object
from the AbstractAuthenticationProcessingFilter and delegating it to ProviderM-
anagers and AuthenticationProviders for authentication (Spring documentation)

Figure 3.7 highlights the SecurityContextHolder, which plays a crucial role in stor-
ing security-related information. At the core of this object is the SecurityContext,
which contains the Authentication object. This object holds key data about the
user, including the principal (the authenticated user), credentials (in this con-
text a JWT), and authorities (the user’s roles or permissions). This structure
ensures that the current user’s authentication details are available throughout
the application and that authorization checks can be performed seamlessly.

Figure 3.7: Spring SecurityContextHolder containing the SecurityContext and
Authentication class (Spring documentation)

The QDAcity Backend uses multiple SecurityFilterChains for different authen-
tication configurations of certain endpoint classes. Some endpoint operations
omit authentication, while others, for example, require special authentication
providers. All endpoints requiring authentication verify the client’s rights via ID
tokens in the common JWT format. These tokens contain information about
the token type, the issuer, the authorization network, and much more. There
are three types of tokens, which are accepted. At first, QDAcity allows Google

22

3. Architecture

ID tokens, checks them via OAuth 2.0, and returns newly generated QDAcity
ID tokens, which are the second category and widely used in the application.
Lastly, the anonymous ID tokens issued by QDAcity also provide access to some
endpoint operations. This restriction of anonymous tokens on many endpoint
operations is already some sort of access control in the SecurityFilterChain but
on a very coarse level. The more precise authorization mechanism inside the
endpoint operations decides based on internal user data if necessary.

This hybrid solution for the QDAcity authorization guarantees back-compatibility
to the legacy access control while introducing the more Spring-conform design via
the SecurityFilterChain in the first step (see chapter 6.2.2).

3.2.6 OpenAPI Specification

The OpenAPI specification24 is a standardized description format for REST APIs.
It is independent of programming languages and frameworks and defined by the
OpenAPI Initiative25. These specifications are written in JSON or YAML, but
JSON is less resource-consuming as it allows removing unnecessary spaces, tabs,
and line breaks (unlike YAML) and thus compressing its size.

In the setting of QDAcity, a SpringDoc-OpenAPI plugin generates the OpenAPI
version 3.0 JSON based on the backend Java code during the Maven build process
and bundles it into the application. This generated specification acts as a formal
definition and documentation of the QDAcity API and its API versioning.

3.2.7 SwaggerUI and API Docs

The QDAcity backend also hosts a visual documentation UI called SwaggerUI26,
which is an HTML web page (see figure 3.8). This page contains multiple sub-
pages for every endpoint class of the backend and describes its methods in detail.
It, for example, lists the HTTP query parameters, the headers, the request body,
and the response code and body. In addition, the SwaggerUI provides a feature
allowing developers to try it without the need for writing any frontend client
code. They can execute requests on the QDAcity API with arbitrary inputs and
receive the corresponding responses without installation.

Swagger provides another feature called API docs, which are endpoints for down-
loading the underlying OpenAPI specifications. These endpoints allow filtering
for every defined group (set of endpoint operations) or a specific API version.

The SwaggerUI and API docs come with the SpringDoc-OpenAPI dependency
24https://swagger.io/docs/specification/about/
25https://www.openapis.org/about
26https://swagger.io/tools/swagger-ui/

23

3. Architecture

Figure 3.8: QDAcity SwaggerUI sub-page showing the DocumentEndpoint

and are mostly pre-configured. Therefore, the web page and endpoints produce
hardly any costs while helping developers understand the QDAcity API and its
behavior.

3.3 Frontend

This chapter provides a coarse software architecture of the QDAcity frontend,
focusing particularly on its interaction with the backend through Swagger Client.
The architecture is designed to deliver a responsive and dynamic user experi-
ence, utilizing React’s component-based structure to manage the user interface
efficiently. Data retrieval from the backend is handled via Swagger Client. This
technology ensures consistent and reliable communication between the frontend
and backend, facilitating the exchange of data necessary for the application’s
functionality. The chapter details the key architectural components (see chapter
3.3.1) and the integration of Swagger Client (see chapter 3.3.2), highlighting how
these elements work together to achieve a robust and maintainable frontend ar-
chitecture.

24

3. Architecture

3.3.1 Frontend Architecture

The architecture for the QDAcity frontend involves several distinct components
interacting to manage API requests and responses with a focus on handling tokens
and interfacing with the QDAcity API (see figure 3.9).

Figure 3.9: Partial UML component diagram of the QDAcity frontend

At the top of this architecture, the app component layer contains the React
components and functions as the primary initiator for API interactions. When
an API call needs to be made, this component communicates with the endpoint
service layer, which acts as a bridge between the application and the various other
components involved in preparing and handling API requests. The endpoint
service layer is responsible for ensuring that the necessary steps for preparing
the requests and handling responses are correctly managed, ensuring smooth
communication with the QDAcity backend.

The request preparation component, connected to the endpoint service layer,
plays a crucial role in constructing API calls. This component ensures that re-
quests are formatted correctly, taking necessary parameters, headers, and authen-
tication requirements into consideration before an API call is dispatched. After
the request is prepared, the QDAcity API client component, which holds the
Swagger Client, performs the actual communication with the QDAcity backend.

Once the backend has responded to a request, the response handling compon-
ent takes over, processing and interpreting the incoming response data. This
component ensures that the data is correctly parsed and any potential errors
are managed before the response is passed back to the app component layer for
further use within the application.

25

3. Architecture

A notable feature in this architecture is, how tokens are managed. The token
handling component is dedicated to fetching and managing authentication tokens.
It communicates with the endpoint service layer to retrieve tokens when needed
and ensures that the API requests include the correct authorization header value.
Therefore, the token handling component sets the token directly within the QDA-
city API client, ensuring that each outgoing request is authenticated before being
sent to the backend.

Thus, the architecture is structured to manage both the flow of data between the
QDAcity frontend and backend and the crucial task of token-based authentica-
tion.

3.3.2 Swagger Client

Swagger Client is a Node package of the QDAcity frontend that fetches and re-
solves the OpenAPI JSON for interactions with the QDAcity API. It is called
a dynamic client because it does not directly implement a JavaScript function
for each endpoint method, but rather gathers the logic from the OpenAPI spe-
cification. This generic API client utilizes information about the request URL,
parameters, body, authentication, and authorization for its generic client imple-
mentation at runtime. Therefore, Swagger Client does not support strictly typed
response bodies, which is compatible with the legacy QDAcity frontend, as it did
not implement explicit types before the migration.

There are several different programming styles available for the SwaggerClient
class. It allows directly using its static functions for preparing and executing
requests, but it also provides the possibility to use an instance of SwaggerClient.
Thus, the QDAcity frontend uses the instance version for sharing one QDAcity
API client across the whole web application.

Furthermore, the frontend structures the API operations via endpoint services
analogous to the backend. After calling the backend, these services handle the
responses by another central logic, as before with GAPI Client. This logic needed
a complete refactoring for the new API client (see chapter 4.2).

3.4 Integration and Deployment

This chapter provides a comprehensive overview of the deployment process for
the software artifacts at an architectural level. It details how the system compon-
ents are packaged (see chapter 3.4.1), distributed, and deployed across various
environments (see chapter 3.4.2). The deployment strategy is designed to ensure
seamless integration, scalability, and reliability with an emphasis on automating
and streamlining the process through the use of modern DevOps practices and

26

3. Architecture

tools (see chapter 3.4.3). The chapter offers a clear understanding of how the
architecture supports efficient and consistent deployment across different envir-
onments.

3.4.1 Software Artifacts

The components of QDAcity map to the corresponding software artifacts as il-
lustrated through their colors in the manifestation diagram of figure 3.10.

Figure 3.10: UML-oriented manifestation diagram of the qdacity-api.war except
for the component mappings

The provided diagram represents the structure of the qdacity-api.war artifact,
which is a web application archive (WAR) file used to package the QDAcity
backend and frontend for the deployment (see next chapter 3.4.2). The diagram
outlines the different files, folders, and libraries, which make up this WAR file.
At the highest level, the qdacity-api.war archive includes several folders and files.

The folders "assets", "css", and "js", which are typical in web applications, con-
tain various static resources (e.g., images, style sheets, and JavaScript files), which

27

3. Architecture

are utilized by the QDAcity frontend. Moreover, the label "etc." indicates that
more specific files would be present inside these directories, but are not visualized.

The core of the QDAcity backend is found within the WEB-INF folder, which
is a standard WAR directory for holding configuration files and resources, which
should not be directly accessible via the web. Within WEB-INF, there are two
key sub-directories, "lib" and "classes". The lib folder contains Java libraries,
which the application depends on. An example of these libraries is the qdacity-
dependency.jar file, which provides the legacy QDAcity core module. Whereas,
the classes folder contains the compiled Java classes of the QDAcity-API mod-
ule based on Spring Boot. Inside this folder, there is a sub-directory named
"com.qdacity...", which represents the Java package structure of the QDAcity-
API module. Another file within the classes folder is the application.yml, which
holds configuration settings for the backend application.

Additionally, inside the WEB-INF folder, there are further important config-
uration files like the appengine-web.xml and web.xml. The appengine-web.xml
file is used for configuring applications that run on Google App Engine, while
web.xml defines servlet mappings, security settings, and other web application
configuration details.

Outside of the WEB-INF folder, the diagram depicts several other standalone
files within the root of the WAR archive. These include the 200.jsp, index.html,
openapi-vX.json, and sw.js. The 200.jsp file is a Jakarta server pages (JSP)
file used to dynamically generate HTML content. The index.html file serves
as the main entry point for the web application, while the openapi-vX.json file
represents an OpenAPI 3.0 specification, which defines the API endpoints of
QDAcity. Lastly, the sw.js file is the service worker script, which controls the
caching and background tasks of the frontend.

In summary, the manifestation diagram represents the contents and structure of
the qdacity-api.war file, detailing its resources, configuration files, libraries, and
classes that enable together the deployment and functionality of the QDAcity
frontend and backend.

3.4.2 Cloud Infrastructure

As already mentioned, QDAcity deploys to the Google App Engine Gen 2 stand-
ard environment for Java with deprecated Gen 1 services but aims a migration
to native App Engine Gen 2 in the future (see chapter 6.1.2). However, the CES
deploys to the Google Cloud Run27 environment, which is an alternative solution
to App Engine for container-based applications.

27https://cloud.google.com/run/docs/overview/what-is-cloud-run

28

3. Architecture

Figure 3.11: UML deployment diagram of QDAcity

According to Google Cloud28, operations experts distinguish three cloud com-
puting service models called infrastructure as a service (IaaS), platform as a
service (PaaS), and software as a service (SaaS). These service models differ in
their depth of service level. IaaS provides a managed infrastructure containing
virtualization and the underlying hardware while a sub-category of IaaS called
containers as a service (CaaS) delivers an operating system (OS) for containers on
top (e.g., Docker29). PaaS automates some parts of the build and deploy process
via additional runtime services and SaaS provides a fully configured application
(e.g., QDAcity), including the code itself. The Google App Engine30 is a PaaS
model because its standard environment runs Java applications automatically
on its internal OS platform and delivers runtime services. Whereas, the Google
Cloud Run environment is classified as a CaaS solution.

QDAcity uses the cloud services Google Datastore as its database system, Google
Logging, Google Metrics, and many more. It also configures a local devserver
and different instance classes31 of the Google App Engine for the testing and
production stages. For example, all students working on QDAcity get their own
App Engine instance of class F1, which scales automatically and prevents most

28https://cloud.google.com/learn/paas-vs-iaas-vs-saas
29https://www.docker.com
30https://cloud.google.com/appengine/docs/standard
31https://cloud.google.com/appengine/docs/standard#instance_classes

29

3. Architecture

costs. Whereas, the production stage uses a paid variant like B2, which provides
manual scaling and more virtual resources while it preserves the low costs of the
legacy backend.

Lastly, the before mentioned (see chapter 3.4.1) artifacts are all, except the CES
bundle, packaged into the final QDAcity-API WAR and deployed to the App
Engine standard environment as seen in figure 3.11. The CES bundle is packaged
into a Docker image, executed as a Docker container via Cloud Run, and uses
the mentioned Google Cloud Storage (see chapter 3.1.1).

3.4.3 CI/CD Pipeline

QDAcity versions its code base via Git on GitLab32 and additionally uses the
so-called GitLab CI33. This is a tool for continuous integration and continu-
ous delivery34 (CI/CD), which regularly integrates, delivers, and even deploys
the QDAcity application and triggers itself automatically for every commit and
merge.

The CI/CD pipeline of QDAcity is based on the GitLab CI and has four major
stages. At first, it builds the project artifacts, secondly tests the code, then
deploys the current build to a configured test environment, and finally releases a
new version to production. Of course, not every triggered pipeline run performs
the whole procedure, but rather skips the deployment for feature branches and
disables releases in the fork projects for students. Moreover, most jobs of each
stage work in a parallel setup while the stages mostly imply a sequential order.

Starting with the backend build job, on the one hand, the pipeline configures the
QDAcity backend via Gulp35 and executes the Maven build process. The frontend
build procedure, on the other hand, combines multiple jobs. At first, it packages
an abstract frontend bundle. This intermediate variant is used by several test jobs
and later in the test stage interpolated with a production configuration, resulting
in an environment-specific bundle. The deploy job lastly copies the bundle to the
final WAR artifact containing the QDAcity frontend and backend. Consequently,
the last missing job of the build stage bundles the CES separately.

The subsequent test stage runs the unit tests for the application components,
the frontend translation tests, Lighthouse36 tests for the UI, and the Selenium37

acceptance test. In addition to the tests, it also performs formatting checks,
linting, the aforementioned API configuration, and an API version check.

32https://gitlab.com
33https://docs.gitlab.com/ee/ci/
34https://about.gitlab.com/topics/ci-cd/
35https://gulpjs.com
36https://developer.chrome.com/docs/lighthouse
37https://www.selenium.dev

30

3. Architecture

At the end of the fully automated pipeline remains the deploy stage, which deliv-
ers the current QDAcity version to a configured test instance of the Google App
Engine. This test environment allows the product owners to check the application
manually as a last quality assurance.

The final release stage is only semi-automated because it requires a manual trig-
ger to deploy the application to the production environment. That enables the
developers to decide carefully if a release makes sense or even not.

All in all, the usage of an automated pipeline for development, testing, and
operation activities (i.e., DevOps tasks) ensures high-quality standards, running
software, and collaboration between many developers.

3.5 Technology Decisions

This chapter outlines the critical decisions made in the selection of technolo-
gies. It discusses the rationales behind choosing the Spring Boot framework
(see chapter 3.5.1), the Jetty web server (see chapter 3.5.2), the SwaggerUI (see
chapter 3.5.3), and the Swagger Client (see chapter 3.5.4) in detail, considering
factors such as performance, maintainability, and compatibility with existing sys-
tems. By documenting these decisions, this chapter provides transparency into
the architectural process, offering insights into how the chosen technologies ef-
fectively contribute to the overall system. All topics introduce the alternatives
and show their commonalities and differences with the selected variant.

3.5.1 Backend Framework

The most important question at the beginning of this thesis was, what framework
should QDAcity choose for its backend? There were two options discussed before
making the final decision which are presented in the following part.

The Dropwizard38 framework is a bundle of many renowned Java libraries in
the context of web applications, but it does not implement bigger solutions on
its own. However, it provides ready-to-run configurations reducing the time-to-
market and maintenance overhead. As described in chapter 3.2.2, Spring Boot
configures the Spring framework and other Spring modules by default resulting
in a production-ready setup. However, unlike Dropwizard, the Spring framework
and Spring modules implement their approaches, architectures, designs, and logic
for certain problems and additionally combine them with well-known libraries (see
table 3.2). They also support more options for the same feature and thus enable
their users to select the best fitting or most liked solution. For example, users

38https://www.dropwizard.io/en/stable/getting-started.html#overview

31

3. Architecture

can take the HTTP web server Jetty, Tomcat, Undertow, or many others.39 The
same holds for the logging of the application where Spring provides a so-called
commons logging bridge that recognizes Log4j or SLF4J API implementations in
its context or uses Java’s logging by default.40

Feature Spring Boot Dropwizard
HTTP Webserver Jetty, Tomcat, etc. Jetty
Web Framework Spring (Web) MVC Jersey
Auth Framework Spring Security Jersey Security

Dependency Injection Spring DI Eclipse’s HK2
JSON-Object Mapping Jackson Jackson

Data Validation Hibernate Validator Hibernate Validator
(Relational) DB Access Spring Data JDBI and Hibernate

Logging Log4j and SLF4J Bridge Logback (SLF4J)
Observability Micrometer Metrics

Table 3.2: Comparison of Spring Boot and Dropwizard features based on tech-
nologies according to the Spring and Dropwizard documentations

Unfortunately, the performance of these frameworks is not comparable in the
scope of this thesis, because both possess a high modularity of the dependencies
and an even higher flexibility in terms of their technology stacks. However, one
framework with different technology combinations allows performance comparis-
ons as described in the next chapter 3.5.2 about the web server decision.

The official documentation of Spring and Dropwizard are both well structured,
but Spring has many community pages such as Baeldung41, which deliver addi-
tional articles and tutorials for developers. This helps with learning the funda-
mentals of Spring Boot and setting things up.

According to GitHub42, Spring Boot has much more stars and forks, but both
release frequently. Additionally, Dropwizard heavily depends on third-party pro-
jects, which can affect the framework and thus the application as well. Whereas,
Spring Boot uses a lot of dependencies where many of them also are Spring
modules, which are patched frequently. Consequently, both frameworks deliver
long-term support, while Spring Boot depends less on third-party code.

All in all, Spring Boot covers more flexibility, the same or even more features,
and a much broader community than Dropwizard. Thus, Spring Boot was chosen

39https://docs.spring.io/spring-framework/reference/web/websocket/server.html#websocket-
server-deployment

40https://docs.spring.io/spring-framework/reference/core/spring-jcl.html
41https://www.baeldung.com
42https://github.com

32

3. Architecture

and the selected version 2.7.18 heavily depends on Java 8, as already described
in chapter 3.1.3.

3.5.2 Web Server as Servlet Container

The Spring Boot framework requires a servlet container, more commonly known
as a web server, in which it can run the DispatcherServlet (see chapter 3.2.4). It
supports many different web servers, which all implement the necessary Jakarta
specifications (e.g., Jakarta servlet).

A comparison of three selected Spring Boot servlet containers from Baeldung43

measures their performance and efficiency according to some startup and request
metrics against a Spring Boot setup (see tables 3.3 and 3.4). These three setups
with a Tomcat, Jetty, and Undertow web server perform comparably in all metrics
collected by the Spring Boot Actuator and Apache Bench. Jetty requires less
memory, loads fewer classes, and needs fewer threads than Tomcat and Undertow,
but all three are comparably efficient. However, Undertow can handle more
requests at the same time than Tomcat and Jetty, but no setup is clearly better.
These results refer to Spring Boot version 3.1.5 and recent webserver versions,
while the current setup of QDAcity contains an older Spring Boot 2.7.18 with
an older web server version (see chapter 3.1). However, QDAcity is aiming to
upgrade these technologies as part of the future switch to native App Engine
Gen 2 and the latest long-term support (LTS) version of Java.

Startup Metric Tomcat Jetty Undertow
jvm.memory.used (MB) 168 155 164

jvm.classes.loaded 9869 9784 9787
jvm.threads.live 25 17 19

Table 3.3: Comparison of Spring Boot setups with Tomcat, Jetty, and Undertow
according to some startup metrics collected via Spring Boot Actuator (Baeldung
article)

Benchmark Metric Tomcat Jetty Undertow
Requests per second 1542 1627 1650

Average time per request (ms) 6.483 6.148 6.059

Table 3.4: Comparison of Spring Boot setups with Tomcat, Jetty, and Undertow
according to some benchmark metrics collected via Apache Bench (Baeldung
article)

Furthermore, the configurations of these setups vary because Spring Boot ships
an embedded Tomcat web server by default, while Jetty and Undertow require

43https://www.baeldung.com/spring-boot-servlet-containers

33

3. Architecture

an explicit substitution of this dependency. In addition, Google App Engine
Gen 2 with bundled Gen 1 services provides a pre-configured and automatically
managed Jetty of version 9, which the legacy QDAcity application before used.
Therefore, it was possible to adapt the legacy configurations of this solution.
Although Google App Engine Gen 2 does not ship a Jetty webserver, it is possible
to switch to the embedded variant and the latest version in the future.

Even if Spring supports several web server implementations, they still differ in
their behavior or configuration for certain features. Therefore, the list is limited
to only three options that are fully compatible and open source. Each of these web
servers possesses over 1000 stars, more than 100 forks, and hundreds of versions
according to their GitHub repositories. Consequently, all options guarantee long-
term support and regular updates.

All in all, Jetty delivers a comparable or even better performance and efficiency
than Spring’s choice Tomcat and the alternative Undertow. QDAcity chose the
Jetty for the legacy setup and Google App Engine Gen1 services ship it. Thus,
the provided Jetty web server of version 9 was taken as the Spring Boot servlet
container for the QDAcity backend.

3.5.3 API Client for Manual Testing

The legacy QDAcity backend based on the Google Endpoints framework de-
livered automatically a so-called API explorer, which was hosted directly by the
App Engine. It allowed the developers to test the endpoint operations provided
by the QDAcity API. With the migration to the Spring Boot framework, this
comfortable tool was lost and needed a successor.

In the context of Spring, there are many possibilities, but the evaluation of pos-
sible options was limited to Postman44, Insomnia45, and SwaggerUI as common
representatives. Postman and Insomnia are local client applications for testing
APIs manually, whereas SwaggerUI is a hosted web application reached via the
web browser. Both variants help to perform HTTP requests against an API via
automated processes, state, and a self-explanatory user interface. The locally
installed clients allow importing an OpenAPI specification for an initial setup of
a so-called collection. This is the place, where all metadata and request data is
stored. It is possible to export these collections partially or completely for sharing
with other developers. SwaggerUI is directly generated based on an OpenAPI
specification and provides REST endpoints for downloading the underlying doc-
uments.

The most important difference in terms of usability for developers comes from
44https://www.postman.com
45https://insomnia.rest

34

3. Architecture

the initial concept of these tools. A local installation of desktop applications like
Postman and Insomnia requires more time and causes many different settings
compared to a centrally deployed web app like SwaggerUI. Moreover, SwaggerUI
can also function as technical documentation for an API, which is potentially
designed as a product (API as a product). In this case, it can be deployed for
multiple API versions on multiple paths.

Another difference between these options stems from their pricing model. Post-
man and Insomnia are paid products with customer support and special features
(e.g., team collaboration) for charged versions, but also provide a free plan for
local usage with a reduced service frame. SwaggerUI is a permissively licensed
open source project and thus free of charge, well known, and frequently released
according to its GitHub repository. However, this is only the half-truth as a web
application needs to be hosted somewhere causing costs as well. Lastly, all options
guarantee long-term support and regular updates, but for a different price.

All in all, SwaggerUI delivers a centrally managed tool for developers to test the
QDAcity API while also functioning as an online documentation, which can be
versioned. In addition, it is open source and libraries such as SpringDoc-OpenAPI
help integrate it into the Spring Boot framework. Thus, the decision was ulti-
mately made to use SwaggerUI 5.11.8 installed and configured via SpringDoc-
OpenAPI version 1.8.0. This was the latest version supporting Spring Boot major
version 2 at that moment.

3.5.4 Frontend API Client

The QDAcity frontend previously used the GAPI client, which allowed accessing
the legacy backend based on Google Endpoints. Therefore, it loaded and resolved
the discovery document describing the QDAcity API and secondly handled the
JWT token for authentication and authorization. This discovery document is a
specification for Google Endpoints APIs, but the migrated QDAcity backend now
relies on Spring Boot and the independent OpenAPI specification (see chapter
3.2.6). Consequently, it was necessary to replace the GAPI Client, so that it can
use this new OpenAPI specification.

There were three different options evaluated for the new API client. The first
option is Swagger Codegen46, which generates JavaScript code for the client and
server stubs for frontend testing based on the OpenAPI document. Whereas, the
dynamic clients Swagger Client and OpenAPI Client Axios47 do not create a client
code base, but rather load and resolve the OpenAPI specification at runtime like
the GAPI Client with the discovery document before. These two dynamic client
options differ on the underlying HTTP client, which they use. Swagger Client

46https://swagger.io/tools/swagger-codegen/
47https://www.npmjs.com/package/openapi-client-axios

35

3. Architecture

directly uses the fetch implementation of Node, whereas OpenAPI Client Axios
builds on the Axios48 client for JavaScript.

While both approaches fulfill the same task, accessing the API in the frontend,
the static variant via a code generator like Swagger Codegen needs no startup or
preparation procedure at runtime. It does not load any specification document
but gets directly shipped with the frontend JavaScript code. Whereas, this gen-
erated client must be versioned or integrated into the the build process, which
requires a more complex setup compared with a generic client code that loads a
predefined OpenAPI specification at runtime.

From a maintenance point of view, the Swagger GitHub projects (i.e., Swagger
Codegen and Swagger Client) receive more attention from the community and are
also released more often according to the node package manager (NPM) registry.
Thus, the solutions provided by Swagger ensure long-term support and frequent
updates.

All in all, Swagger Client provides the best compromise of functionality, per-
formance, setup complexity, and support for the QDAcity frontend. The selected
version 3.28.8 of Swagger Client was the latest version during its integration into
the QDAcity frontend.

3.6 Product Decisions

This chapter focuses on key architectural decisions that have influenced the de-
velopment of the product. It starts with an overview of the Maven multi-module
setup for the project (see chapter 3.6.1). Following this, the authentication pro-
viders used in the system are discussed (see chapter 3.6.2), explaining the ra-
tionales behind their selection to ensure secure user access and authorization.
The management of API breaking changes is then examined (see chapter 3.6.3),
including the strategies employed to minimize disruption and maintain compatib-
ility. Lastly, the structure of sub-pages within SwaggerUI is outlined (see chapter
3.6.4), highlighting how API documentation is organized for optimal accessibility
and ease of use. These decisions shape the product’s technical foundation and its
ability to scale and adapt over time.

3.6.1 Maven Multi-Module Setup

The QDAcity backend uses Maven to manage its dependencies like the Spring
Boot modules via a single file called the POM. Maven provides project setups
with one single module or multiple sub-modules, which is then called a multi-
module setup.

48https://axios.rest

36

3. Architecture

At first, a proof of concept (PoC) for the single module setup was performed. It
showed that the legacy backend required a dependency called Datanucleus, which
has a transitive dependency called ASM Enhancer. This transitive dependency
is also included in Spring Boot major version 2, but in a later version. Unfortu-
nately, Spring Boot is not compatible with the version contained by Datanucleus
major version 3. Moreover, Google App Engine Gen 2 with bundled Gen 1 ser-
vices supports only this version of Datanucleus, so it prevents an update.

Consequently, the second approach was a multi-module setup of Maven with a
parent module and two sub-modules, one for the legacy code and one for the
Spring Boot backend code. Thereby, the second sub-module named QDAcity-
API depends on the legacy sub-module called QDAcity and both inherit the
configurations of the parent module named QDAcity-Backend. This solution
worked out and can be extended in the future by additional sub-modules or
refactored back to a single-module setup (see chapter 6.1.5).

3.6.2 Authentication Providers

The legacy authentication logic implemented a JWT token validator in the back-
end for QDAcity, Google, Facebook, and Twitter (now "X") ID tokens, but used
only the QDAcity and the Google variant at that moment. Thus, the question
arose of which authentication providers should remain for the QDAcity backend,
during the refactoring of the authentication mechanism to Spring Security.

Therefore, the authentication mechanism of the Spring Boot backend accepts
only the QDAcity and the Google ID tokens.

3.6.3 API Breaking Changes

One goal during the migration to Spring Boot was to avoid breaking changes in
the QDAcity API. In the following cases, changes were necessary due to incon-
sistencies, path matching (or routing), refactored token headers, and OpenAPI
standards.

First of all, the QDAcity endpoints in Spring Boot commonly define their sub-
path segment named like the classes themselves. During the migration, this rule
was enforced with one exception. For technical reasons, the analytics endpoint
contains an operation that does not map via the path "analytics" but via "sys-
tem".

Moreover, each endpoint operation needs a unique path pattern that can be
matched by the Spring SecurityFilterChain. This was already discussed before
in chapter 3.2.5. This rule caused some changes in the QDAcity API as well.

The Spring Security setup of the authentication at the QDAcity backend uses

37

3. Architecture

Spring’s OAuth 2.0 validator for Google ID tokens. Thereby, requests should
carry only this JWT token as part of the authorization header prepend with the
term "Bearer". Consequently, this authentication method is oftentimes called
bearer authentication. However, the legacy QDAcity backend needed a string
defining the used token type (i.e., QDAcity or Google) and parsed it as a third sub-
string from the authorization header value. This is a contradiction and thus the
Spring Boot backend now extracts this information directly from the JWT token
payload and enforces a valid authorization header value. This new authentication
rule changes the behavior of the API and requires the API consumers to remove
the token type sub-string.

Another topic enforces some endpoint operations to change their intuitive HTTP
method due to OpenAPI major version 3 standards. According to these rules,
operations requiring an HTTP body should not use GET and DELETE but
rather POST or PUT. In some cases, this was not met by the legacy operations
of the QDAcity API and therefore changed. Unfortunately, these new HTTP
methods often do not feel intuitive and should get a comment explaining this
special situation.

All these breaking changes were necessary or at least valuable for the future of
the QDAcity API.

3.6.4 SwaggerUI Sub-Pages

SwaggerUI visualizes all endpoint operations of the QDAcity API sorted at first by
their HTTP method and secondly in alphabetic order. Additionally, the endpoint
classes bundle their operations inside a collapsible area. The initial setup of
SwaggerUI only used these elements for structuring the web page. At some point,
SwaggerUI could not show the exemplary objects of the request body while the
number of migrated endpoints was growing. However, the OpenAPI specification
included all the information and thus it must be a bug of SwaggerUI.

The solution for this issue now only contains one endpoint class per page and splits
the SwaggerUI into multiple sub-pages. This structures the tool even more.

38

4 Design and Implementation

This chapter outlines the design and implementation details of the system. It
first addresses the QDAcity backend (see chapter 4.1), which was migrated from
the Google Endpoints framework to Spring Boot. Consequently, this chapter
will focus exclusively on components affected by the migration. Following this,
the frontend is covered (see chapter 4.2) with a strong focus on the components
involved in communication with the QDAcity API. Both chapters reflect only the
current state and do not mention the changes that occurred during the migration
process.

4.1 Backend

The design and implementation of the QDAcity backend gives a detailed overview
of the migrated components, configurations, and the usage of the chosen techno-
logies. It starts with the basics in the Spring Boot setup (see chapter 4.1.1) and
the web server configuration (see chapter 4.1.2), followed by smaller topics like
dependency injection (see chapter 4.1.3), exception handling (see chapter 4.1.4),
and data serialization (see chapter 4.1.5). Lastly, it closes with the bigger topics
including the authentication mechanism via the SecurityFilterChain (see chapter
4.1.6), the design of the migrated endpoints as wrappers (see chapter 4.1.7), and
the API implementation and specification (see chapter 4.1.8).

4.1.1 Spring Boot Setup

The QDAcity backend project is structured as a Maven multi-module project
with a setup, designed to manage the build and deployment process through
Maven and Google App Engine. At the root level of the project, the parent-
pom.xml file orchestrates the configuration for the entire project, containing key
information such as the project name QDAcity-Backend and the root-level artifact
ID qdacity-be. This parent POM file defines the two core modules of the project:
the QDAcity module, located at the root, and the QDAcity-API module, housed
within its qdacity-api directory. Additionally, the parent POM specifies Java

39

4. Design and Implementation

version 8 as the source and target version and manages dependencies shared
across modules, such as Lombok, which is used for automatic code generation
across the entire project.

The QDAcity module’s build configuration is managed by a pom.xml file that
is automatically configured through a Gulp script, which interpolates this file
from a pom.base.xml file located at the root. This module has the artifact ID
qdacity and inherits from the qdacity-be parent. It uses the maven-jar-plugin
to build a separate Java archive (JAR), which is later used as a dependency in
the QDAcity-API module. The main functionality of this module is providing
the necessary compiled legacy classes and resources, which are imported into the
QDAcity-API module for integration with the Spring Boot framework.

Similarly, the QDAcity-API module’s pom.xml file is interpolated by Gulp from
a base POM located in its directory named qdacity-api. This module has the
artifact ID qdacity-api and inherits from the parent project qdacity-be, as well.
A key part of its configuration is its use of Spring Boot, managed through the
Spring Boot dependencies import that provides centralized version management
for various Spring libraries required by the project. Notably, this module includes
the QDAcity module, pulling in the dependency JAR file to integrate legacy
components into the Spring Boot backend.

The dependencies for QDAcity-API also include essential Spring Boot libraries.
However, instead of using the default embedded Tomcat server, the project runs
on the Jetty web server provided by Google App Engine Gen 2 with bundled Gen
1 services, reflecting the deployment environment. Several dependencies are up-
graded to address security vulnerabilities found in older versions of Spring Boot,
particularly version 2.7.18 as described in chapter 3.1.3. The project also util-
izes SpringDoc-OpenAPI to generate the OpenAPI specification by automatically
extracting API details from annotations in the code.

The QDAcity-API module employs various Maven plugins to configure the build
and deployment process. The Maven compiler plugin ensures that the Java ver-
sion remains 8, and the Spring Boot Maven plugin sets the main class of the
application to QdacityApiApplication, allowing the Spring Boot application to
launch. Google App Engine deployment is managed by the App Engine Maven
plugin, with the configuration set to start the Spring Boot application on Jetty
during the pre-integration-test phase. The App Engine environment is essential
for both local testing and cloud deployment. The module includes an appengine-
web.xml file, located in the WEB-INF directory, which configures the deployment
specifics for App Engine.

Additionally, the SpringDoc-OpenAPI Maven plugin automates the generation of
the OpenAPI specification during the integration-test phase. After the backend
is started by the App Engine Maven plugin, the OpenAPI specification is down-

40

4. Design and Implementation

loaded from the API docs endpoint path "/_ah/api-docs" and saved into the
specified output directory. The resulting OpenAPI JSON file is copied into the
root of the WAR package created by the Maven WAR plugin, which repackages
the WAR in the post-integration-test phase. This WAR file includes a WEB-INF
directory that contains essential configuration files such as appengine-web.xml
and web.xml, along with the generated OpenAPI specification.

Maven profiles are used to handle the differences in environment-specific behavior
during the OpenAPI generation. There are profiles for Linux, Windows, and
MacOS, each automatically activated based on the OS type. The Linux profile
enables the App Engine Maven plugin to stop the running backend server after the
integration-test phase, while the Windows and MacOS profiles utilize the Exec
Maven plugin to run scripts that terminate the Jetty process. These scripts,
specific to each OS, ensure that the backend server is correctly shut down after
the OpenAPI generation.

4.1.2 Web Server Configuration

As described before, the web server configuration for the QDAcity backend project
is tailored to run on Google App Engine Gen 2 with bundled Gen 1 services using
Jetty as the web server. This is achieved through the project’s pom.xml file, where
the Spring Boot Starter Web dependency explicitly excludes the Spring Boot
Starter Tomcat dependency. Instead, the Spring Boot Starter Jetty dependency
is added with the scope set to provided, indicating that Jetty is supplied by the
App Engine environment during deployment.

The QdacityApiApplication class is central to the Spring Boot setup and con-
figured for the startup via the ServletInitializer class. This ensures that the Spring
Boot application initializes itself correctly and that the DispatcherServlet, which
routes incoming requests to the appropriate endpoint, is properly configured.
This setup allows for seamless integration of the Spring Boot framework with the
external Jetty server.

The project’s web.xml file further defines the servlet configuration. It specifies a
welcome file (index.html) and servlet mappings for the DispatcherServlet contain-
ing the API base path, the SwaggerUI path, and the API docs path. Additionally,
the web.xml file contains a servlet configuration, which serves the frontend during
local development, mapping it to the root path, but without conflicting with the
other paths. It also ensures that 404 errors in production redirect to the fron-
tend, allowing it to manage non-existent links softly. Another important part of
the XML configuration includes the servlet, filter, and listener registrations and
mappings. Security is enforced via a security constraint defined in the web.xml,
which specifies a transport guarantee of "CONFIDENTIAL". This constraint
ensures that communication is encrypted using HTTPS in production environ-

41

4. Design and Implementation

ments, though it is not active for local development.

In addition to these XML-based configurations, the project also contains Spring’s
Java-based configuration approach for registering servlets, filters, and listeners
through dedicated configuration classes. The ServletsConfig class, annotated
with @Configuration, defines beans that register servlets within the Spring con-
text. Bean methods annotated with @Bean create and configure instances of
ServletRegistrationBean, which allows the registration of servlet objects with a
specified name, load order, and URL mappings.

Similarly, the FiltersConfig class also uses Spring’s configuration to define beans
for filter registration. The FilterRegistrationBean instances, created within bean
methods, register filters by specifying the filter object, its name, and the URL
patterns to which the filter should apply. These filters register an Objectify-
Filter, enabling the Objectify context for the Datastore, and a non-www filter,
redirecting requests on the root domain.

Finally, the ListenersConfig class follows the same pattern, providing a Spring-
managed configuration for listener registrations. The bean methods in this class
create instances of ServletListenerRegistrationBean, which register listener ob-
jects.

However, these Java-based configurations are deactivated at the moment and
should replace the XML-based configurations for servlets, filters, and listeners
after the future migration to an embedded web server and native Google App
Engine Gen 2 (see chapter 6.1.2).

4.1.3 Dependency Injection of Legacy Components

Spring Boot’s dependency injection mechanism is built on the IoC principle,
which manages the lifecycle and dependencies of components known as Beans.
These are typically identified by Spring-specific annotations like @Service or
@Component, allowing them to be automatically detected and injected as needed.
The IoC framework plays a crucial role in decoupling component management
from business logic, creating a flexible and maintainable architecture. For a more
detailed discussion on how this mechanism works and fits into the overall system
design, refer to chapter 3.2.3.

However, legacy components that lack such Spring annotations require a different
approach to be integrated into the Spring context. Specifically, a configuration
class is necessary to inject these legacy components into the modern system,
ensuring they are still available and functional despite not being marked with
Spring’s annotations. Of course, this approach is also used for the servlet, filter,
and listener configurations, mentioned before.

The LegacyBeansConfig class fulfills this role by creating instances of legacy

42

4. Design and Implementation

classes, including token validators, which are essential for the authentication
mechanism and legacy endpoints used by the endpoint wrappers (see chapter
4.1.7). Through this configuration, older components can be injected and main-
tained alongside more modern, Spring-compliant ones.

Although this configuration enables the smooth integration of legacy components,
it is intended as a temporary measure. In the future, all legacy classes required
by other classes, including especially legacy controllers and data access objects
(DAOs), should be labeled with Spring annotations that automatically instantiate
and inject these classes in the ApplicationContext.

4.1.4 Exception Handling of Legacy Exceptions

In this Spring Boot application, the exception handling mechanism is designed
to globally manage specific types of custom exceptions. This is achieved through
the GlobalExceptionHandler class, which ensures consistent error responses when
certain conditions are violated, such as bad requests or unauthorized access. The
class is annotated with @ControllerAdvice, signaling to the Spring context that
the exception handling methods within this class apply globally across all end-
point classes, referred to as Controllers in the context of Spring.

The GlobalExceptionHandler class extends ResponseEntityExceptionHandler, a
Spring Boot class responsible for handling common response-related exceptions.
By extending this class, the custom GlobalExceptionHandler leverages its default
behavior while adding custom logic for specific exceptions relevant to the applic-
ation’s domain. The two exceptions addressed in this case are BadRequestEx-
ception and UnauthorizedException, each of which is handled by a corresponding
method.

For the BadRequestException, the method is registered with the @Exception-
Handler annotation, which signals that this method will handle any exception of
type BadRequestException. The @ResponseStatus annotation specifies that the
HTTP response status should be set to 400 bad request. The method returns a
ResponseEntity object, where the response body contains the message extracted
from the exception. This allows the API to provide detailed feedback to the client
about the nature of the bad request.

Similarly, the UnauthorizedException gets handled comparably. The method
responsible for handling this exception is annotated with @ExceptionHandler,
telling Spring that the method should be invoked if such an exception is thrown.
Additionally, the @ResponseStatus annotation ensures that the HTTP response
will return a 401 unauthorized status. Like the previous handler, it constructs
a ResponseEntity object with a message extracted from the exception to clarify
the cause of unauthorized access.

43

4. Design and Implementation

By adopting this global exception handling approach, the application achieves
centralized error management, which decouples exception handling logic from
the controller methods. The @ControllerAdvice annotation, in combination with
@ExceptionHandler, allows for clean, reusable, and maintainable code, while en-
suring that appropriate HTTP status codes and informative messages are con-
sistently returned to the client. This improves the overall robustness of the API.

In summary, the design integrates Spring Boot’s robust default exception hand-
ling with custom logic, resulting in an API that responds to bad requests with a
400 status and unauthorized access with a 401 status, along with meaningful er-
ror messages. This structured approach promotes better usability and debugging
for API consumers.

4.1.5 Data Serialization for Compatibility

Serialization and deserialization are processes fundamental to converting objects
to and from a format that can be transmitted or stored, such as JSON. In the
context of a Spring Boot application, the framework, in conjunction with the
Jackson1 library, automates the serialization and deserialization of objects at the
API boundary. This mechanism ensures that objects are converted to JSON
when transmitted as responses and that incoming JSON requests are mapped
back to Java objects, streamlining API communication.

However, the serialization behavior of the legacy Google Endpoints framework
presents notable differences when compared to the default Jackson ObjectMapper
used in Spring Boot, particularly in handling Blob and Long values. In the case
of Blob objects, the Google Endpoints framework converts them into Base64-
encoded strings, whereas Jackson serializes a Blob as an object containing various
fields that store the data. Similarly, Long values are serialized as strings in the
Google Endpoints framework, while Jackson defaults to representing them as
numeric values.

The legacy module of QDAcity contains specific implementations to handle the
serialization and deserialization of Blob objects. The ApiBlobSerializer class im-
plements the JsonSerializer interface of Jackson. Within its serialize method, it
converts Blob objects into their corresponding Base64-encoded string representa-
tion. Conversely, the ApiBlobDeserializer class implements JsonDeserializer and
defines a deserialize method that reverses this process. To ensure the proper hand-
ling of Blob objects in models or beans that interact with the API, the @Json-
Serialize and @JsonDeserialize annotations of Jackson are applied, wherever Blob
fields appear in the data models.

For handling Long values, the JacksonConfiguration class customizes the default
1https://github.com/FasterXML/jackson/

44

4. Design and Implementation

Jackson configuration in Spring Boot, ensuring that the default serializer for
Long-wrapper and primitive Long values is the ToStringSerializer. This config-
uration overrides the standard numeric serialization of Long values, forcing them
to be serialized as strings to maintain compatibility with the QDAcity frontend
expecting this format.

4.1.6 Authentication and Token Types

The authentication mechanism in the backend of QDAcity relies on Spring Boot
and Spring Security, employing custom JWT tokens and various validators to
manage both registered and anonymous user authentications. The architecture
revolves around several key classes and interfaces that define the behavior of
authentication providers, token validators, and token structures, which are all in-
tegrated into Spring Security’s filter chains introduced in the architecture chapter
3.2.5.

There are two custom implementations of Spring’s AuthenticationProvider inter-
face that handle registered and anonymous user authentication: RegisteredJwt-
TokenAuthenticationProvider and AnonymousJwtTokenAuthenticationProvider.
As shown in figure 4.1, both implementations use the QdacityApiAuthenticator
class to perform the actual authentication. Therefore, these providers implement
two methods: supports, which checks whether the incoming authentication object
is of type BearerTokenAuthenticationToken, and authenticate, which initiates
the authentication process by delegating it to either the authenticateRegistered-
JwtToken method or the authenticateAnonymousJwtToken method in the Qda-
cityApiAuthenticator.

The core class responsible for authentication is QdacityApiAuthenticator. It in-
terfaces with legacy code via the ITokenValidator interface, which is implemented
by AnonymousTokenValidator, CustomJWTValidator, and GoogleAccessToken-
Validator. QdacityApiAuthenticator exposes three primary public methods: au-
thenticateRegisteredJwtToken, authenticateAnonymousJwtToken, and getUser-
ByToken. Both authenticateRegisteredJwtToken and authenticateAnonymous-
JwtToken are designed to determine whether a request is authenticated or not.

The getUserByToken method is similar but focuses on retrieving a stored user
based on the JWT token from the authorization header. It also extracts and val-
idates the token’s header and payload. Depending on the authorization network,
it uses the appropriate validator to authenticate the token and return the asso-
ciated user. If neither custom JWT validator is successful, a fallback mechanism
using GoogleAccessTokenValidator is employed, which attempts to authenticate
the token via Google. This logic plays a key role in the next chapter 4.1.7.

As visualized in figure 4.2, the JWT token used in the authentication process con-
sists of two main parts: the header and the payload. The header contains a field

45

4. Design and Implementation

Figure 4.1: UML class diagram of the authentication mechanism

"typ", which specifies the token type and must equal "jwt". The payload holds
two fields: "iss", the issuer, which must be "QDACity", and "authNetwork",
which defines the authorization network. The authorization network could either
be "EMAIL_PASSWORD" for registered users or "ANONYMOUS" for anonym-
ous client communications. These fields are essential during the validation process
handled by the token validators.

The Spring Security configuration in QDAcity defines multiple filter chains, each
designed for different authentication scenarios. Five SecurityFilterChain instanc-
es are configured: one for paths that allow both registered and anonymous au-
thentication, one for paths restricted to anonymous authentication only, one for

46

4. Design and Implementation

Figure 4.2: UML class diagram of the QDAcity JWT header and payload

API paths not requiring authentication, one for paths restricted to registered
users only, and a default filter chain that permits all other requests. In the fil-
ter chain for registered and anonymous authentication, an OAuth 2.0 resource
server is configured for handling Google JWT tokens. It automatically fetches
the public verification keys from Google for token verification. This chain also re-
gisters the RegisteredJwtTokenAuthenticationProvider and AnonymousJwtToke-
nAuthenticationProvider classes to handle custom JWT tokens. The filter chain
for anonymous authentication and the filter chain for registered authentication
configure the respective authentication providers for their specific use cases. The
default filter chain permits all requests, allowing unauthenticated access to paths
not covered by the other chains.

Across all filter chains, some common configurations are applied. CSRF protec-
tion is disabled for performance reasons, as it is not necessary for a stateless REST
API with JWT-based authentication.2 Sessions are also disabled, ensuring the
application remains stateless in line with RESTful principles. In summary, the
QDAcity authentication process leverages a combination of custom JWT tokens,
multiple authentication providers, and token validators integrated into Spring Se-
curity’s filter chains to manage user authentication securely and efficiently. This
system is designed to handle both registered and anonymous users, providing
secure access to the API while maintaining flexibility for different authentication
use cases.

As an example, the sequence diagram in figure 4.3 illustrates a positive authentic-
ation process for a registered user with a custom JWT token. The process starts
at the ProviderManager of the filter chain, calling first the supports method of
the RegisteredJwtTokenAuthenticationProvider and subsequently the authentic-
ate method with the authentication object. The provider invokes the authen-
ticateRegisteredJwtToken method of QdacityApiAuthenticator, which executes

2https://www.baeldung.com/spring-security-csrf

47

4. Design and Implementation

its central logic authenticateJwtToken with the CustomJWTValidator instance
and the authorization networks "EMAIL_PASSWORD" and "GOOGLE". This
method consequently parses the jwtTokenPayload via the preValidateTokenAn-
dExtractPayload helper and selects the CustomJWTValidator, approving the
token. After this process, the authenticateJwtToken method sets the authen-
tication object to authenticated and returns it back to the RegisteredJwtToke-
nAuthenticationProvider. This provider also returns the authentication to the
ProviderManager, which forwards the information to the above Spring Security
classes as the AuthenticationManager and many more.

Figure 4.3: UML sequence diagram of the authentication mechanism

4.1.7 Endpoint Wrappers and Authorization

Besides the authentication, the Spring Boot backend requires controllers that
define the API endpoints and their operations. This chapter explains only the
design and the inner workings of such an exemplary QDAcity endpoint class called
DocumentEndpoint, while the next subsection 4.1.8 gives some insights into the
implementation of Spring Boot endpoint classes in the context of QDAcity.

Static View

As shown in figure 4.4, the DocumentEndpoint class plays a key role in the doc-
ument insertion process by encapsulating the interaction between various system
components responsible for access to user data, authorization, and the actual
document insertion. It serves as the entry point for requests made by clients,
exposing the insertDocument method, which is designed to handle user author-
ization checks and the eventual insertion of a document into the system.

48

4. Design and Implementation

Figure 4.4: UML class diagram of the document endpoint as an example

This method accepts a token string, tokenHeader, which represents the authen-
tication token of the user, and a BaseDocument object, which contains the data
to be inserted. The DocumentEndpoint does not handle the complete process on
its own but delegates key responsibilities to several collaborating components.

Upon receiving a request, the first step is loading the User object via the token
from the database. This is achieved by calling the getUserByToken method of the
QdacityApiAuthenticator class. This method validates the token and returns a
user corresponding to the token provided. If the authentication fails, the request
is terminated and an appropriate response is returned.

Once the user is authenticated, the responsibility of handling the actual document
insertion is delegated to the DocumentLegacyEndpoint class. The DocumentEnd-
point forwards the document and authenticated user to the insertDocument
method in the DocumentLegacyEndpoint, which manages the insertion inside
the legacy system. The relationship between the DocumentEndpoint and Docu-
mentLegacyEndpoint classes follows the facade pattern (Gamma et al., 1994).

Facade Pattern

The DocumentEndpoint acts as a facade, simplifying the integration of the new
backend framework Spring Boot. Clients interact solely with the DocumentEnd-

49

4. Design and Implementation

point, which hides the complexity of the underlying legacy systems. This design
is advantageous because it decouples the external interface from the internal im-
plementation, promoting the migration process.

In the facade pattern, the DocumentEndpoint serves as a high-level interface,
which consolidates operations related to document insertion. Rather than in-
teracting directly with the legacy system, clients are shielded from the legacy
endpoint classes. The actual document insertion is handled by the DocumentLeg-
acyEndpoint and its dependencies.

The DocumentLegacyEndpoint manages the legacy operations, while the Doc-
umentEndpoint ensures that data mapping, data validation, and loading of the
user data are completed before delegating the document insertion process. By
decoupling these responsibilities, the facade pattern promotes the separation of
concerns during the migration process.

Runtime View

The sequence diagram in figure 1 of the appendices illustrates the flow of oper-
ations during the execution of the insertDocument method. Initially, the client
invokes the insertDocument method on the DocumentEndpoint, passing in the
token header and BaseDocument object. The DocumentEndpoint loads the user
via the QdacityApiAuthenticator, which returns a User object if the token is
valid. The DocumentEndpoint then forwards the document and the user to the
DocumentLegacyEndpoint.

Within the DocumentLegacyEndpoint instance, the insertion logic is executed
within a Context object. The context ensures that the operation is conducted
in a controlled environment. The authorization process is carried out via the
Authorization class, which verifies the user’s permissions and returns an Author-
izationResult. If the user is authorized, the document is inserted into the system,
and a ResponseEntity object is returned to the client as confirmation of a success-
ful operation. If the user lacks the necessary permissions, the process terminates
early, returning an error response to the client.

Design Evaluation

In summary, the DocumentEndpoint class revolves around providing a Spring
Boot interface for document operations while delegating responsibilities such as
accessing user data, authorization, and interaction with legacy systems to other
components. By utilizing the facade pattern, the endpoint design supports the
integration of Spring Boot while preventing code duplication during the migration
process.

50

4. Design and Implementation

4.1.8 API Implementation and Specification

The API implementation and specification of QDAcity utilize a structured ap-
proach based on Spring Boot and OpenAPI, integrating various annotations and
configurations. Below is a detailed description of these aspects, with a break-
down into key sections, including endpoint annotations, OpenAPI configuration,
the generation and delivery of the OpenAPI specification, and the visualization
of the API in the SwaggerUI.

Endpoint Annotations

In QDAcity, the API endpoints are implemented using Spring’s annotation-based
approach, making the endpoints easy to manage and document. At the class
level, the @RestController annotation registers endpoint classes as REST con-
trollers within the Spring context, enabling them to handle HTTP requests (see
appendix A.2). The @RequestMapping annotation specifies the base path for an
endpoint, determining the URL paths managed by the class. Lombok’s @Re-
quiredArgsConstructor simplifies dependency injection by automatically gener-
ating constructors for required fields.

The class-level annotations also include OpenAPI and Swagger documentation,
such as @ApiResponses, which defines possible HTTP response codes like 200
(OK), 204 (no content), 400 (bad request), 404 (not found), and 500 (internal
server error). Each response is further described using @ApiResponse, which
includes the response code and a brief description. Additionally, the @Tag an-
notation groups the API operations of the endpoint class.

The methods in these classes are responsible for handling specific HTTP re-
quests. They are annotated with mappings via @PutMapping, @PostMapping,
@GetMapping, and @DeleteMapping to define the HTTP methods (i.e., PUT,
POST, GET, DELETE) that the operations handle (see appendix A.3). These
mappings, paired with additional path specifications, allow the API to support
create, read, update, and delete (CRUD) operations or more complex business
operations.

Moreover, the method level includes several annotations to specify its behavior.
The @Operation annotation defines the OpenAPI documentation for the method,
providing an operation ID, a summary containing the group tag and the operation
ID for searching the operation, and a detailed description. It also includes a @Se-
curityRequirement annotation to enforce JWT bearer authentication. Parameter
annotations such as @RequestParam, @RequestHeader, and @RequestBody are
used to define the expected input, whether they come from the URL query, the
headers, or the request body. Finally, the method returns a ResponseEntity
object, which wraps the HTTP status code and body, ensuring a well-formed
response to the client.

51

4. Design and Implementation

OpenAPI Configuration

The OpenAPI configuration for QDAcity is managed in a class called OpenAPI30-
Config, which registers the OpenAPI version 3.0 configuration within the Spring
context. This class is annotated with @Configuration, making it available for
the ApplicationContext. The @OpenAPIDefinition annotation provides general
information about the API, including its title, version, and other properties that
appear in the OpenAPI specification.

The configuration also includes security settings, which are defined using the @Se-
curityScheme annotation. This annotation describes the API’s security require-
ments, particularly the use of JWT bearer authentication for securing endpoints.
Additionally, @Bean methods are used to create instances of GroupedOpenApi,
which group the API endpoints in the SwaggerUI. In this case, endpoint opera-
tions are grouped by their endpoint base path to appear in the right SwaggerUI
sub-page.

OpenAPI Specification Generation and Delivery

The OpenAPI specification for the API is generated automatically and packaged
as a static file with the QDAcity-API module. This process is tightly integrated
with the Maven build system.

During the Maven build process, the OpenAPI specification (openapi-vX.json)
is automatically generated at server startup through the SpringDoc-OpenAPI
Maven plugin. The specification is hosted under the API docs endpoints, making
it available for API clients. However, to package the OpenAPI specification as
a file into the WAR, additional steps are taken. The generated openapi-vX.json
is downloaded during the integration-test phase and stored in the WEB-INF
directory of the QDAcity-API module. The Maven WAR plugin then repackages
the WAR file, including the OpenAPI specification in its root directory.

The build process also incorporates platform-specific handling for managing serv-
er processes. On Linux systems, the appengine-stop execution is used to stop
the server, while on MacOS and Windows, platform-specific scripts are executed
to kill the running process, as the default appengine-stop execution does not
terminate the server properly on these platforms.

The automated generation of the OpenAPI specification is a remnant of earlier
migration attempts, during which the openapi-vX.json was served as a static file
via the Jetty web server. However, the OpenAPI specification is now provided
through an API docs endpoint at runtime, meaning it no longer needs to be
stored as a file. Nevertheless, packaging the OpenAPI specification has the ad-
vantage that each version of the QDAcity-API WAR includes a corresponding
specification, ensuring that it is also released along with the application.

52

4. Design and Implementation

Representation in SwaggerUI

Once the OpenAPI specification is generated, it is displayed in SwaggerUI, provid-
ing a clear, interactive interface for developers to explore and test the API. End-
point operations are grouped by class and each operation method is documented
with its corresponding path, HTTP method, parameters, response codes, and
security requirements (see figure 4.5). The grouping of endpoint operations, com-
bined with detailed annotations for each operation, ensures a well-documented
and easily navigable API within SwaggerUI. This allows developers to quickly
identify the available operations and their associated input parameters and out-
put structures while also adhering to security protocols like bearer authentication.

Figure 4.5: QDAcity SwaggerUI operation window of insertDocument as an
example for manually testing and documenting the QDAcity API operations

4.2 Frontend

The design and implementation chapter of the QDAcity frontend covers the com-
ponents that were affected or introduced by the backend framework migration.

53

4. Design and Implementation

It especially details the handling and integration of Swagger Client and its re-
sponses and errors. Like the backend before, the frontend chapter starts with
the setup of Swagger Client (see chapter 4.2.1), while the following sub-chapters
explain the client handling (see chapter 4.2.2), the client execution (see chapter
4.2.3), and the endpoint services (see chapter 4.2.4).

4.2.1 Swagger Client Setup

The Swagger Client dependency is installed via NPM and therefore part of the
package.json and package-lock.json files of the QDAcity frontend. The client does
not require any specific configurations or setup scripts but is fully usable right
after the installation.

4.2.2 Client Handling by QdacityApiClient

The QdacityApiClient class of the QDAcity frontend serves as the central client
for managing communication between the frontend and backend. It has three
main fields: "token", "swaggerClient", and "apis". The token field is initialized
by the frontend’s authentication mechanisms, specifically the AnonymousAuth
and AuthenticationProvider classes, as well as the service worker. The "swagger-
Client" field is a promise that is instantiated using the API docs endpoint of the
backend. This SwaggerClient instance fetches and caches the latest version of
the OpenAPI specification, ensuring that the specification is re-fetched whenever
the version changes. The client also includes a request interceptor, which sets
the authorization header with the bearer JWT token for every request, and a
response interceptor, which maps the response body to a format compatible with
the legacy GAPI Client or the legacy API, thereby aligning the migrated API
with the existing frontend logic.

The "apis" field is initialized as a function that accesses the SwaggerClient in-
stance, returning a promise that resolves into a combined object, merging the
OpenAPI specification details with method callbacks via the SwaggerClient’s tag
interface. This tag interface allows calling API operations as JavaScript methods
via their endpoint tag and operation ID. The constructor initializes the "token"
field as null.

Several asynchronous "getter" methods are available for retrieving specific in-
formation about a given API operation. These methods take the endpoint tag
and operation ID as parameters and access the relevant operation from the "apis"
field.

The class also includes a method getRequestData that converts a request into an
object with the fields "id", "params", and "body", according to the OpenAPI
specification of the SwaggerClient instance. Additionally, the class provides a

54

4. Design and Implementation

method called "then", which executes a given function through the promise stored
in the "apis" field, ensuring asynchronous functionality.

Lastly, the constant qdacityApiClient holds an instance of the QdacityApiClient
class and serves as a central client for all endpoint service classes and authentic-
ation logic throughout the application.

4.2.3 Client Execution by Promisizer

The Promisizer class performs requests via the QdacityApiClient instance and
consequently handles the responses or errors. Therefore, the activity diagram
in figure 4.6 visualizes this handling logic on a more abstract level because the
actual JavaScript code handles every activity via Promises in an asynchronous
fashion. This would be very difficult to illustrate with a more formal diagram
type like a UML sequence diagram. Thus, the following paragraphs describe this
process of figure 4.6.

Performing Requests

The execution of an API call in the Promisizer class begins by invoking the API
method callback with a set of parameters and options. This triggers the API
method callback to execute, returning a result.

If the result is a valid response, the process proceeds to handle the response.
Otherwise, if the result is an error, two scenarios are possible. First, if the error
requires an alert, a notification is generated via the dialog provider. Second, if the
error does not require an alert, the error will be handled without a notification.

Handling Responses

Once a valid response is obtained, three cases are considered. If the response
is successful, a response body or a 204 (no content) status code is present, and
no parse error occurs, the promise is resolved and the parsed response body
is returned. If the response is not successful, the promise is rejected and the
response object is returned. If a response body exists but a parse error occurs,
the parse error object is returned and the promise is rejected.

Handling Errors

If the result is an error, the error is handled based on specific conditions. First, if
the error has a response but no error code, the promise is rejected with a message
text. Second, if the error has a response and an error code, the promise is rejected
with a message wrapper object. Third, if the error has no response but contains
a sub-error, the promise is rejected with a response error object. Finally, if the

55

4. Design and Implementation

error has neither a response nor a sub-error, a generic error is thrown and the
promise is rejected.

Figure 4.6: UML activity diagram of the Promisizer logic

In either case – whether a response is successfully handled or an error occurs –
the process is completed by resolving or rejecting the promise accordingly.

4.2.4 Endpoint Services

The endpoint services provide methods for accessing the backend API of QDAcity
through the use of the QdacityApiClient and the Promisizer class. Two methods
of the DocumentsEndpoint class serve as an example of how this interaction is
implemented (see appendix B).

The getDocuments method is a static function that retrieves documents from

56

4. Design and Implementation

the backend. It takes two parameters, a project ID and a project type. The
method constructs an API method callback, which executes the API operation
via the SwaggerClient instance inside the QdacityApiClient object. This callback
is passed to the makeResponseHandlerPromise function of the Promisizer, along
with the operation-specific parameters as a second argument. These parameters
contain HTTP path parameters, query parameters, and headers. In this specific
case, the method finally chains a last "then" call that processes the response,
extracting and returning the items from the response body object.

The insertDocument method, also a static function, allows for inserting a new
document. It takes a single parameter, doc, which represents the document to
be inserted. Similar to the getDocuments method, an API method callback is
created. The Promisizer function makeResponseHandlerPromise is called with
this callback and an empty object for the parameters, while the document to be
inserted is passed as part of the request body option in the third argument. The
method does not include a "then" call, indicating that it returns a promise that
will be resolved or rejected based on the response from the Promisizer.

In both methods, the QdacityApiClient ensures that the appropriate API meth-
ods are called, while the Promisizer handles the promise-based workflow, ensuring
that the response or error is properly processed and returned to the calling con-
text.

57

4. Design and Implementation

58

5 Evaluation

The evaluation chapter assesses how well the proposed solutions meet the specified
functional and non-functional requirements defined in chapter 2. By analyzing
the architecture, design, and implementation, this chapter aims to determine
whether the system fulfills the intended functionality (see chapter 5.1), while
adhering to performance, compatibility, security, and other non-functional con-
straints (see chapter 5.2). Through this evaluation, the strengths and weaknesses
of the implemented solutions are highlighted, providing insight into their overall
effectiveness and identifying areas for potential improvements, which are covered
in chapter 6.

5.1 Functional Requirements

All in all, the presented solution of the framework migration through architecture,
design, and implementation fits all functional requirements which are defined in
chapter 2.1. Especially the fulfillment of the overarching FRQ-1 ensures that the
application features are preserved and the users are not affected by the migration.
However, this was to be expected, as this thesis is carrying out a technology
migration and is therefore less feature-heavy. The focus is more on the non-
functional requirements, evaluated in chapter 5.2.

5.1.1 API Specification

Table 5.1 evaluates the functional requirements related to API responses against
the solutions presented in the given chapters. As already mentioned, the Open-
API specification of QDAcity fulfills all defined requirements of chapter 2.1.1.

The initial requirements pertain to the definition of endpoints and operations and,
like the other API specification requirements, are covered in chapter 4.1.8. In
contrast, the requirements related to potential error handling are supplemented
by additional chapters, which are also referenced in the table (see FRQ-13 to
FRQ-18). This approach of referencing the chapters addressing the mentioned

59

5. Evaluation

requirements is applied to the other sub-chapters of the evaluation chapter as
well.

FRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
2-12 X 4.1.7, 4.1.8
13 X 4.1.4, 4.1.8

14-15 X 4.1.4, 4.1.6, 4.1.8
16 X 4.1.8

17-18 X 4.1.4, 4.1.8

Table 5.1: Evaluation of the functional requirements related to API responses

5.1.2 API Security

Table 5.2 evaluates the functional requirements related to API security against
the solutions presented in the given chapters. The access control of QDAcity and
the Spring Security mechanisms fulfill all defined requirements of chapter 2.1.2.

FRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
19-26 X 4.1.6, 4.1.7

Table 5.2: Evaluation of the functional requirements related to the API security

5.1.3 API Client for Manual Testing

Table 5.3 evaluates the functional requirements related to the API client for
testing against the solutions presented in the given chapters. The SwaggerUI of
QDAcity fulfills all of the requirements defined in chapter 2.1.3.

FRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
27-34 X 3.2.7, 3.6.4, 4.1.8

Table 5.3: Evaluation of the functional requirements related to the API client
for manual testing

5.2 Non-Functional Requirements

In addition to the functional requirements, the architecture, design, and imple-
mentation of the migrated solution meet the non-functional requirements in most
cases (see chapter 2.2). Especially, the analysis of the performance requirements,
a sub-category of the quality requirements, reveals potential for further perform-
ance optimization, while for example the technological requirements are fulfilled
completely.

60

5. Evaluation

5.2.1 Technological Requirements

Table 5.4 evaluates the technological requirements related to the environment and
interfaces against the solutions presented in the given chapters. The technology
stack and the API design of QDAcity fulfill the requirements TRQ-1 to TRQ-5
defined in chapter 2.2.1.

Furthermore, SwaggerUI helps ensure that the QDAcity API will fulfill the Open-
API 3.0 standard (i.e., TRQ-4) in the future by ignoring non-compliant para-
meters or operations in the user interface, when developers use it to check new
endpoints and endpoint operations.

TRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
1-3 X 3.1.3
4 X 4.1.8
5 X 4.1.6

Table 5.4: Evaluation of the technological requirements

5.2.2 Quality Requirements

This chapter evaluates the quality requirements (see chapter 2.2.2) related to per-
formance, compatibility, usability, reliability, security, maintainability, and port-
ability (i.e., the seven "true" quality dimensions) against the solutions presented
in the referenced chapters. The quality of the migrated QDAcity backend is
on a very good level in general but requires a detailed evaluation in the next
paragraphs.

Performance

Table 5.5 evaluates the quality requirements related to performance against the
solutions presented in the given chapters. The caching mechanism of the Swagger
Client fulfills the performance requirement QRQ-1. To make reliable statements
about the quantitative performance of a system, a load and performance test
would have to be carried out. However, this is beyond the scope of this thesis.
In chapter 3.5.2, there is already a short mention of quantitative results for a
basic setup with Spring Boot and Jetty, but this does not match the scope and
environment of QDAcity.

Therefore, the quantitatively measurable requirements are evaluated via an ob-
servability tool of Google App Engine, called metrics explorer (see figure 2 in the
appendices). The used metrics are the CPU utilization of QRQ-2, the memory
usage of QRQ-3, and the response latency of QRQ-4, compared between QDAcity
version 230 with Google Endpoints and versions 231 to 236 with Spring Boot.

61

5. Evaluation

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
1 X 4.2.2

2-4 X –

Table 5.5: Evaluation of the quality requirements related to performance

In addition, the response count weights the observations and conclusions drawn
from the other charts in appendix C. Each of these line charts, which were taken
from the metrics explorer, visualizes two different aggregations of the underlying
measuring points. The 99th percentile is the measure greater than 99 percent
of the series, while the mean is a simple average per time interval. Therefore,
these aggregations together pay attention to outliers and extreme values with the
99th percentile, while the mean provides a better understanding of the system
performance in general.

A comparison of the mean values shows that the 10 percent mark for CPU util-
ization (see appendix C.1) is still rarely exceeded in general. However, the 99th
percentile indicates that CPU utilization before the migration to Spring Boot
was very stable and hardly deviated from the mean, whereas now there are fre-
quent extreme spikes towards the 10 or even 20 percent CPU utilization. While
this value is not yet alarming, it does represent a disadvantage compared to the
solution with Google Endpoints.

Similar insights can be drawn from memory usage (see appendix C.2), which, both
before and after, mostly ranged between 400 and 700 MiB. However, directly after
the first Spring Boot release with version 231 (on the 19th of September 2024)
and correlated with CPU utilization, memory usage spikes sharply, exceeding the
upper limit of available memory in production (slightly above 750 MiB). This
can, in turn, lead to repeated server instance crashes, even though these are
not directly reflected by the occasional dips in the mean. These dips occurred
due to deployments of new app versions from 231 to 236. However, after multiple
performance optimizations, the memory usage for later versions with Spring Boot
stabilizes near the upper limit of around 750 MiB.

The response count metric (see appendix C.3) also shows that the extreme in-
creases in memory usage and CPU utilization occur particularly during phases
of high load caused by many HTTP requests and responses. This phenomenon
applies to version 230 with Google Endpoints as well as the newer versions with
Spring Boot.

Furthermore, the response latency (see appendix C.4) best illustrates the per-
formance issues and potentials of the Spring Boot versions at the same time.
While version 230 without Spring Boot only experienced extreme spikes after the
start of a new server instance and then stabilized, these extreme spikes occur

62

5. Evaluation

more frequently and unpredictably with Spring Boot versions. In some cases,
response latency increases after starting a new server instance, in others, due to
a higher request load. Nevertheless, the most extreme values have been reduced
noticeably (mostly up to 1 minute) compared to version 230 with the Google
Endpoints Framework (mostly up to 3-4 minutes). Additionally, a separate ex-
amination of the mean shows that the response latency generally stays below 1
to 2 seconds. Therefore, it’s clear that response latency has not been stable and
has become even more unstable and unpredictable due to the migration.

The target would have been a stable response latency of under 1 second, or at
most 2 seconds, to avoid noticeable slowdowns of the app. Memory usage also
leaves much to be desired but seems to stabilize (stable 600-750 MiB >= 600
MiB), while the CPU utilization has remained within an acceptable range but
exceeds the expected value by far (most peeks in 20-40% >= 20%). As a result,
the overall quantitative performance requirements have not been met completely,
except in average or best-case scenarios.

Compatibility

Table 5.6 evaluates the quality requirements related to compatibility against the
solutions presented in the given chapters. The migrated endpoints based on the
facade pattern (Gamma et al., 1994) fulfill the requirements QRQ-5 to QRQ-7 as
far as possible and useful, while they ensure QRQ-8 to QRQ-11 completely. In
addition, the API client in the frontend handles some compatibility issues of the
migrated QDAcity API compared to the legacy API, which should be refactored
in the future as described in chapter 6.1.4. Furthermore, the combined access
control via Spring Security and the legacy Authorization class fulfill QRQ-12.

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
5-11 X 4.1.8
12 X 4.1.6, 4.1.7

Table 5.6: Evaluation of the quality requirements related to compatibility

Usability

Table 5.7 evaluates the quality requirements related to usability against the solu-
tions presented in the given chapters. SwaggerUI stores a submitted ID token via
the local application storage in the browser and thus persists them across sub-
pages and page reloads. In the current configuration, it can not acquire tokens
automatically, but it provides plugins and custom configurations for standardized
logins like Google OAuth 2.0. Consequently, the QDAcity SwaggerUI does fulfill
the usability requirement QRQ-13 partially.

63

5. Evaluation

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
13 X 3.2.7

Table 5.7: Evaluation of the quality requirements related to usability

Reliability

Table 5.8 evaluates the quality requirements related to reliability against the solu-
tions presented in the given chapters. The adapted integration and deployment
process of QDAcity ensures QRQ-14 and the API versioning in the OpenAPI
specification fulfills QRQ-15.

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
14 X –
15 X 4.1.8

Table 5.8: Evaluation of the quality requirements related to reliability

Security

Table 5.9 evaluates the quality requirements related to security against the solu-
tions presented in the given chapters. The appengine-web.xml of the migrated
backend enables TLS encryption on Google App Engine, thus fulfilling the se-
curity requirement QRQ-16. Additionally, during the migration of the endpoint
classes and their operations, care was taken to ensure that sensitive data is only
sent in the request body, which also meets QRQ-17. Furthermore, the facade
pattern (Gamma et al., 1994) of the endpoints ensures that the Authorization
class in the legacy endpoint classes continues to handle user permission checks
(see QRQ-18). The debugging level is currently not configured separately for
QDAcity. It is always "info" and therefore fulfills QRQ-19, but misses the QRQ-
20 requirement. During the setup of the Spring Boot backend, an analysis of
vulnerable dependencies was conducted and appropriate actions (e.g., upgrading
a transitive dependency) were taken (see QRQ-21).

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
16-17 X –

18 X 4.1.7
19 X –
20 X –
21 X 3.1.3

Table 5.9: Evaluation of the quality requirements related to security

64

5. Evaluation

Since QDAcity does not yet use automated penetration testing, no further state-
ments can be made about the "actual" security of the backend.

Maintainability

Table 5.10 evaluates the quality requirements related to maintainability against
the solutions presented in the given chapters. The existing GitLab CI for QDA-
city meets the QRQ-22 requirement and also fulfills the minimal branch coverage
requirement from QRQ-23 through the integrated test jobs. The general docu-
mentation for the QDAcity product and project can still be found in the GitLab
Wiki, and it was updated in several places during and after the backend migra-
tion (see QRQ-24 and QRQ-25). SwaggerUI, as frequently mentioned, serves as
both an API client for manual testing and as API documentation (see QRQ-26).
Additionally, this thesis documents the migration efforts and thus fulfills QRQ-
27. Of course, at the time of this master thesis, there is still no experience with
the development and operation of the migrated backend, which makes it difficult
to make statements about future maintainability.

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
22-23 X 3.4.3
24-25 X –

26 X 3.2.7
27 X –

Table 5.10: Evaluation of the quality requirements related to maintainability

Portability

Table 5.11 evaluates the quality requirements related to portability against the
solutions presented in the given chapters. The chapter 6.1.2 describes, that the
app setup, integration, and deployment can be adapted to native Google App
Engine Gen 2 without the bundled Gen 1 services (see QRQ-28 to QRQ-30).

QRQ(s) Missed Incomplete Fulfilled Addressed in chapter(s)
28-30 X 3.4.2, 4.1.2, 6.1.2

Table 5.11: Evaluation of the quality requirements related to portability

65

5. Evaluation

66

6 Outlook

The outlook chapter identifies areas for future work (see chapter 6.1), highlighting
tasks that remain unresolved or require further development. Additionally, it
provides recommendations to guide future modifications of QDAcity (see chapter
6.2) to improve the system design, the tests, and the implementations of certain
components based on further technologies.

6.1 Future Work

The completion of this thesis marks significant progress in the migration of QDA-
city’s backend framework. However, several areas require further exploration and
development beyond the scope of this thesis. These future tasks involve address-
ing technical challenges, optimizing performance, and expanding the solutions.
In particular, additional work is needed to refine integration processes, improve
the efficiency of certain components, and ensure the long-term maintainability of
the system. This chapter outlines the key areas for future development that will
enhance the migration and its impact on QDAcity’s backend architecture.

6.1.1 Backend Build Optimization

The future work on backend build optimization for QDAcity involves several
key tasks aimed at simplifying and modernizing the build process. First, the
core QDAcity module needs to transition from WAR to JAR packaging because
it is now a dependency of the QDAcity-API module. As part of this switch,
several outdated plugins, such as the Maven WAR plugin, Maven JAR plugin,
App Engine Maven plugin, and Endpoints Framework Maven plugin, should be
removed, as they will no longer be necessary for the new build configuration.
Additionally, the QDAcity-API module needs to be adjusted to correctly import
the JAR file from the core module without using a "dependency" classifier, which
is no longer required. Legacy configuration files like appengine-web.xml and
web.xml, as well as other obsolete files, should be removed to clean up the project
structure.

67

6. Outlook

Further optimization involves eliminating environment interpolations and Gulp
scripts that are tied to the core QDAcity module. In the long run, it may be
possible to fully remove Gulp scripts from the project, further simplifying the
build process and reducing maintenance overhead.

Another optional optimization would be to remove the generation process that
bundles the OpenAPI file, as it is no longer used for initializing the SwaggerClient
instance in the frontend (see chapter 4.1.8).

6.1.2 Embedded Web Server

To switch the Spring Boot application deployment from a provided to an em-
bedded Jetty server, several key changes need to be made to the QDAcity-API
module. Currently, Jetty is provided by the runtime environment in App Engine
Gen 2 with bundled Gen 1 services (see chapter 4.1.2), but with native Gen 2
in the future, the application needs to handle its server lifecycle by embedding
Jetty directly within the application. This also is the preferred approach of Spring
Boot.

The first step in this transition is to modify the Jetty dependency in the pom.xml
file. The current setup marks Jetty as a provided dependency, meaning it is
expected to be supplied by the runtime environment. For an embedded setup,
this "provided" scope must be removed, ensuring that Jetty is packaged and run
as part of the application itself. This will allow the Spring Boot application to
include the Jetty server as a fully integrated part of its runtime.

Another important change is switching the packaging format from WAR to JAR.
The current deployment relies on a WAR file, which requires an external server
like Jetty or Tomcat to execute. By switching to a JAR file, the application can
bundle the embedded Jetty server, making it fully self-contained and executable.
This requires modifying the pom.xml to replace the Maven WAR plugin with the
JAR plugin, ensuring the application is built as an executable JAR.

Additionally, since the WAR-based deployment uses a ServletInitializer class for
servlet configuration, it can be removed. In a JAR-based setup with an embedded
server, Spring Boot manages the server and servlet lifecycle internally, making
the ServletInitializer unnecessary.

The application’s API base path also needs to be updated. In the current config-
uration, servlet paths combine the base path from the application.yml with their
sub-paths. With the switch to an embedded Jetty server, these paths need to be
adjusted to only the sub-paths, while ensuring that the servlet context path is
correctly defined in the application.yml.

Lastly, the migration requires enabling Spring Boot’s programmatic registration
of servlets, filters, and listeners, which is typical in embedded server configur-

68

6. Outlook

ations. This includes removing any XML-based registrations in the web.xml,
which are traditionally used for servlet registration in external server environ-
ments. Instead, these components should be registered directly through Spring
Boot’s annotations and Java-based configuration.

6.1.3 Endpoint Wrappers Upgrade

As described in chapter 4.1.7, the legacy endpoint classes were wrapped with
endpoint classes using the facade pattern (Gamma et al., 1994). This was done
to host two QDAcity APIs, one using the Google Endpoints framework and the
other with Spring Boot. Following a successful migration to Spring Boot and
a single hosted API, these Spring-based wrappers can fully replace the legacy
endpoints. This requires copying the code from each legacy endpoint class into
its corresponding wrapper and then deleting the legacy classes. An incremental
refactoring approach would be advisable here, processing the individual endpoints
in alphabetical order.

6.1.4 API Adapters Excision

The framework migration in the backend and the switch from GAPI Client
to Swagger Client caused many compatibility issues between the frontend and
backend. As a result, it was necessary to implement some adapter solutions in
the QDAcity app on both sides of the HTTP-based API (see chapters 4.1.5 and
4.2.2).

On the backend side, the serialization of Blob and Long values was explicitly
adjusted to simulate the behavior of the Google Endpoints framework. However,
these specific adjustments to the Jackson ObjectMapper are not particularly
intuitive and could lead to unwanted issues in the future. Therefore, at the very
least, the serialization of Long values should be changed from strings to numeric
values.

On the frontend side, a response interceptor was written in the QdacityApiClient
class, which intercepts all API responses and adjusts their data structures to be
compatible with the legacy backend. This allows the subsequent frontend logic
to work correctly with the data. This adapter solution should be removed in the
future by gradually refactoring the frontend logic to eliminate the need for these
special cases.

Once all refactorings in the frontend and backend are completed, the QDAcity
API will be used on both sides as originally specified. Data will remain in their
intended data types and the data structures in the communication payload will
remain consistent throughout the entire application.

69

6. Outlook

6.1.5 Backend Modularization

After the successful migration of the backend framework, the current module
structure of the QDAcity application needs to be reconsidered. The existing setup
consists of a core QDAcity module and the QDAcity-API module, both of which
are bundled under a parent module named QDAcity-Backend (see chapters 3.6.1
and 4.1.1). However, this structure is not aligned with the actual architecture
of the system. Instead, it was originally designed as a compromise to resolve
dependency conflicts, which are no longer relevant after the migration.

A more logical and maintainable modularization can be implemented by restruc-
turing the backend into distinct layers that reflect the system architecture. The
proposed structure would begin with a QDAcity-Parent parent module, replacing
the existing QDAcity-Backend parent.

The first sub-module, QDAcity, would serve as the deployable application arti-
fact and bundle other sub-modules like QDAcity-Endpoint, QDAcity-Business,
QDAcity-Data, and potentially also QDAcity-Test-Core. It takes on the role pre-
viously handled by QDAcity-API, acting as the central point for deploying the
entire application.

The endpoint layer, including all endpoint classes, would be housed in a new
QDAcity-Endpoint sub-module. This module encapsulates all API endpoint lo-
gic, separating it from the business and data layers to improve maintainability
and clarity.

The business layer, including all controller classes, would be contained within
the QDAcity-Business sub-module. This module would manage the core business
functionality and logic of the application.

The QDAcity-Data sub-module would focus on the data access layer, including
all DAO classes. It would handle interactions with the database and other data
sources, ensuring that data management is isolated from the business and end-
point layers.

To enforce clean separation and modular interaction between layers, interface con-
tracts would be introduced. The QDAcity-Business-Contract sub-module would
contain the interfaces for the business controllers, which would be imported by
both the QDAcity-Endpoint and QDAcity-Business modules. This would serve
as a contract between the endpoint layer and the business layer, ensuring that
the implementation details remain encapsulated.

Similarly, the QDAcity-Data-Contract sub-module would define the interfaces for
the DAOs, which would be imported by both the QDAcity-Business and QDAcity-
Data modules. This contract would enforce separation between the business and
data access layers.

70

6. Outlook

Another QDAcity-Data-Core sub-module would contain the data models used
in the entire application. Therefore, all other sub-modules should import this
module to get these data models.

Finally, testing would be streamlined by introducing a QDAcity-Test-Core sub-
module. This module would provide utility classes and setup helpers for testing,
which could be reused across multiple sub-modules. Unit tests would reside
within the respective sub-modules, while integration and system tests would be
grouped within the main QDAcity module, ensuring that the tests are organized
according to the areas of functionality they cover.

This proposed modularization would result in a more cohesive backend archi-
tecture with clear boundaries between layers and reduced inter-module depend-
encies. These reduced dependencies enable Maven to build multiple backend
modules in parallel, which accelerates the integration process in the pipeline and
in the local environment.

6.2 Recommendations

Building on the foundation laid in the thesis and the future work before, several
recommendations can be made to improve the solutions developed throughout
this project. These improvements focus on enhancing the API tests, optimizing
system performance, and adopting best practices to ensure sustainability. The
recommendations in this chapter provide actionable suggestions for refining the
existing solutions, addressing potential weaknesses, and exploring new technolo-
gies or methodologies that could further streamline the backend framework and
its integration with other system components.

6.2.1 Endpoint Tests via Spring MockMvc

Currently, the endpoint classes in the QDAcity backend are only tested through
simple method calls. This approach limits the scope of testing, as it focuses
solely on individual method logic without considering the full behavior of the
application in a real web environment. To improve the depth and accuracy of
testing, switching to Spring MockMvc1 is recommended.

Spring MockMvc is a comprehensive testing framework provided by the Spring
Boot Starter Test dependency that allows developers to test various parts of the
application, including web layers, in an environment closely resembling produc-
tion. It includes support for loading the Spring application context, testing the

1https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-
framework.html

71

6. Outlook

interaction between components, and ensuring the correct behavior of the entire
system.

Spring MockMvc is a tool specifically designed to test Spring MVC controllers,
that are in the context of QDAcity called endpoints. It allows testing the behavior
of web requests without actually starting a full web server. With MockMvc, tests
can simulate HTTP requests and assert the correctness of responses, such as
checking status codes, response bodies, headers, and more.

Using Spring MockMvc provides significant advantages over simple method calls.
Instead of just testing isolated logic, it allows for testing the full interaction
between the controller and other parts of the application, such as services and
data layers. This means that issues related to request handling, serialization, and
response formatting can be caught early. Additionally, MockMvc can validate if
the controller behaves correctly under different HTTP methods (GET, POST,
PUT, DELETE), improving the reliability of the API as a whole.

By moving from simple method-level testing to Spring Tests via MockMvc, the
non-measured test coverage will increase, providing more confidence that the
application behaves as expected in real-world scenarios. This change ensures
that endpoint behavior is completely validated in an environment that simulates
how the API will function in production.

6.2.2 Authorization via Spring Security

In the QDAcity backend, authentication is handled in the filter chain (see chapter
4.1.6), while authorization is performed within the individual endpoint methods
(see chapter 4.1.7). This separation of concerns can lead to scattered and incon-
sistent security logic throughout the codebase. Furthermore, it is highly inefficient
as it must authenticate twice to get the user for the authorization logic. To sim-
plify and centralize security management, it is recommended to switch to using
Spring Security.

Spring Security allows both authentication2 and authorization3 to be managed
centrally, either entirely within the filter chain4 or by using annotations like
@PreAuthorize on methods5. This approach ensures that both authentication
(verifying the user’s identity) and authorization (checking user permissions) are
handled before requests reach the endpoint layer. With Spring Security, security
logic is applied consistently, reducing duplication and improving maintainability.

2https://docs.spring.io/spring-security/reference/servlet/authentication/index.html
3https://docs.spring.io/spring-security/reference/servlet/authorization/index.html
4https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-

requests.html
5https://docs.spring.io/spring-security/reference/servlet/authorization/method-

security.html

72

6. Outlook

In this new setup, authentication will be performed in the filter chain by ex-
tracting and verifying tokens from the HTTP request, such as JWTs. After the
token is validated, the user’s permissions and roles are loaded from a repository
(typically a database or external service). Spring Security uses this information
to determine the user’s authorization, ensuring they have the required permis-
sions to access the requested resource. This can either be done directly in the
filter chain or via the @PreAuthorize annotation at an endpoint method, which
ensures that authorization checks are conducted before the execution.

By consolidating authentication and authorization into Spring Security, security
rules become more transparent, reusable, and easier to manage. The application
benefits from a unified security layer that is both robust and flexible, simplifying
future enhancements and reducing security risks.

6.2.3 Bean Validation via Spring and Hibernate

Data beans in the QDAcity application are validated in an unstructured manner
within various parts of the business logic. This approach scatters validation rules
across the codebase, making it harder to manage and maintain, and increasing
the likelihood of inconsistent validations.

The recommended improvement is to switch to a structured validation process
of the Spring framework6 using Jakarta Bean Validation7 at the endpoint layer,
specifically before the data enters the endpoint method. By leveraging Spring’s
Hibernate validator8, the data validation can be centralized and performed as
soon as the request is received by the endpoint, ensuring that only valid data
proceeds further into the application.

With Spring’s bean validation, annotations such as @NotNull, @Size, and @Pat-
tern are applied directly to the fields of data beans. When a request reaches the
endpoint, Spring automatically validates the incoming data against these rules
before passing it into the business layer. If the data fails validation, the process
is stopped, and an appropriate error response is returned to the client.

This approach ensures that data is validated consistently across all endpoints,
keeping validation logic separate from business logic and making it easier to main-
tain. It also improves the reliability of the application by ensuring that invalid
data is caught early, preventing unnecessary processing and reducing potential
errors in the business layer.

6https://docs.spring.io/spring-framework/reference/core/validation/beanvalidation.html
7https://beanvalidation.org
8https://hibernate.org/validator/

73

6. Outlook

6.2.4 CES API Calls via Spring REST Clients

At the moment, the QDAcity backend uses Google’s HttpRequestFactory to send
requests to the CES API. This approach is functional, but not well integrated
with the Spring ecosystem, leading to potential limitations in flexibility, main-
tainability, and available features.

A better approach is to switch to using a Spring REST client9, such as RestClient
or WebClient, which are designed to work seamlessly within Spring applications.
RestClient is a synchronous, blocking client that is simple and easy to use. It is
well-suited for traditional applications where requests are handled sequentially.
RestClient provides a clean API for making REST calls and integrates smoothly
with Spring’s dependency injection.

In contrast, WebClient is a non-blocking, reactive client that supports asynchron-
ous operations. It is designed for modern applications that require high concur-
rency and performance, allowing multiple requests to be processed efficiently in
parallel. WebClient leverages reactive programming and is ideal for applications
that need to handle real-time data or high loads with non-blocking input and
output.

Switching from HttpRequestFactory to either RestClient or WebClient improves
integration with the Spring framework and makes at least the Google API Client
for Java10 dependency redundant. It provides better error handling, enhanced
flexibility, and more powerful ways to handle REST API calls to the CES. The
choice between RestClient and WebClient depends on whether the application be-
nefits more from a simple, synchronous approach or a cumbersome, non-blocking
solution.

9https://docs.spring.io/spring-framework/reference/web/webmvc-client.html
10https://developers.google.com/api-client-library/java

74

7 Conclusion

In this thesis, the migration of the backend framework for the QDAcity web ap-
plication was successfully undertaken, addressing the challenges of moving from
an outdated and unsupported system to a modern, long-term solution. The pro-
ject involved not only a backend migration but also significant updates to the
overall technology stack, including the frontend and key aspects of the system’s
architecture. Throughout the migration, maintaining core functionality and pre-
serving system behavior were prioritized to ensure a seamless transition for users.

The thesis began by outlining the functional and non-functional requirements
in chapter 2, focusing on key goals such as performance, security, and scalabil-
ity. These requirements guided the decision-making process, ensuring that the
new framework would support the evolving needs of the QDAcity platform while
remaining reliable and robust.

Chapter 3 provided an overview of the existing architecture of QDAcity, identi-
fying the legacy components in need of migration. This chapter also highlighted
the challenges presented by outdated technologies and the constraints of main-
taining core system functionality during the migration process. In addition, it
gave a short introduction to the most important framework technologies used for
QDAcity and justified the technology and product decisions.

In chapter 4, the detailed system design and implementation of several com-
ponents were outlined. The engineering work included the careful migration of
endpoint classes using the facade pattern (Gamma et al., 1994), allowing both
old and new frameworks to coexist temporarily. The engineering approach em-
phasized gradual change, ensuring that the system remained operational while
progressively incorporating new technologies.

The evaluation in chapter 5 critically assessed the outcomes of the migration. A
performance analysis revealed a potential for improvements, while the remaining
assessment demonstrated the success of the new framework in addressing the
initial functional and non-functional requirements. Additionally, the updated
system met the long-term goals set for QDAcity.

75

7. Conclusion

Finally, chapter 6 discussed the remaining tasks and future enhancements, in-
cluding potential improvements in system design and further optimization efforts.
These forward-looking observations set the stage for continuous development of
the platform, ensuring its ability to adapt to future technical demands.

Regarding the transferability of the migration strategy, several key insights from
the QDAcity migration can be applied to other software projects, although each
project presents its own set of challenges based on its specific legacy architecture
and technology stack. The width-first migration approach using the facade pat-
tern, combined with the simultaneous operation of both old and new frameworks,
offers a flexible and practical model for similar projects. Furthermore, the use
of OpenAPI and Swagger Client to facilitate frontend integration also provides a
transferable strategy for faster API migrations.

In conclusion, while the migration strategy employed for QDAcity was custom-
ized to its specific needs, many of the solutions developed are adaptable to other
projects. The experience gained in this project contributes to a broader un-
derstanding of software migration processes and offers valuable lessons for the
software engineering community. In particular, the insights gained from trans-
itioning from legacy frameworks to modern solutions reflect the natural evolution
of software systems, ensuring their continued relevance and adaptability in a rap-
idly changing technological landscape.

76

Appendices

77

Appendix A: Endpoint Design and Implementation

A Endpoint Design and Implementation

A.1 Endpoint Processing Example

Figure 1: UML sequence diagram of the document endpoint as an example

79

Appendix A: Endpoint Design and Implementation

A.2 Endpoint Class Example

Java code of the DocumentEndpoint class:
1 @RestController
2 @RequestMapping("${qdacity.api.path}/ documents")
3 @RequiredArgsConstructor
4 @ApiResponses(value = {
5 @ApiResponse(
6 responseCode = "200", description = "OK"),
7 @ApiResponse(
8 responseCode = "204", description = "No Content"),
9 @ApiResponse(

10 responseCode = "400", description = "Bad Request"),
11 @ApiResponse(
12 responseCode = "404", description = "Not Found"),
13 @ApiResponse(
14 responseCode = "500",
15 description = "Internal Server Error")
16 })
17 @Tag(name = "documents")
18 public class DocumentEndpoint {
19 private final DocumentLegacyEndpoint
20 documentLegacyEndpoint;
21 private final QdacityApiAuthenticator
22 qdacityApiAuthenticator;
23

24 // ...
25 }

80

Appendix A: Endpoint Design and Implementation

A.3 Endpoint Method Examples

Java code of the getDocument method in the DocumentEndpoint class:
1 @GetMapping("/{ docId}")
2 @Operation(
3 operationId = "getDocument",
4 summary = "documents.getDocument",
5 description = "Get document by ID",
6 security = @SecurityRequirement(name = "bearerAuth"))
7 public ResponseEntity <BaseDocument > getDocument(
8 @PathVariable(name = "docId")
9 Long docId ,

10 @RequestHeader(name = "Authorization")
11 @Parameter(hidden = true)
12 String tokenHeader
13) {
14 final User user =
15 qdacityApiAuthenticator.getUserByToken(tokenHeader);
16 final BaseDocument document =
17 documentLegacyEndpoint.getDocument(docId , user);
18 return ResponseEntity.ok(). body(document);
19 }

Java code of the insertDocument method in the DocumentEndpoint class:
1 @PostMapping
2 @Operation(
3 operationId = "insertDocument",
4 summary = "documents.insertDocument",
5 description = "Insert a new document",
6 security = @SecurityRequirement(name = "bearerAuth"))
7 public ResponseEntity <BaseDocument > insertDocument(
8 @RequestHeader(name = "Authorization")
9 @Parameter(hidden = true)

10 String tokenHeader ,
11 @RequestBody
12 BaseDocument document
13) {
14 final User user =
15 qdacityApiAuthenticator.getUserByToken(tokenHeader);
16 final BaseDocument insertedDocument =
17 documentLegacyEndpoint.insertDocument(document , user);
18 return ResponseEntity.ok(). body(insertedDocument);
19 }

81

Appendix B: Endpoint Service Method Examples

B Endpoint Service Method Examples

JavaScript code of the getDocuments method in the DocumentsEndpoint class:
1 static getDocuments(projectId , projectType) {
2 const apiMethodCallback = () => {
3 return qdacityApiClient.then((apis) =>
4 apis.documents.getDocuments);
5 };
6 return Promisizer.makeResponseHandlerPromise(
7 apiMethodCallback ,
8 {
9 projectId: projectId ,

10 projectType: projectType ,
11 }
12).then((body) => body.items);
13 }

JavaScript code of the insertDocument method in the DocumentsEndpoint class:
1 static insertDocument(doc) {
2 const apiMethodCallback = () => {
3 return qdacityApiClient.then((apis) =>
4 apis.documents.insertDocument);
5 };
6 return Promisizer.makeResponseHandlerPromise(
7 apiMethodCallback ,
8 {},
9 {

10 requestBody: doc ,
11 }
12);
13 }

82

Appendix C: Performance Analysis

C Performance Analysis

Figure 2: Metrics explorer window of the Google App Engine monitoring tool

83

Appendix C: Performance Analysis

C.1 CPU Utilization

Figure 3: Line chart visualizing the CPU utilization of QDAcity version 230
based on the Google Endpoints framework

Figure 4: Line chart visualizing the CPU utilization of QDAcity versions 231
to 236 based on the Spring Boot framework

84

Appendix C: Performance Analysis

C.2 Memory Usage

Figure 5: Line chart visualizing the memory usage of QDAcity version 230 based
on the Google Endpoints framework

Figure 6: Line chart visualizing the memory usage of QDAcity versions 231 to
236 based on the Spring Boot framework

85

Appendix C: Performance Analysis

C.3 Response Count

Figure 7: Line chart visualizing the response count of QDAcity version 230
based on the Google Endpoints framework

Figure 8: Line chart visualizing the response count of QDAcity versions 231 to
236 based on the Spring Boot framework

86

C.4 Response Latency

Figure 9: Line chart visualizing the response latency of QDAcity version 230
based on the Google Endpoints framework

Figure 10: Line chart visualizing the response latency of QDAcity versions 231
to 236 based on the Spring Boot framework

87

88

References

Alexenko, T., Jenne, M., Roy, S. D., & Zeng, W. (2010). Cross-site request for-
gery: Attack and defense. 2010 7th IEEE Consumer Communications and
Networking Conference, 1–2. https : / / doi . org / 10 . 1109 /CCNC . 2010 .
5421782

Fowler, M. (2003). Patterns of enterprise application architecture (1st ed.). Addison-
Wesley Professional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Ele-
ments of reusable object-oriented software (1st ed.). Addison-Wesley Pro-
fessional.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68 (9), 1060–1076. https ://doi .org/10.1109/
PROC.1980.11805

Richards, M. (2015). Software architecture patterns: Understanding common ar-
chitecture patterns and when to use them (1st ed.). O’Reilly Media.

SOPHISTen. (2024). Master: Schablonen für alle fälle. https://www.sophist.de/
fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_
free/MASTeR-Broschuere_Int/MASTeR_Broschuere_6-Auflage_31-07-
2024_AvP_V4.pdf

89

https://doi.org/10.1109/CCNC.2010.5421782
https://doi.org/10.1109/CCNC.2010.5421782
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR-Broschuere_Int/MASTeR_Broschuere_6-Auflage_31-07-2024_AvP_V4.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR-Broschuere_Int/MASTeR_Broschuere_6-Auflage_31-07-2024_AvP_V4.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR-Broschuere_Int/MASTeR_Broschuere_6-Auflage_31-07-2024_AvP_V4.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/Wissen_for_free/MASTeR-Broschuere_Int/MASTeR_Broschuere_6-Auflage_31-07-2024_AvP_V4.pdf

	Introduction
	Product QDAcity
	Thesis Goals
	Thesis Type
	Thesis Structure

	Requirements
	Functional Requirements
	API Specification
	API Security
	API Client for Manual Testing

	Non-Functional Requirements
	Technological Requirements
	Quality Requirements

	Architecture
	Solution Strategy
	System QDAcity
	Legacy Technology Stack
	Migrated Technology Stack
	Migration Plan
	Incremental Development

	Backend
	Layered Backend Architecture
	Spring Framework and Spring Boot
	Spring Dependency Injection via IoC
	Spring Web MVC
	Spring Security Filter Chain
	OpenAPI Specification
	SwaggerUI and API Docs

	Frontend
	Frontend Architecture
	Swagger Client

	Integration and Deployment
	Software Artifacts
	Cloud Infrastructure
	CI/CD Pipeline

	Technology Decisions
	Backend Framework
	Web Server as Servlet Container
	API Client for Manual Testing
	Frontend API Client

	Product Decisions
	Maven Multi-Module Setup
	Authentication Providers
	API Breaking Changes
	SwaggerUI Sub-Pages

	Design and Implementation
	Backend
	Spring Boot Setup
	Web Server Configuration
	Dependency Injection of Legacy Components
	Exception Handling of Legacy Exceptions
	Data Serialization for Compatibility
	Authentication and Token Types
	Endpoint Wrappers and Authorization
	API Implementation and Specification

	Frontend
	Swagger Client Setup
	Client Handling by QdacityApiClient
	Client Execution by Promisizer
	Endpoint Services

	Evaluation
	Functional Requirements
	API Specification
	API Security
	API Client for Manual Testing

	Non-Functional Requirements
	Technological Requirements
	Quality Requirements

	Outlook
	Future Work
	Backend Build Optimization
	Embedded Web Server
	Endpoint Wrappers Upgrade
	API Adapters Excision
	Backend Modularization

	Recommendations
	Endpoint Tests via Spring MockMvc
	Authorization via Spring Security
	Bean Validation via Spring and Hibernate
	CES API Calls via Spring REST Clients

	Conclusion
	Appendices
	Endpoint Design and Implementation
	Endpoint Processing Example
	Endpoint Class Example
	Endpoint Method Examples

	Endpoint Service Method Examples
	Performance Analysis
	CPU Utilization
	Memory Usage
	Response Count
	Response Latency

	References

