
A Behavioral Design Framework
for Optimizing User Behavior:

The NUDGE Framework
MASTER THESIS

Johanna Schlinger

Submitted on 30 January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg
Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Georg Schwarz, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 30 January 2025

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 30 January 2025

i

https://creativecommons.org/licenses/by/4.0/

ii

Acknowledgements

I would like to thank my supervisor, Georg, for his support and for bringing a
sense of calm into the writing process.

Additionally, I am grateful to all the participants who evaluated the NUDGE
framework with me - your feedback ultimately shaped it into what I aspired it to
be.

I would also like to acknowledge ChatGPT for helping me overcome my deficits
in grammar and vocabulary as a non-native speaker.

Finally, special thanks to my partner and friends who encouraged me throughout
the whole process and proofread this work.

iii

iv

Abstract

Creating intuitive, user-centric solutions is challenging, particularly in developer-
focused fields with limited exposure to behavioral science and usability principles.
This thesis introduces the NUDGE Framework, a conceptual behavioral design
framework aiming to bridge the gap between design and development. It provides
developers — especially those without a design background — with a system-
atic approach to improving user experience through behavioral design principles.
Built on BJ Fogg’s Behavior Model and persuasive technology strategies, the
framework connects developer goals to relevant behavioral techniques, helping
identify design obstacles and apply goal oriented strategies.

A case study within the open source collaboration domain, using the JValue Hub,
demonstrates how the framework addresses common usability challenges. The
application of the NUDGE Framework to the JValue Hub illustrates its potential
to streamline collaboration, enhance user engagement, and improve usability for
both novice and experienced users.

An evaluation using a Think-Aloud protocol asserts the framework’s accessib-
ility, usability, and effectiveness. Developers who initially expressed skepticism
ultimately created unique, context-specific solutions using the framework. These
findings suggest the NUDGE Framework equips developers with a practical tool
to implement user-centered improvements, fostering user engagement and inclus-
ivity.

v

vi

Contents

1 Introduction 1

2 Problem Definition 3

3 Objective Definition 7

4 Solution Design 9
4.1 Design Requirements . 9
4.2 Theoretical Foundations . 11
4.3 Conceptual Design Process . 12
4.4 The Framework’s Conceptual Design 13

4.4.1 The Framework’s Structure: How It Works 14
4.4.2 The Framework’s Structure: Why it Works 18

4.5 How to Adapt and Apply the Framework 21
4.5.1 Adapting the Framework to a Use Case 21
4.5.2 Applying the Adapted Framework to a Specific Use Case . 25

4.6 Strengths, Limitations, and Opportunities for Extension by Design 27
4.6.1 Strengths . 27
4.6.2 Limitations . 28
4.6.3 Opportunities for Extension 29

4.7 Assessment of Met Design Requirements 30
4.8 Summary . 32

5 Demonstration 33
5.1 Selecting Process Steps to Demonstrate 33
5.2 Adapting the Framework to Our Open Source Collaboration Use

Case . 34
5.3 Applying the Adapted Framework on the JValue Hub 39

5.3.1 Selected Process Steps . 39
5.4 Summary . 48

6 Evaluation 49

vii

6.1 Evaluation Objectives and Success Criteria 49
6.1.1 Evaluation Objectives . 49
6.1.2 Success Criteria . 50

6.2 Evaluation Method and Process 52
6.2.1 Evaluation Method . 52
6.2.2 Evaluation Process . 52

6.3 Evaluation Results . 55
6.3.1 Numerical Insights . 55
6.3.2 Qualitative Data . 56
6.3.3 Alignment with Success Criteria 59

6.4 Limitations of the Evaluation . 61
6.5 The Framework’s Evolution through its Evaluation 62
6.6 Summary . 64

7 Conclusion 67

Appendices 69
A Demonstration and Evaluation Resources 71

A.1 The NUDGE Framework Adapted to the Open Source Col-
laboration Use Case . 71

A.2 The Evaluation Session Setup 72
B Overview of the Base Set of Behavioral Blocks 73

B.1 Technique: Reduction . 73
B.2 Technique: Tunneling . 73
B.3 Technique: Tailoring . 73
B.4 Technique: Personalization 74
B.5 Technique: Self-Monitoring 74
B.6 Technique: Simulation . 75
B.7 Technique: Rehearsal . 75

References 77

viii

List of Figures

4.1 The framework’s structure . 14
4.2 The behavioral block of the reduction technique 16
4.3 Fogg’s Behavior Model derived from Fogg, 2009 19
4.4 Example pathway of mapping a process step to a behavioral tech-

nique . 20

5.1 Sampling matrix for selecting process steps to demonstrate and
evaluate . 34

5.2 The abstracted open source collaboration process 35
5.3 Project page: MR subpage . 41
5.4 Pilepine statistics page . 41
5.5 MR overview page . 44
5.6 Modified MR overview page . 44
5.7 Conversations subpage of a MR 46
5.8 Alternative modifications for the MR overview page 47

6.1 NUDGE framework version 1-2 63
6.2 NUDGE framework version 3 . 63

1 The open source collaboration use case adapted NUDGE frame-
work, used for the demonstration and evaluation of the framework 71

2 A high-level overview of the evaluation session setup 72

ix

x

List of Tables

4.1 Assessment of met functional requirements 30
4.2 Assessment of met non-functional requirements 30

6.1 Overview of the success criteria and associated indicators 51
6.2 Numerical insights of the evaluation sessions 56
6.3 Assessment of met objectives and success criteria 59

xi

xii

1 Introduction

Great applications do more than just perform well on a technical level; they guide
users effortlessly toward their goals. These applications excel not only in their
own functionality but also in empowering users to succeed, creating a seamless
synergy between the tool and its user. Behavioral design is an emerging discipline
that combines principles from behavioral science and design to influence human
behavior effectively (Bay Brix Nielsen et al., 2024). While many other design
fields focus on making things visually appealing, behavioral design shifts the
focus to influencing user behavior - not making things pretty, but making them
work for their intended user groups.

Despite its potential to enhance user experience and engagement, incorporating
behavioral design principles remains a substantial challenge in developer-focused
fields (Bay Brix Nielsen et al., 2024). Many software development firms prioritize
technical functionality over user-centric design, often leading to solutions that
may function well but fail to resonate with users (Ashley and Desmond, 2005).

This gap is particularly pronounced in open source collaboration environments,
where usability is frequently overshadowed by a focus on code and functionality
(Levesque, 2004; Raza and Capretz, 2015). In these contexts, developers often
lack the tools and guidance necessary to address usability issues systematically.
While there is an abundance of behavioral design literature and design principles
available, these resources are often fragmented, theoretical, or tailored for ex-
perienced designers, making them inaccessible to developers without a design
background (Bay Brix Nielsen et al., 2024). This disconnect can leave many
usability challenges unaddressed, limiting the potential for truly user-centered
solutions.

To address this gap, this thesis introduces a framework to nudge users with beha-
vioral design for goal driven engagement, called the NUDGE framework. NUDGE
is a conceptual behavioral design framework designed to bridge the gap between
design and development. Built on BJ Fogg’s Behavior Model and persuasive tech-
nology strategies (Fogg, 2003, 2009), the framework offers a structured approach
that enables developers to identify usability challenges, map them to relevant

1

1. Introduction

behavioral principles, and implement actionable solutions. By translating com-
plex behavioral design concepts into accessible and practical tools, the NUDGE
Framework aims to empower developers to integrate user-centric design strategies
into their workflows without requiring extensive expertise.

The framework is demonstrated through its application to the JValue Hub, a
collaboration tool for open-data pipelines. By adapting and applying the NUDGE
Framework to this specific context, the thesis illustrates how the framework can
address common usability challenges, improve user engagement, and foster a more
intuitive collaboration process. The evaluation of the framework, conducted using
a Think-Aloud protocol with developers, highlights its accessibility, usability, and
potential to drive behaviorally informed design improvements.

2

2 Problem Definition

The Relevance of Behavioral Design in Development When applied,
behavioral design plays a pivotal role in the creation of successful apps as it can
directly impact how users engage, interact, and remain loyal to digital products
(Voorheis et al., 2022). By focusing on behavioral design, app developers can
craft experiences that intuitively guide users, reducing friction and minimizing
cognitive load. This approach helps address common challenges such as user
engagement, motivation, and the formation of positive behaviors (Fogg, 2003,
2009). For example, well-designed apps can leverage behavioral triggers and
feedback loops to keep users engaged over time, enhancing long-term commitment
and satisfaction. Moreover, a behavioral design perspective enables developers
to anticipate and address potential barriers in the user journey, ensuring that
the app’s functionality aligns with real human needs and tendencies (Bay Brix
Nielsen et al., 2024; Voorheis et al., 2022). In a competitive market, where the
difference between a widely adopted app and an abandoned one often hinges on
subtle user experience details, incorporating behavioral design principles can be
the deciding factor for success.

Balancing Technical Functionality with User-Centered Design Accord-
ing to van Kuijk et al., 2019, there are three main drivers of usability in products.
The first is that user-centered design and usability have to be prioritized by the
developer or the development team (van Kuijk et al., 2019). Hence, in settings,
in which the focus often falls heavily on technical functionality rather than user
experience this prioritization is shifted away from design a lot. Developers may
lack the training, interest, or motivation to incorporate design principles into
their work. This can result in apps that are technically sound but fail to en-
gage users or address their needs effectively (van Kuijk et al., 2019). Secondly,
the developers of the product need to have the knowledge to be able to success-
fully create a user-centered design. However, merely having the knowledge about
usability or design practices isn’t sufficient for creating a user-centered design.
It’s also essential that developers have the ability to apply this knowledge, they
need to have the freedom and motivation to act on that knowledge, and not only
have the right resources but also enough time to do so (van Kuijk et al., 2019).

3

2. Problem Definition

Without dedicated prioritization of design but only of technical functionality of a
product, crucial aspects like intuitive navigation, user motivation, and behavioral
triggers might get overlooked. This gap could for example lead to higher drop-off
rates, lower user satisfaction, and reduced engagement - challenges that might
have been avoided if a user centered design was integrated from the start.

Challenges Faced by Newcomers Entering the Design Space There is
a wealth of research-based design principles available that can be used to im-
prove designs and guide decision-making. However, many of these principles are
created with designers in mind—targeting individuals who have a background
in, or at least a foundational understanding of design. As a result, these prin-
ciples are often not easily accessible, understandable, or usable for developers or
those without prior exposure to design concepts. To make matters more chal-
lenging, most discussions and information on methodologies of behavioral design
are highly conceptual and fragmented rather than practical or hands-on (Bay
Brix Nielsen et al., 2024). This abstract nature might leave developers with the
need to interpret and adapt high-level theories to their specific context, which
can be time-consuming and inconclusive. Additionally, the challenge isn’t just in
finding design techniques or principles themselves, but rather in an earlier step:
identifying the core problem and mapping the appropriate research or principles
to address it. Even after this, the difficulty lies in determining the correct steps to
translate the research into actionable strategies that are effective for the specific
use case. As a result, developers without a dedicated design background might
find it overwhelming to navigate this landscape and translate these principles
into actionable strategies for app development. This lack of accessible, prac-
tical resources creates an entry barrier for those who want to apply behavioral
design effectively, leading to a missed opportunity for creating apps that truly
resonate with users. The disconnect between theory and practice makes it diffi-
cult to seamlessly integrate behavioral design into the app development workflow
(Chiang et al., 2021).

Behavioral Design in Open Source Collaboration This challenge seems to
be even more pronounced in open source collaboration, a field heavily dominated
by developers and which typically focuses more on technical solutions than on
design (Levesque, 2004; Raza and Capretz, 2015). Additionally, the collaboration
processes in open source projects are inherently complex, requiring coordination
among diverse contributors (Pal et al., 2024). Making these processes intuitive
demands thoughtful behavioral design, yet in developer-driven environments, us-
ability and user experience often take a backseat to code and functionality. As
a result, many open source platforms suffer from usability issues that make it
hard for newcomers to get involved, limiting contributions and hindering project
success (Levesque, 2004; Raza and Capretz, 2015; Steinmacher et al., 2015).

4

2. Problem Definition

Newcomers to open source projects, in particular, face numerous challenges.
These include social barriers, such as integrating with established communities,
as well as technical obstacles like navigating unfamiliar code bases (Steinmacher
et al., 2015). There are also hurdles related to documentation, understanding the
existing structure of a project, and finding a suitable starting point for contribu-
tions. According to a systematic literature review by Steinmacher et al. (2015)
on barriers in open source software, many of these obstacles revolve around ef-
fectively conveying information, which comes back to insufficient design, making
it hard for new contributors to engage productively (Steinmacher et al., 2015).

Research by Heltweg and Riehle (2023) on open collaborative data engineering
highlights further complications in the lack of standardized processes, methods,
and tools in these environments that creates prominent challenges. Participants
are frequently confronted with new, non-standardized processes, which can be
confusing and slow down progress (Heltweg and Riehle, 2023). In this context,
having systems that are intuitively understandable would be crucial.

5

2. Problem Definition

6

3 Objective Definition

The lack of standardized processes and user-friendly interfaces in open source
collaborative data engineering creates notable barriers for both experienced de-
velopers and newcomers. Specifically open source environments often suffer from
inconsistent practices and a lack of focus on usability, making them challenging
to navigate. When standards are absent, a way to counteract this and improve
the user experience is to make the tools or processes as intuitively understandable
as possible (Heltweg and Riehle, 2023; Levesque, 2004; Raza and Capretz, 2015).

Objective Overview The primary objective of this thesis is to develop a tool
that facilitates and simplifies the integration of behavioral design principles into
the design of applications and processes, specifically targeting developers with
little to no prior experience in design or behavioral design. The tool should offer
an intuitive entry point and an accessible introduction into behavioral science
concepts, lowering the barrier to entry for those unfamiliar with the field.

Rather than providing general information or abstract concepts, the tool should
be adaptable and customizable to specific use cases. It should help developers
identify areas with potential for improvement, present options for enhancement,
and offer background explanations grounded in behavioral design. The focus
should be on proposing practical solutions that are relevant to the user’s context,
mapping these suggestions directly to identified problems while also considering
the developer’s goals and intentions.

The tool should aim to serve as a central hub, providing a collection of strategies,
simplified approaches, and example scenarios for applying those strategies. It
should act as a toolbox, not only for sparking ideas for change but also for
guiding users in identifying and exploring the right questions to ask — often
the more challenging task. Additionally, the tool should offer clear pathways for
discovering effective answers and solutions to those questions.

Targeted Applicability in the Open Source Context The tool should be
particularly aimed at supporting the open source collaboration ecosystem, with
a focus on workflows and processes common in this space. It is intended to

7

3. Objective Definition

be relevant to those who use, develop, or contribute to open source tools and
processes. While open source projects are the primary context for the tool’s
application, it should be designed to be flexible enough for broader use.

Existing research by Steinmacher et al., 2015 suggests that many challenges in
open source collaboration are not technical but rather related to communication
and the effective dissemination of information (Steinmacher et al., 2015). This
tool seeks to address such challenges by applying behavioral design principles to
improve how information is presented and acted upon in these environments.

The tool should include a curated set of strategies and examples, organized to
facilitate problem-solving, and assist developers in identifying the appropriate
strategies for their use cases. It should structure the information in a way that
distills complex concepts into manageable categories, providing developers with
a systematic approach to assessing and improving usability. Thereby, developers
should be able to use this tool to iterate on their designs, refine their intentions,
and gain a deeper understanding of their users’ behavior.

Derived from these objectives, it is essential for the framework to demonstrate
strong performance in

• usability,

• effectiveness,

• accessibility, and

• adaptability

to achieve its intended purpose.

8

4 Solution Design

This chapter outlines the framework’s design requirements and structure. To
develop and design the framework, we first define our design requirements, derived
from the objectives outlined in chapter 3. We then cover how the framework is
built, and the practical methods for adapting and applying it to specific contexts.
Finally, we reflect on the strengths and limitations inherent in the framework’s
design and it’s alignment with the design requirements defined in chapter 4.1. A
more comprehensive evaluation of the framework as a tool, focusing on whether
it meets our defined objectives of chapter 3 will be presented in the evaluation
chapter 6.

This chapter adopts the following terminology:

• Users are the individuals who interact directly with the resulting artifact
that is designed or modified using the framework. They are the ones whose
behavior is aimed to be influenced.

• Developers are those who work with the framework to implement design
changes.

These distinctions should avoid confusion between the two kinds of users through-
out the chapter.

4.1 Design Requirements
In this chapter, we outline the essential design requirements that guide our frame-
work’s development, based on the objectives we set in chapter 3.

Our functional requirements define what the framework must achieve (Chopra et
al., 2010), focusing on addressing usability challenges and promoting behavioral
design based solutions. These requirements ensure that the framework delivers
actionable strategies that developers can easily integrate into their workflows.

Non-functional requirements, such as scalability and simplicity, shape how the
framework delivers these strategies (Chung et al., 2000). By prioritizing user-

9

4. Solution Design

friendly presentation and adaptability, the framework aims to become accessible
to developers of all backgrounds.

The emphasis on behavioral design alignment ensures that the framework itself
serves as a practical demonstration of its principles. This approach not only aims
to build credibility but also to enhance the framework’s usability by embodying
the very concepts it seeks to promote.

Functional Requirements We aim for the conceptual framework to address
the following core functionalities:

• Problem Definition: Help developers recognize and define usability chal-
lenges within their projects.

• Solution Mapping: Provide pathways for developers to connect specific
problems to behavioral design principles.

• Implementation Support: Offer practical, context-specific steps that
developers can take to improve usability.

These functionalities are meant to ensure that the framework provides a sys-
tematic approach to improving usability while remaining grounded in practical,
real-world applications.

Non-Functional Requirements To also ensure its usability and effectiveness,
the conceptual framework should adhere to several non-functional requirements:

• Scalability: The framework should work across projects of varying sizes
and complexities, from small tools to large-scale systems.

• Flexibility: It must accommodate developers with diverse levels of ex-
pertise, from novices to seasoned professionals, without sacrificing depth or
utility.

• Simplicity and Accessibility: Information must be presented in clear,
structured formats, reducing cognitive load and facilitating ease of use.

• Behavioral Design Alignment: The framework should exemplify the
principles it promotes, providing a consistent and intuitive user experience.

• Inclusivity in Open Source Contexts: The framework should address
the specific challenges of open source collaboration, such as diverse user
groups, non-standardized processes, and limited design focus.

• Reusability: It should allow developers to apply the framework across
multiple iterations, ensuring sustained usability improvements.

10

4. Solution Design

• Transferability: The framework should not only address open source spe-
cific challenges, but be applicable to different domains and contexts.

These non-functional requirements are meant to ensure that the framework re-
mains practical, adaptable, and user-friendly, even in complex or evolving project
environments.

4.2 Theoretical Foundations
What is Behavioral Design? Behavioral design differs from design by com-
bining conventional design and design thinking practices with methodologies from
the field of behavioral science (Bay Brix Nielsen et al., 2024; P. J. Cash et al.,
2017). So, unlike traditional design disciplines that prioritize aesthetic appeal
only, behavioral design seeks to systematically understand and shape behaviors
within specific contexts (Bay Brix Nielsen et al., 2024).

Behavioral design, therefore, benefits from the integration of methodologies from
behavioral science as well as design thinking. While behavioral science contrib-
utes evidence-based methods for understanding and modifying behavior, design
thinking emphasizes user-centered, iterative development processes (Bay Brix
Nielsen et al., 2024; Tyler, 1966; Wölbling et al., 2012).

Behavioral sciences refer to a range of interdisciplinary fields which study human
behavior (Tyler, 1966). Behavioral scientists find methods which diagnose and
solve behavioral problems, and doing this through designing behavior changing
interventions is known as behavioral design (Bay Brix Nielsen et al., 2024; Bucher,
2020; Voorheis et al., 2022).

Behavioral designers therefore aim to create clear and effective solutions based
on the premise that a solution’s effectiveness is achieved through influencing user
behavior (Bucher, 2020; P. Cash et al., 2022; Voorheis et al., 2022).

To accomplish this, behavioral design must focus on two aspects simultaneously:
the desired behavior change, such as a user noticing a specific interface element
or drivers reducing their speeding, and the design intervention that facilitates
this change, such as emphasizing a UI element visually or installing speed bumps
(Khadilkar and Cash, 2020).

According to the Stanford Behavior Design Lab 1, behavioral design is about un-
derstanding human behavior and creating designs that facilitate specific changes
in it. Its goal is to develop solutions that promote positive behavior change (Stan-
ford Behavior Design Lab, 2019). To support behavioral designers in achieving
such positive behavior change, Dr. BJ Fogg from the Stanford Behavior Design

1https://behaviordesign.stanford.edu

11

https://behaviordesign.stanford.edu

4. Solution Design

Lab has developed systematic tools. A key aspect of Fogg’s work includes his
persuasive technology strategies (Fogg, 2003).

Persuasive Technology Persuasive technology, as defined by Fogg (2003),
refers to interactive systems or products designed to influence users’ attitudes and
behaviors. These technologies aim to make desired actions or outcomes easier to
achieve by shaping user behavior in a systematic way. Fogg’s foundational work
in this field has been instrumental in identifying how technology can be employed
to subtly alter human behavior through a set of carefully crafted strategies (Fogg,
2003; Khaled et al., 2005).

The core purpose of persuasive technology is to simplify or modify user actions,
such that they are more likely to achieve a specific goal. Behavioral design fre-
quently draws on several strategies to achieve these outcomes, which are grounded
in simplifying the process, guiding user decisions, or leveraging user motivation
to foster specific behaviors. These strategies are critical for understanding how
technology can be used in behavioral change (Khaled et al., 2005; Toledo et al.,
2018).

Persuasive Technology Strategies In his work, Fogg identified seven strategies
commonly employed in persuasive technology tools (Fogg, 2003). These strategies
identified to drive user behavior have further been refined and altered to fit the
use case of persuasive, computerized systems by Wildeboer et al. (2016). Wilde-
boer et al. (2016) refined the selection of techniques within that context to the
principles of reduction, tunneling, tailoring, personalization, self-monitoring, sim-
ulation, and rehearsal.

4.3 Conceptual Design Process
For the conceptual design process of the framework we started with a compre-
hensive literature review. This review identified and analyzed critical behavioral
design principles, exploring their application and contextual relevance. The ob-
jective was to gain an overview of the field and understand how these principles
are conveyed and how they are meant to be utilized in practice effectively. Since
the framework’s usability is of central relevance we employed an iterative devel-
opment process to refine the framework. This involved cycles of evaluating the
framework’s usability and based on the evaluation’s feedback refining it further.
To ensure comprehensive testing, we used a polar sampling approach to pick out
the test scenarios, capturing a diverse range of scenarios within the open source
collaboration process. A more detailed explanation for this can be found in the
demonstration chapter 5.

Our initial focus for the use of the framework was on a specific use case, the

12

4. Solution Design

open source collaboration workflow. We selected this domain due to its unique
challenges, such as developer-driven environments that often neglect usability
and behavioral design in exchange for a stronger focus on technology (Levesque,
2004; Raza and Capretz, 2015). Open source workflows provided a fertile ground
for the usage of a framework for behavioral design implementation, as usability
improvements in this context could enhance the domain’s goal of collaboration
and reduce barriers for contributors.

We aimed to transition from a use-case-specific design to a generalized frame-
work. Similar to the method of Explanation-Based Generalization (Mitchell et
al., 1986), which leverages domain-specific knowledge to derive general concepts
from specific examples by explaining why the example fits the concept, we in-
corporated the domain-specific knowledge we earlier acquired through our com-
prehensive literature review to generalize the framework and its usage into a
non-use-case specific, more generalized form.

Generalizations are usually based on observing a phenomenon in multiple con-
texts. In this instance, we generalized the framework without such additional
observations, leaving validation of the effectiveness of such generalization to fu-
ture work.

Application and Adaptation of the Use Case In the upcoming chapters,
the open source collaboration workflow use case is used as an illustrative example
to show how the framework could be applied in practice and provides a basis for
the framework’s evaluation. For creating the framework, we therefore combined
research-based behavioral insights, iterative development, and a straightforward
structure to create a conceptual framework to nudge users with behavioral design
for goal driven engagement, called the NUDGE framework.

4.4 The Framework’s Conceptual Design
The conceptual framework is structured to facilitate its use through a clear, two-
phase process. In the first phase, the framework is adapted to a specific use
case. This ensures that it aligns with the unique requirements and context of
that particular scenario. In the second phase, this tailored version is applied to
the artifact within the specific context, enabling the framework to address the
use case effectively. Since nudging users into a specific direction is highly use case
and context-sensitive, it’s very important to provide very context-specific advice.
Hence, the framework’s use is divided into 2 different phases: the adaptation
phase and the application phase. In the adaptation phase, the framework itself is
customized by the developer and adapted to the use case in which the framework
is to be used. In the application phase, the behavioral design techniques pointed
to by the adapted framework are applied to the artifact itself.

13

4. Solution Design

4.4.1 The Framework’s Structure: How It Works
The NUDGE framework is structured across three interconnected dimensions:
the process dimension, the technique dimension, and the developer intents.

Developer
Intent

Developer
Intent

Developer
Intent

Behavioral Design Technique
/ Behavioral Block

Process
Step

Figure 4.1: The framework’s structure

The process dimension encompasses an entire process or subprocess, broken down
into individual steps. The technique dimension provides a set of behavioral design
techniques derived from Fogg (2003) and Wildeboer et al. (2016) that can be ap-
plied within these steps. Developer intents link the two, representing the underly-
ing goals of each process step and guiding the selection of appropriate techniques.
Together, these dimensions function by mapping a behavioral design technique
to a process step through the intent driving that step. Each dimension will be
detailed in the following sections.

The Process Dimension The process dimension portrays the process or user
workflow which the developer wants to optimize through the framework. It should
contain all steps taken by a user throughout the entire process and therefore each
step which the user undergoes on their journey through the evaluated application.

Therefore, the process dimension consists precisely of the process to be optimized
and must fully encompass it. The boundaries of the dimensional space should
align with the boundaries of the process to be optimized. No steps from a pre-

14

4. Solution Design

ceding or subsequent process should be included. This is due to the fact that
we designed the framework in a way that it not only optimizes individual user
interactions with the application, but also provides the opportunity to optimize
the according process as a whole on a conceptual level. To define the process
dimension’s value space, one creates a process flow-like diagram that pictures all
steps a user undergoes throughout the chosen process.

Additionally, one or multiple specific user roles should be defined for the user
on hand. Because all behavioral techniques which are used later in the process
need to be fitted well to the specific user group, taking the user’s abilities into
consideration is specifically important here.

Therefore, the process dimension consists of an ordered sequence of well-defined
process steps that altogether make up the process that is to be optimized or
which contains the usability issues that are to be eradicated with the usage of
the NUDGE framework as well as the according user roles.

We will provide more detailed information on how one should define, size and
align each process step in the form of a set of rules of thumb in chapter 4.5.1. For
now, understanding the basic concept of what the process dimension portrays
provides enough insight to understand the framework’s basic structure.

The Technique Dimension The technique dimension consists of a list of
behavioral blocks. A behavioral block is structured partially following Fogg’s
Behavior Model, which asserts that behavior change is only possible when three
factors - motivation, ability, and a trigger - are present at the same time (Fogg,
2009).

Aligning with Fogg’s Behavior Model, each block is associated with a design
technique and consists of a technique name, a technique summary, an associated
trigger for user action and example implementations. The user’s end goal for the
task they are currently engaged in serves as their motivation. The user’s ability
has previously been taken into account when the user role was determined within
the process dimension and the process was defined and structured accordingly.

Based upon Fogg’s persuasive technology strategies, we formulated a set of tech-
niques derived from Wildeboer et al. (2016). The strategies of reduction, tunnel-
ing, tailoring, and personalization were retained in their original form as described
by Fogg, while the techniques of self-monitoring, simulation, and rehearsal were
adapted to better align with the specific requirements of our use case and to
enhance usability (Fogg, 2003; Wildeboer et al., 2016).

15

4. Solution Design

Our refined set of techniques consists of the following techniques:

• Reduction

• Tunneling

• Tailoring

• Personalization

• Self-Monitoring

• Simulation

• Rehearsal

An exemplary, detailed view of one of the selected techniques incorporated in
a behavioral block can be seen in figure 4.2. Further details on the other tech-
niques are available in the appendix chapter A.1 in the demonstration’s adapted
framework, shown in figure 1 and in the appendix chapter B.

Figure 4.2: The behavioral block of the reduction technique

16

4. Solution Design

Behavioral Block Specifics Each block is given a name derived from Fogg’s
persuasive technology strategies (Fogg, 2003) and Wildeboer et al. (2016), which
acts as an identifier not only for the behavioral technique itself but the whole
behavioral block. A technique summary provides a quick overview over the key
elements that make up and guide the technique, the technique’s overarching goals
and a road map on how to achieve those on a conceptual level.

Since Fogg’s Behavior Model states that even if a user is able and motivated to
fulfill a task, it takes a trigger to create momentum within them, a trigger for
user action is also provided (Fogg, 2009). Finally, to provide hands on advice,
each block contains an example implementation on how the specific technique
could be implemented. The aim is for the conceptual information to be tangible
and easily accessible for a developer who is not experienced in executing design.

As mentioned before, the technique dimension offers a set of behavioral design
techniques to start off with, which are based on Fogg’s strategies for persuasive
technologies. These techniques offer a sufficient base for a behavioral design
optimization toolkit and can - but don’t have to be used. We consider them to
be a valuable starting point, especially for developers or users of the framework
that have no or little design experience or don’t want to spend too much time
going into the material, but rather use the framework to avoid having to spend
the time preparing but instead get a roadmap to easy improvements.

Adding or removing techniques or building a new set from scratch fitted to a spe-
cific use case is up to the developer using the framework. This is recommended
for power users or users with design expertise only though, as it requires great
insight into the behavioral design space. The selection of techniques are crucial
make or break building blocks of the whole NUDGE framework. Without appro-
priate techniques, developer intents can still be mapped to the provided process
steps, but the actionable part of taking those intents and building strategies that
make them take effect on user behavior will not be able to take place.

The Developer Intents Once the process is well defined and a selection of
behavioral blocks has been made, goals need to be formulated for each individual
process step in the form of developer intents. A developer intent represents the
specific purpose or desired outcome that the developer envisions for the user
within a particular process step. These intents should reflect the underlying ob-
jectives of the application or process and act as a guiding principle for structuring
developers’ sub-goals and user interactions at each step. It serves as the rationale
for how and why a process step is designed, ensuring that a user is guided toward
the intended behavior.

A developer intent can vary across a wide spectrum of sizes, from a small goal,
such as drawing a user’s attention to a specific UI element — often achievable

17

4. Solution Design

by modifying just one element — to a larger objective, like reducing stress and
building trust. The latter typically requires adjusting multiple elements and the
way they interact with one another. An example we will revisit later in our
demonstration chapter 5 is the intent to direct a user’s attention toward poten-
tial intrinsic or extrinsic rewards gained from contributing, in order to increase
their perception of the value of contributing to a project within the open source
collaboration space.

Assembling the Framework by Mapping the Dimensions To assemble
the framework, the developer intents defined earlier for each process step are
mapped to the available behavioral techniques. This mapping creates a struc-
tured pathway of actionable steps. By establishing a context-specific ”if-then”
connection between a (through the developer intent) specified goal and a strategy
to reach it, the framework provides clear guidance tailored to each goal or intent,
serving both as a roadmap and a practical action plan for achieving objectives.

4.4.2 The Framework’s Structure: Why it Works
How it Impacts the Artifact: Why it Works on the Final Product The
entire framework and its effects on the final product build over multiple levels.
First, the problems and goals must be accurately identified. Next, the appropriate
solution strategies for the identified problems must be determined. Finally, these
solutions must be applied and be both suitable and effective.

Since the techniques applied in the final step of this framework are based on Fogg’s
persuasive technology strategies, they have already been validated through his
work and subsequent studies (Fogg, 2003; Wildeboer et al., 2016). This ensures
that the final step — the effectiveness of the solutions — has already been estab-
lished and proven. The critical focus for this framework’s effectiveness, therefore,
lies in identifying the correct solutions, hence the appropriate behavioral design
techniques. To achieve this, it is essential to first define the preliminary context
and starting conditions accurately and then determine the corresponding goals.

To properly evaluate the preliminary context and starting conditions, we placed
particular focus on adapting the framework to a specific use case. This includes
requiring the developer to properly define their process to be optimized and to
clearly describe the roles and abilities of the users involved. This step serves
not only to create clarity but also to integrate Fogg’s Behavior Model alongside
Fogg’s persuasive technology strategies within the framework.

Fogg’s Behavior Model, as illustrated in figure 4.3, is a framework designed to
support the creation of persuasive technologies by identifying the threshold at
which users gain sufficient momentum to take action (Fogg, 2009). It states that
successfully indicating a behavior relies on a user’s motivation and ability, and can

18

4. Solution Design

be influenced by an intervention trigger (Toledo et al., 2018). Hence, for a user
to act, a trigger must be present, and the combination of their motivation and
ability must exceed a certain threshold. By embedding Fogg’s Behavior Model
into the NUDGE framework, we ensured that the strategies applied within the
artifact are tailored to the specific user group. Therefore, we incorporated all
three cornerstones of Fogg’s Behavior Model, ability, trigger and motivation, into
the NUDGE framework.

Motivation

Ability

Inc
rea

sin
g l

ike
lin

es
s t

o p
erf

orm
 ta

rge
t b

eh
av

ior

Figure 4.3: Fogg’s Behavior Model derived from Fogg, 2009

Since the user’s abilities are a cornerstone of Fogg’s Behavior Model, we incorpor-
ated that part through the definition of user roles and their abilities within the
process definition of the framework’s adaptation phase, enabling the alignment of
strategies with user-specific characteristics later on. Triggers and motivation, on
the other hand, are derived from the use case, process, and application context.
Examples of triggers have been embedded into the behavioral blocks, while user
motivation often stems from the overarching goal of the defined process.

With the preliminary context and starting conditions clearly defined, the next
step is to determine the correct goals and identify the appropriate solution path-

19

4. Solution Design

way towards those goals. We aim to find those solution pathways through our
method of defining developer intents and mapping these to predefined behavioral
techniques. By establishing a logical chain of dependencies, as can be seen in fig-
ure 4.4, the framework provides a step-by-step action plan, enabling a systematic
identification of the most effective solution strategies.

Process Step 1

Process Step 2

Process Step 3

...

Process Step Goal Developer Intent

Developer Intent

Behavioral Design
Technique /

Behavioral Block

Behavioral Design
Technique /

Behavioral Block

Figure 4.4: Example pathway of mapping a process step to a behavioral tech-
nique

Usability of the Framework: Why It Works for Developers and Non-
Designers We chose to represent the framework as a three-dimensional visu-
alization encompassing the process, technique, and developer intent dimensions.
Eberhard (2021) highlights that information visualization can enhance both the
quality and speed of decision-making by alleviating cognitive load and aiding in
the understanding of complex information. Furthermore, visualizations can be
crucial for cognitive processing and can influence advanced cognitive functions, in-
cluding problem-solving, sense-making, and decision-making (Parsons and Sedig,
2013). By employing the framework as a kind of visualization (figure 4.1), we aim
to simplify decision-making and enhance both the user experience and usability
of the framework for developers.

We applied Fogg’s Behavior Model not only within the framework’s behavioral
blocks but also to the framework itself on a meta level. We implemented the
motivation, trigger and ability cornerstones of Fogg’s Behavior Model into the
framework’s structure as well to facilitate usability for the developer.

In this context, the developer intent functions as the source of motivation, provid-
ing clear objectives. The ability threshold is intentionally kept low, as the frame-
work is designed to be accessible even for individuals without prior knowledge of
behavioral design, aligning with its purpose as a tool for non-design professionals.
The trigger at this meta level is established through the framework’s mapping of
developer intents to actionable examples of behavioral techniques.

20

4. Solution Design

Through this approach we aim to minimize entry barriers into using the frame-
work and simplify the process of adopting and implementing behavioral design
improvements.

Finally, the usability of the framework was iteratively tested and refined through
various cycles of feedback and improvement in the evaluation chapter 6. This
process allowed us to identify and address potential pain points, ensuring that
the final framework is as intuitive as possible and effectively supports its users.

4.5 How to Adapt and Apply the Framework
As mentioned before, the framework is employed in two distinct phases: the
adaptation phase and the application phase. The adaptation phase serves as
the first and critically important step, during which the framework is tailored to
the specific use case. Since any modifications aimed at nudging user behavior
are highly context-dependent, it is essential to have a framework that is also
context-specific. Therefore, adaptation must always be the initial phase.

Once the framework has been adapted to the use case, the application phase
follows. In this phase, the framework’s action plan, now adjusted to the specific
case and situation, is implemented. Hands-on changes are now applied to the
artifact itself, realizing the intended modifications or nudges to user behavior.

4.5.1 Adapting the Framework to a Use Case
The initial step in adapting the NUDGE framework to a specific use case involves
defining the process in which the user behavior is intended to be influenced and
guided through nudging. To assist developers in clearly outlining and specifying
the process and its individual steps, we have developed a set of practical guidelines
to follow. These rules of thumb are designed to provide structured support and
ensure a comprehensive understanding of the process. They were logically inferred
from patterns and insights gained during our hands-on experience working with
the framework in the demonstration, which will follow in chapter 5. By reflecting
on how we defined the process and its individual steps and observing any pain
points we had, we gathered practical recommendations that could help developers
effectively define their process to adapt the framework.

21

4. Solution Design

Defining and Structuring the Process: Rules of thumb for Defining
Process Steps

1. Clarity and Precision of Titles: Each process step should have a concise
and precise title. This title, when viewed within the context of the overall
framework, should be sufficient to understand the content and purpose of
the process step without requiring further information.

2. Brevity of Description: A process step should be small enough to be
described in a single, short sentence.

3. Clear Focus on a Single Goal: Each process step should have one
overarching goal. If two distinct goals are identified, the step should be
split into two separate steps. These steps can then be rearranged as needed
to maintain the logical flow of the overall process. Alternatively, consider
a higher-level abstraction that can encompass both goals.

4. Avoiding Goal Overlap: A process step should be large enough to justify
a single, clear goal that is distinct from other process steps. If the goal of
a current process step overlaps with that of a previous or subsequent step,
these steps should be combined or unified, and the overall process should
be rearranged to ensure consistency.

5. Non-Competing Goals: The goals of different process steps should not
compete with one another. If the goal of a step is unclear or indistinct,
reevaluate the necessity of the step. Unnecessary steps can add complexity
while offering little to no positive value, which may negatively impact the
experience of both the developer using the framework and the end user of
the resulting artifact.

6. Clear Developer Intents: Developer intents should be easily derivable
from the goal of each process step. If a developer intent cannot be clearly
identified from the process step and its goal, the step should be reassessed
for its relevance.

7. Parallel Steps and Synergies: When process steps are set in parallel,
avoid creating synergies between them. Each step should be treated indi-
vidually in terms of goal setting and developer intent deduction to maintain
clarity and avoid unnecessary overlap.

8. Measurable Progress: There should be a measurable difference in the
end user’s knowledge or position within the artifact from one process step
to the next. This ensures that each step adds clear value to the user’s
progression throughout the process.

These guidelines are designed to help developers streamline the process, minimize
ambiguity, and establish a logical progression of tasks. As the subsequent steps

22

4. Solution Design

in the framework’s use depend on a well-defined process, ensuring its clarity
and structure is crucial. Since this is also the first — and often the most time-
consuming — step in the adaptation phase, we aim to provide maximum support
to help developers overcome the initial barrier of working with the framework.

Understanding User Roles and Their Relevance in the Process When
applying behavioral techniques onto specific processes, it is crucial to identify
and analyze the different user roles involved. This includes examining each step
of the process and considering which user role is responsible for completing or
navigating through these steps. A thorough understanding of user roles helps
ensure that the resulting design aligns with the users’ needs and abilities.

Based on our experience with defining user roles, key questions to consider may
include:

• What are the users’ abilities? For example, how technologically skilled are
they?

• What prior knowledge do they possess about the artifact or system?

• How experienced are they with the artifact? Are they engaging with it for
the first time, or are they recurring users?

• Do they occupy specific roles, such as administrators, with distinct respons-
ibilities?

Understanding user abilities is critical, as ability is one of the foundational ele-
ments of Fogg’s Behavior Model. It is key to aligning behavioral techniques with
the user’s capability to engage. Behavioral techniques can only take effect and
influence behavior if they are tailored to the users’ abilities and are delivered with
an appropriate level of support and context.

It is essential to differentiate between the concept of a user role and an individual
user. A single user may assume multiple roles within the process, while a specific
role may be filled by multiple users throughout a process.

Defining a Set of Techniques The NUDGE framework incorporates a found-
ational set of seven behavioral techniques, which serve as the primary tools and
strategies of the framework’s toolkit. Selecting the appropriate techniques is cru-
cial for ensuring that the framework effectively facilitates the desired behavioral
changes. Having a tool available for each part of a use case is essential; otherwise,
certain aspects may not be properly addressed.

Given the complexity and width of the field of behavioral design, as well as the
intricacies of human behavior, we strongly recommend using the established base
set wherever it is applicable. Changes to this set, such as adding, modifying, or

23

4. Solution Design

removing techniques, should only be undertaken with a solid understanding of the
field. Improperly removing a critical technique could undermine the framework’s
effectiveness in certain areas, potentially compromising its ability to achieve the
intended outcomes.

For cases where new techniques are introduced, we advise to maintain the same
structural format used in the existing techniques. This involves embedding new
techniques within a cohesive behavioral block and integrating triggers as well
as example implementations. Preserving this structure ensures that the newly
added techniques align with the framework’s design principles and maintain com-
patibility with Fogg’s Behavior Model, which is interwoven into the framework’s
structure.

Formulating Developer Intents: Rules of Thumb and Technique Map-
ping The final step in adapting the framework to a specific use case is formulat-
ing developer intents for each individual process step and mapping these intents
to the most suitable behavioral techniques. This stage is particularly critical as
it encapsulates the goals, intentions, and desired outcomes of each process step.

Similar to the guidelines we established for defining the process, we have also
created guidelines for formulating developer intents for each process step, based
on our experience with the framework. Each process step should have at least
one developer intent that aligns with its goal. These developer intents represent
the goal of the process step, the developer’s intentions behind it, and the desired
outcome they aim to achieve.

1. Alignment with Process Step Goals: Developer intents should be
clearly aligned with the goal of each process step.

2. Non-Conflicting Intents: Developer intents within a single process step
should not conflict or compete with one another. Conflicting intents can
create mixed signals, leading to confusion and decreased usability. If the
process step is meant to address multiple user groups (e.g., beginners vs.
power users), ensure that competing developer intents are either resolved
or separated into distinct steps.

3. Granularity of Intents: Each developer intent should be singular, not
composed of multiple objectives. If an intent contains multiple components,
it should be split into smaller, clearly defined intents.

4. Avoiding Overly Broad Intents: A developer intent should be specific
and measurable. If an intent is too vague or applies to multiple process
steps, it may need to be refined, split, or made more precise to fit the
framework effectively.

24

4. Solution Design

5. Scalability of Process Steps: If a process step lacks a developer intent, it
may be too small or poorly defined. Consider combining it with the previous
or subsequent step to create a more meaningful context. Conversely, if
multiple competing developer intents exist within a single process step, the
step itself may be too large and should be split into smaller, more focused
steps.

6. Measurable Fulfillment: It should be clearly defined when and how a
developer intent is fulfilled. This includes specifying the action or outcome
that achieves the intent. If this is not possible, the intent may be too vague
or large and should be refined into smaller, measurable objectives.

7. Techniques and Intents: While developer intents are often mapped to
specific techniques, not every intent must result in the incorporation of its
corresponding technique. The framework should allow flexibility in choos-
ing the most appropriate techniques without mandating their use in every
scenario.

Once the developer intents are formulated, they should be mapped to the most
suitable behavioral block, thereby linking each individual process step to a beha-
vioral technique based on its intended goal. There is no single ”correct” mapping;
an intent may align well with multiple behavioral blocks, and the mapping pro-
cess can be highly subjective. What’s important is that developers map their
intent to the behavioral block they find most appropriate, as they will be the
ones implementing the changes. Ensuring that the mapped pathways align with
their way of thinking is crucial for the successful application of the framework
within their specific context.

By linking developer intents to behavioral techniques, this step establishes a clear
“if-then” action plan that is straightforward to implement. This mapping ensures
that each process step is directly connected to an actionable strategy, making the
framework practical and effective in its application.

4.5.2 Applying the Adapted Framework to a Specific Use
Case

Once the adaptation phase of the NUDGE framework is complete, the result is a
comprehensive ”if-then” action plan that explicitly links the defined goals within
each individual process step of the use case to the available behavioral techniques.

The next phase, the application phase, involves hands-on implementing this ac-
tion plan within the artifact. This first requires identifying the specific parts of
the artifact associated with each process step which are referenced by the de-
veloper intents mapped to those steps, and then utilizing the chosen behavioral
techniques to address the identified goals. The framework’s explanations and

25

4. Solution Design

example implementations for each technique serve as a guide for incorporating
these elements into the artifact seamlessly. By following this approach, the imple-
mentation process becomes straightforward. Developers view a specific process
step, identify its relevant parts within the artifact like the associated parts of a
product’s user interface, refer to the developer intents and mapped behavioral
techniques, and implement the suggested strategies to align the artifact with the
desired outcomes. The clarity and structure of the action plan ensure that the
process is efficient and actionable.

Since the framework provides an action plan that connects behavioral techniques
as strategies to goals defined by the developer intents instead of specific design
suggestions, it’s designed to be reusable. As long as the process itself remains
unchanged, no further adaptation of the framework is required. If, however, the
process evolves, some aspects of the framework may need to be readapted or
updated to align with the new context.

A practical demonstration of an application of the framework can be found in the
following demonstration chapter 5, where the NUDGE framework is adapted and
applied to the illustrating example of an open source collaboration workflow. The
demonstration shows how the framework can be effectively utilized in real-world
scenarios to enhance user interaction and engagement.

The IYKYK Principle

To underscore the importance of the thorough adaptation of the NUDGE frame-
work to the specific use case, we recommend applying the ”If You Know, You
Know” (IYKYK) principle. It emphasizes that for the framework to function
optimally, it must be carefully prepared and adapted to the specific use case.
User behavior — and the ability to nudge it — is highly context-sensitive, mean-
ing that any attempt to influence or optimize it requires a tool that is equally
context-specific. Therefore, it is important to have tailored approaches that align
closely with the particular circumstances, users and goals of the use case.

To achieve this context specificity, the framework must be carefully aligned with
the exact process it is intended to support. This forms the foundational basis
upon which all subsequent actions and outcomes are built. The IYKYK principle
tries to showcase this process by providing a clear pathway:

• If you know your process: A well-defined, clearly scoped process with
distinct and unambiguous process steps provides the essential groundwork.
A structured understanding of the process ensures clarity in the subsequent
stages.

• Then you will easily know your developer intents: From a well-
defined process, it becomes straightforward to derive precise developer in-

26

4. Solution Design

tents. These intents are tailored to each process step and aligned with the
overarching process goals, ensuring they are both actionable and contextu-
ally relevant.

• Then you will easily know the behavioral technique to use: Clear
and specific developer intents lead to an easier selection of appropriate be-
havioral techniques and strategies. A well-mapped intent provides a direct
link to the most suitable technique for achieving the desired behavioral
outcome.

This principle highlights the importance of investing time and effort in the pre-
paratory adaptation phase. By ensuring that the process, intents, and techniques
are all clearly defined and aligned, the framework can function seamlessly and
effectively to achieve its intended behavior-changes.

4.6 Strengths, Limitations, and Opportunities
for Extension by Design

The conceptual framework provides insights into how usability challenges can
be addressed by integrating behavioral design principles. Through practical
guidelines and a flexible, adaptable structure, the framework aims to empower
developers to implement user-centered design changes without requiring extensive
design expertise. However, as with any tool, it’s design also comes with limita-
tions and areas where it could be further refined to increase its applicability and
impact. In the following sections we will reflect on the framework’s design.

4.6.1 Strengths
Adaptable, Modular, and Customizable Design One of the key strengths
of the framework is its adaptability. Developers can tailor process steps, tech-
niques, and intents to suit specific use cases or scenarios, ensuring its relevance
across diverse applications. Its three-dimensional structure — comprising pro-
cess steps, techniques, and developer intents — provides a systematic and flexible
approach to addressing usability challenges, making it a robust tool for various
contexts.

Additionally, considering its modularity, the mapping and therefore the size of
the adapted framework can be either super simple and small or big and complex
depending on the applied use case and its complexity.

Integration of Behavioral Design Principles The framework leverages Fogg’s
Behavior Model and Fogg’s persuasive technology strategies to provide a theor-

27

4. Solution Design

etically grounded approach to influencing user behavior. This alignment with
behavioral design principles reinforces the framework’s credibility and utility.

Practical and Actionable Designed with practicality in mind, the framework
offers developers a pre-defined toolbox of behavioral design techniques, along with
actionable insights, in the form of behavioral blocks. By encouraging developers
to define clear processes with specific goals, it ensures that developer intents are
clearly defined, measurable, and actionable, increasing the likelihood of achieving
desired outcomes. This makes it accessible to developers without formal training
in design or usability, reducing cognitive load and providing structured guidance.
By simplifying the integration of behavioral design techniques, the framework em-
powers developers to make impactful design changes without requiring extensive
expertise.

Open Source Relevance The framework was structured with open source
environments in mind, where usability can take a backseat to functionality. By
aiming to be most suitable for addressing usability challenges unique to developer-
driven open source workflows, the framework aims to promote inclusivity and
lower barriers to collaboration.

Iterative and Reusable The framework is able to support iterative refine-
ment. Developers can repeatedly apply and adapt the framework to refine usab-
ility of their artifact over time, ensuring that it remains effective and relevant as
workflows evolve. This reusability can make the framework a long-term solution
for ongoing improvements.

4.6.2 Limitations
Reliance on Accurate Process and Intent Definition The framework’s
effectiveness depends heavily on well-defined process steps and developer intents.
Ambiguities or inaccuracies in these elements can lead to suboptimal results,
limiting the framework’s effectiveness.

Initial Learning Curve and Investment Despite being designed for access-
ibility, the framework may present a steep learning curve for developers unfamiliar
with behavioral design or usability concepts. Additionally, the initial effort re-
quired to correctly adapt the framework may deter its primary target audience
seeking quick and easy-to-apply solutions.

Dependence on Pre-Defined Techniques While the framework includes a
curated set of behavioral design techniques, it may not comprehensively address
all use cases or advanced scenarios. Expanding or customizing these techniques

28

4. Solution Design

requires expertise, potentially limiting the framework’s usability for less experi-
enced developers or those working in niche contexts.

Complexity in Large-Scale Applications In large-scale systems with nu-
merous parallel processes and diverse user roles, mapping developer intents and
techniques can become complex and unwieldy. Conflicts may arise from over-
lapping or competing intents, particularly in scenarios involving multiple user
groups.

Focus on Isolated Processes The framework is designed to focus exclusively
on a single, isolated process without considering external or intersecting processes.
While this ensures precision and clarity within the targeted process, it does not
account for interactions or dependencies with other processes that may overlap
or cross paths.

Assumed Generalization of the Framework Currently, the generalization
of the framework from the specific use case of the open source collaboration work-
flow remains untested. While we assumed that the framework could be applied
effectively to other domains and use cases, this has not yet been empirically
validated.

4.6.3 Opportunities for Extension
Integration of Cross-Process Dependencies As for now, the framework
only takes a single isolated process into consideration. It could be extended to
account for intersecting or overlapping processes, enabling developers to optimize
workflows that involve multiple interconnected processes. This could for example
include tools for mapping and visualizing dependencies and synergies between
processes, offering a more holistic approach to applying behavioral design across
complex systems.

Enhanced Guidance and Examples Providing detailed templates, case stud-
ies, and examples could help developers define process steps, developer intents,
and techniques more easily and effectively. Additional resources for handling com-
plex workflows and diverse user roles could promote the framework’s accessibility
and usability for a broader audience.

Technique Expansion The library of behavioral design techniques could be
expanded to include advanced or industry-specific strategies. Pathways for de-
velopers to intuitively integrate custom techniques into the framework could also
make it more versatile and adaptable to unique use cases.

29

4. Solution Design

Testing Generalization and Broader Applicability It would be valuable
to test whether the generalization from the specific use case of the open source
collaboration workflow was successful. Through further evaluation we could de-
termine whether the framework could also be applied to different areas and use
cases beyond the one initially explored.

Automation and Tool Support The development of software tools or plu-
gins could automate parts of the framework, such as mapping intents to tech-
niques or generating process flow diagrams. AI-driven recommendations based
on developer inputs and use case characteristics could further streamline the ap-
plication of the framework, making it more user-friendly and efficient.

4.7 Assessment of Met Design Requirements
The NUDGE framework’s design was developed to fulfill the design requirements
stated in chapter 4.1. The following table evaluates how well these requirements
were met by the framework’s design.

Functional Requirements Met
Problem Definition Yes
Solution Mapping Yes
Implementation Support Yes

Table 4.1: Assessment of met functional requirements

Non-Functional Requirements Met
Scalability Partially
Flexibility Yes
Simplicity and Accessibility Partially
Behavioral Design Alignment Yes
Inclusivity in Open Source Contexts Yes
Reusability Yes (assumption)
Transferability Partially (untested)

Table 4.2: Assessment of met non-functional requirements

Functional Requirements

• Problem Definition: The framework provides a structured methodology
for developers to define the usability challenges within their processes. The
adaptation phase is designed to guide developers in defining process steps
and user roles, aligning with this requirement.

30

4. Solution Design

• Solution Mapping: The mapping of the process dimension to the tech-
nique dimension through developer intents effectively connects specific us-
ability problems to actionable strategies, satisfying the requirement for solu-
tion mapping.

• Implementation Support: By providing practical steps, triggers, and
examples for implementing behavioral techniques, the framework’s design
meets the need for implementation support. Developers are given clear, ac-
tionable pathways to incorporate behavioral design. Additionally, the rules
of thumb for both the process definition and developer intent formulation
support the developer in their process.

Non-Functional Requirements

• Scalability: The modular structure of the framework’s design, adaptable
to processes of varying complexities, meets the scalability criterion only to
an extent. Considering the freedom provided by the framework, the map-
ping itself can range from a small, simple size to a big and complex one
depending on the applied use case. We are assuming, however, that since
cross-process dependencies and synergies aren’t considered yet, the frame-
work might not be applicable too well for large-scale projects. Therefore,
the scalability requirement is met only partially.

• Flexibility: Since the framework is designed to function without needing
developers to have any prior expertise, it accommodates users with varying
levels of expertise, offering detailed guidance for beginners and flexibility
for experienced developers. Additionally, the modularity of the framework
allows it to grow with the size of the use case at hand. Thereby fulfilling
the flexibility requirement not only for its user base but also the framework
itself.

• Simplicity and Accessibility: While the framework’s design achieves
simplicity in structure, an initial learning curve exists, particularly for de-
velopers unfamiliar with behavioral design. Future iterations could address
this gap with enhanced documentation and tooling support.

• Behavioral Design Alignment: The integration of Fogg’s Behavior
Model and persuasive technology strategies ensures the framework’s align-
ment with behavioral design principles. This consistency bolsters the frame-
work’s credibility.

• Inclusivity in Open Source Contexts: The framework is built to ad-
dress open source challenges by prioritizing usability and user behavior.
This can be a valuable way to reduce barriers to contribution, meeting this
specific non-functional requirement.

31

4. Solution Design

• Reusability: Based on the framework’s structure and intended use, we
assume that it is feasible to adapt and reuse it across multiple projects. It
would thereby fulfill this requirement, although this has not been empiric-
ally evaluated yet.

• Transferability: The framework’s applicability to domains beyond the
open source collaboration space remains untested, leaving this requirement
partially unmet. While the only precondition for the framework to be ap-
plicable to a use case is, that it must be possible to break it down into a
well defined process, empirical validation is necessary to confirm the frame-
work’s generalizability.

4.8 Summary
The Solution Design chapter introduced the NUDGE framework, a structured
tool for integrating behavioral design principles. The framework’s three-dimensional
structure, encompassing process steps, developer intents, and behavioral tech-
niques, was elaborated upon, alongside its theoretical foundation in Fogg’s Be-
havior Model and persuasive technology strategies.

Key points include:

• Conceptual Framework: The adaptation and application phases ensure
that the framework is tailored to specific use cases while remaining adapt-
able to evolving contexts.

• Process Customization and Developer Intent Mapping: The em-
phasis on defining a clear, measurable process and formulating goals and
intentions for each step through developer intents enhances the framework’s
effectiveness.

• Behavioral Blocks: A curated set of techniques based on Fogg’s persuas-
ive technology strategies provides practical action plans for addressing user
behavior.

Our assessment suggests that the framework met most functional and non-functional
requirements. However, areas for improvement include simplifying the adapta-
tion phase and validating the framework’s generalizability across domains. These
limitations highlight opportunities for further research and refinement.

In conclusion, the NUDGE framework provides developers with an accessible tool
to influence user behavior.

32

5 Demonstration

For this demonstration, we focused on the open source collaboration workflow,
specifically using the JValue Hub 1, a platform for open data, as the illustrative
example. As mentioned in the problem identification in chapter 2, open source
environments often lack prioritization of user-centered design, which can lead
users to favor the more intuitive interfaces of proprietary software (Raza and
Capretz, 2015).

As described in chapter 3, the primary objective of this thesis is to address this by
incorporating behavioral design principles into the development process, aiming
to make tools more intuitive and user-friendly. Following the terminology of
chapter 4, we will use the term ”user,” as the end-user of the application whose
behavior we seek to influence. On the other hand, ”developer” refers to the
person using the framework to optimize the product. In the context of this
demonstration, we, the authors, act as the developers.

This demonstration aims to show how developers can use the NUDGE framework
to identify areas for improvement, select suitable behavioral techniques, and im-
plement them within the context of an open data platform like the JValue Hub.
With this approach we aim to improve collaboration by making the platform
more intuitive and reduce barriers for both new and experienced users.

5.1 Selecting Process Steps to Demonstrate
We created a sampling matrix of all process steps available within the open source
collaboration process and the techniques we mapped to a developer intent, which
can be seen in figure 5.1. We then used polar sampling to select steps that rep-
resent a variety of different distributions of applicable techniques. We opted for
polar sampling as it enabled us to select the most differently characterized steps
covering the widest range of the framework’s different application scenarios. The
selection of steps was split into two groups, small steps and complex, multitask

1https://hub.jvalue.com/

33

https://hub.jvalue.com/

5. Demonstration

steps. Since we used the open source collaboration process for both the demon-
stration and evaluation of the framework, we made sure that both of them were
provided with steps from the small group as well as steps from the complex group.
This approach ensured that the broadest possible spectrum of different applica-
tions of the framework and various characteristics of the process steps could be
tested and covered.

Figure 5.1: Sampling matrix for selecting process steps to demonstrate and
evaluate

5.2 Adapting the Framework to Our Open Source
Collaboration Use Case

Following the approach outlined in the solution design, we began by defining
the overall process and breaking it down into individual process steps, guided
by the process definition principles outlined in chapter 4.5.1. Alongside this, we
established distinct user roles and associated each process step with the relevant
role.

Once the process structure and roles were in place, we identified a set of behavioral
techniques to apply. For each process step, we then formulated developer intents
in line with the intent definition guidelines also provided in chapter 4.5.1. Finally,
we mapped these developer intents to the selected behavioral techniques, creating
a cohesive framework that’s well adapted to our use case.

Defining the Process and User Roles To understand and abstract the open
source collaboration process, we analyzed various workflows and their steps to

34

5. Demonstration

identify general commonalities and differences. For this purpose, we examined
three widely used and well adapted collaboration tools: the code collaboration
platforms GitHub 2 and GitLab 3, and the project management tool Jira 4.

In our analysis, we identified two primary user roles involved in the collaboration
process:

1. Artifact User: This role typically represents a user who interacts with
the project by making contributions. While they are often new or less
experienced, they could also be a highly skilled power user depending on
their familiarity with the project and tools. Their permissions are usually
restricted to actions like forking, altering their copy of the project, and
submitting contribution requests.

2. Artifact Owner or Admin: This role represents a more experienced user
with greater knowledge of the project and more extensive permissions. The
artifact owner or admin oversees the project, evaluates contributions, and
decides whether to integrate changes.

It’s important to note that while the two roles can sometimes be embodied by the
same person, they remain distinct in terms of responsibilities and permissions. A
visual representation of these process steps can be seen in figure 5.2.

Initiate Choice for
Forking Fork Artifact Alter own Copy/Fork

of the Artifact

Initiate Choice for
Contribution

Pre-Steps for
Contribution

Create Contribution
Request

Integrate/Recejt
Contribution Request

Pre-Steps for
Integration

Initiate Choice for
Contribution
Integration

Adjust, Collab,
Interact on

Contribution Request
Changes

Artifact User

Artifact Owner or Admin

Artifact User + Artifact Owner or Admin

Figure 5.2: The abstracted open source collaboration process

The following are the key steps in the open source collaboration workflow we
deducted. Steps 1-6 involve the artifact user, steps 7, 8 and 10 the artifact
owner, and step 9 connects them both through interaction.

2https://github.com/
3https://about.gitlab.com/
4https://atlassian.com/de/software/jira

35

https://github.com/
https://about.gitlab.com/
https://atlassian.com/de/software/jira

5. Demonstration

Step 1: Initiate Choice for Forking
[Role: Artifact User]
The code collaboration systems we analyzed all include a mechanism to trigger
the user’s decision to obtain their own copy of a project, commonly referred to as
”forking.” This is a critical first step in the open source collaboration workflow,
as it enables all subsequent actions leading to contributions.

Step 2: Fork the Project
[Role: Artifact User]
Once the user decides to contribute, they fork the project they intend to alter or
contribute to.

Step 3: Make Alterations
[Role: Artifact User]
The forked project, now copied to the user’s workspace, is modified according to
their intentions.

Step 4: Initiate Choice for Contribution
[Role: Artifact User]
After completing their alterations, the user’s motivation to contribute their changes
must be prompted. This step initiates the decision to share their work with the
original project.

Step 5: Necessary Pre-Steps for Contribution (Optional)
[Role: Artifact User]
Depending on the process, certain preparatory steps might be required before
creating a contribution or merge request. These are quite use case specific and
could be of technical nature, e.g., including specific automated tests, they could
also be of administrative nature, e.g., signing a contributor license agreement.

Step 6: Create and Submit Contribution Request
[Role: Artifact User]
The user formally creates and sends a contribution, also known as a merge re-
quest, to the original project.

Step 7: Initiate Choice for Contribution Integration
[Role: Artifact Owner or Admin]
The artifact owner or admin reviews the contribution request and decides whether
to proceed with integrating it into the original project.

Step 8: Necessary Pre-Steps for Integration (Optional)
[Role: Artifact Owner or Admin]
Before integrating the contribution, the artifact owner may need to perform tech-
nical or administrative tasks, such as testing the proposed changes, reviewing the
code for compliance, or ensuring it does not conflict with other project elements.

36

5. Demonstration

Step 9: Adjust, Collaborate, Interact on Contribution Requests (Op-
tional)
[Role: Artifact Owner or Admin; Artifact User]
This step involves interaction between the artifact owner and the contributor.
They may engage in discussions or iterative refinements to adjust the proposed
contribution. The aim is to ensure the changes align with the project’s goals and
benefit all stakeholders.

Step 10: Integrate or Reject Contribution Request
[Role: Artifact Owner or Admin]
The process concludes with the artifact owner’s decision to either integrate or
reject the contribution request.

This logical breakdown highlights the essential steps and roles in the open source
collaboration process, providing a foundation for the adaptation of the NUDGE
framework to the open source collaboration use case.

The workflow demonstrates a well-structured process that closely adheres to the
rules for process step design:

• Clarity and Brevity: Each step has a clear, concise name and is small
enough to be described in one sentence.

• Singularity of Goals: Every step focuses on one overarching goal, with
no competing intents or goals within or between steps.

• Logical Flow: The steps build on one another logically and have a smooth
progression with measurable outcomes.

• Parallel Step Independence: Optional steps are treated independently
to avoid unintended synergies.

We focused on ensuring that each process step in the open source collaboration
workflow adhered to the guidelines for process definition we formulated in chapter
4.5.1. Each step was given a clear and concise title, such as ”initiate choice for
forking” or ”fork the project”, which accurately reflects the core activity within
the step. This ensures that developers can easily understand the purpose of each
step without needing additional context. We also made sure that each step could
be described in a single, straightforward sentence, such as ”the user creates and
submits a contribution request”.

We focused on maintaining a singular overarching goal for each step. For example,
the goal of step 2 is solely to create a fork, and step 3 is about altering the forked
project. There is no overlap between steps, ensuring that each step has a distinct
and meaningful objective. This structure avoids any competing goals within
individual steps and maintains a clear and logical flow from one step to the next.

37

5. Demonstration

In cases where there are optional or parallel steps, like steps 5, 8 and 9, we
ensured these steps were independent from each other, avoiding any synergies
or unnecessary dependencies. This approach aligns with the rule of thumb that
parallel steps should not interfere with one another, treating them as standalone
activities that can be pursued independently.

We also paid attention to ensuring measurable outcomes between steps. For
instance, after step 2, the user has successfully forked the project, and after step
6, a contribution request has been sent. These measurable results help users
understand the impact of their actions and their position in the workflow. By
following these guidelines, we created a well-structured process that supports
effective collaboration between artifact users and artifact owners.

Defining the Technique Space We utilized the fundamental set of behavioral
techniques derived from Fogg’s persuasive technology strategies as the foundation
for our framework. We chose this base set of techniques intentionally because the
demonstration serves as a critical foundation for the subsequent evaluation of
the framework. By using these core techniques, we ensure that the framework is
tested in its most basic and unaltered form, providing a solid basis for analysis.

Defining developer intents After mapping our previously abstracted open
source collaboration process onto the framework, we proceeded to formulate our
developer intents. We followed a sequential approach, going through each process
step and individually defining the intents for each, while adhering to the rules for
formulating developer intents as outlined in chapter 4.5.1.

For every process step, we defined the desired outcome: what we, as developers,
aim to achieve at that stage. This involved specifying what parameters should
change, where the user should be, what information they should have, and
whether they should be motivated to take actions they hadn’t considered be-
fore. We also identified the specific user actions that would lead to those goals,
breaking down what each action involves and how the user would need to en-
gage. Further, we considered how users would recognize what they need to do,
what information or resources are required, and how these elements are currently
provided.

Based on these considerations, we defined user intents for each step. Once the
intents were established, we mapped them to the corresponding techniques of the
framework. That way we were able to ensure that each step was supported by
clear goals and appropriate behavioral techniques.

Some developer intents were repeated and reused because they applied to multiple
process steps, while others required only slight adjustments or corrections to fit
specific steps more accurately. Each user intent, along with its corresponding

38

5. Demonstration

process steps and goals, is visually represented in the appendix chapter A.1 in
figure 1.

5.3 Applying the Adapted Framework on the
JValue Hub

The JValue Hub is an innovative collaboration platform for support open-data
pipelines. It allows users to create and execute data pipelines in a typical open
source development style. Additionally, the JValue Hub features an integrated
search function for open data.

Within this demonstration we applied the in the previous chapter adapted frame-
work to the JValue Hub’s collaboration process. Since the tool itself is partially
still in a prototype state and a clearly defined collaboration process still under act-
ive development, we used the previously shown generalized and abstracted open
collaboration process and we therefore were able to use the previously adapted
framework without the need to alter it any further.

5.3.1 Selected Process Steps
For the demonstration, we selected two steps from the open source collaboration
workflow, both carried out by the artifact owner or admin:

1. Initiate Choice for Contribution Integration

2. Interact on Contribution Request Changes

Through polar sampling, these two consecutive steps were chosen because they
vary significantly in complexity and user engagement. This allows us to showcase
a broader spectrum of the framework’s application, as adapted for the open source
collaboration workflow use case.

The first step, Initiate Choice for Contribution Integration, focuses on triggering
the artifact owner to review a contribution request. It ensures that the owner
takes the initial step to engage with the contribution, setting the stage for deeper
involvement.

The second step, Interact on Contribution Request Changes, emphasizes com-
munity building and dynamic collaboration. This step fosters active exchanges
and cooperation between a contributor and the artifact owner or admin.

In the following subsections, the relevant developer intents of those two process
steps are outlined, and their implementation through their mapped behavioral
techniques is visualized using screenshots of the JValue Hub’s user interface.

39

5. Demonstration

For better understanding, we grouped these implementations via their associated
behavioral technique.

Process Step 1: Initiate Choice for Contribution Integration After the
contributor has forked the project, made their changes, and decided to share those
alterations with the original project, they submit a formal contribution request.
This serves as a proposal where the contributor outlines the modifications they’ve
made. The contribution request is sent to the artifact owner or admin for review,
initiating the next step in the collaboration process.

The step Initiate Choice for Contribution Integration refers to the moment when
the artifact owner or admin is prompted to decide whether they want to review
the submitted contribution. This step does not involve the detailed evaluation or
integration of the contribution itself, but rather signals the start of the decision-
making process. At this point, the artifact owner is prompted to engage with the
contribution request and decide whether they will proceed with a deeper review.
It is an initial step that sets the stage for the potential evaluation and integration
of the changes into the project.

We used the developer intents set through the adapted framework to identify
fitting behavioral techniques that nudge the artifact owner toward making the
choice to engage with the contribution request. The following techniques and
alterations of the JValue Hub’s user interface represent the solutions we identified
through this process step, designed to effectively encourage the artifact owner to
engage with the contribution request and initiate the decision-making process.

For this process step, we concentrated on the project page, as it represents the
most probable location for users to be situated when arriving at this specific step.
Figure 5.3 depicts the project page of an example project within the JValue Hub,
with the subpage for incoming merge requests currently displayed.

Figure 5.4 additionally shows the project page’s subpage for a specific pipeline
that was run and displays the pipeline’s statistics based on the prior run(s).

Tunneling The following changes were made based on the developer’s intent to
guide the user’s attention towards possible intrinsic or extrinsic rewards gained
through contribution integration. This could, extrinsically, involve showcasing
their position within the community and/or expanding their user base. Intrins-
ically, it could entail fostering a community, receiving support, or gaining appre-
ciation for their artifact. This intent aligns with and is mapped to the tunneling
behavioral block.

To achieve the overarching goal of encouraging users to make the choice to in-
tegrate a contribution request, they must first be triggered to notice it. Con-
sequently, the initial goal involves guiding the user’s attention toward the ex-

40

5. Demonstration

Figure 5.3: Project page: MR subpage

Figure 5.4: Pilepine statistics page

41

5. Demonstration

istence of the contribution request, in the JValue Hub referred to as a merge
request.

1. Visual Emphasis in Navigation (Figure 5.3, Change 1) The first
application of the tunneling technique involves visually highlighting an in-
coming merge request in the tab navigation bar. This is achieved by in-
creasing its prominence within the visual hierarchy: the font of the merge
request tab is set to bold, and a visual marker — a circle displaying the
number of new, incoming, and unviewed merge requests — is added. These
enhancements can be seen in figure 5.3, change 1.

Since this navigation bar is present across all subpages of a project page, the
project owner is consistently notified of new merge requests. This approach
draws inspiration from widely-used applications such as Gmail 5, where bold
tabs and small circular indicators are associated with new notifications,
leveraging existing user biases.

2. Highlighting Potential Benefits (Figure 5.3, Change 2) To further
motivate users to integrate contribution requests, indicators for changes in
the project’s metrics were added through three icons and according num-
bers as seen in figure 5.3, change 2. Icons and prominent color coding —
such as green, which is commonly associated with positive outcomes — are
employed to enhance the visual hierarchy and draw attention to possible
benefits. These modifications are designed to guide the user’s focus toward
the value-added aspects of the contribution.

3. Contextual Indicators (Figure 5.4, Change 4) In figure 5.4, change
4, we introduced indicators similar to those in the merge request tab of
the navigation bar. These indicators appear next to a metric when a con-
tribution request is submitted that could potentially optimize that specific
metric of the project. It is important to carefully consider the placement
of these indicators to avoid conflicting with other user flows on the page.
While this approach provides an opportunity to highlight potential fixes
directly within the context of the project where issues are identified, its
integration should be done with caution to ensure it does not disrupt or
overwhelm other critical interactions.

Tailoring The developer intent mapped to the tailoring technique is to reduce
the mental blocker of starting an unknown, complex process by minimizing in-
formation overload and helping users focus on the task without distractions.

Tailoring refers to adjusting content, layout, and design to meet the individual
needs and preferences of users. In this case, users are informed if the account

5https://mail.google.com/

42

https://mail.google.com/

5. Demonstration

submitting a contribution request has previously submitted requests that were
successfully integrated into the project.

To achieve this, users with a history of successful contributions are marked with a
crown icon, as shown in figure 5.3, change 3. This visual cue signals the credibility
and reliability of the contributor, implying that the current contribution request is
likely to be valuable. By highlighting prior successful collaborations, this feature
aims to reduce uncertainty and foster trust in the contribution process.

Simulation The developer intent for the simulation technique is to reduce the
mental load of unforeseeable changes in an unknown system. Additionally, it’s to
provide a sense of value to what integrating a contribution would mean.

The indicators of changes in the project’s metrics as seen in figure 5.3, change
2, also serve to simulate the potential outcomes of integrating the contribution
request. By showcasing possible changes to the project’s metrics — partially
represented in relative terms, such as an 8% decrease in runtime — users can
better anticipate and evaluate the possible consequences of their decision.

Furthermore, color coding again enhances the perceived value of these outcomes.
The use of green font reinforces the association with positive results, further
encouraging user engagement.

Process Step 2: Interact on Contribution Request Changes This pro-
cess step involves the project or artifact owner actively engaging with the con-
tribution request and the changes proposed within it. Unlike the previous step,
which simply aimed to trigger consideration and decision for integration, this step
encompasses a more extensive workflow. The primary objective is to guide the
user through the multi-step process of reviewing the contributed changes, inter-
acting with the contributor, and evaluating the suitability of the proposed modi-
fications. This includes tasks such as writing comments, discussing the changes
with the contributor, thoroughly examining each modification, and determining
whether the proposed adjustments align with the project’s goals and should be
incorporated.

Figures 5.5 and 5.6 both show the overview page of a submitted incoming merge
request. Figure 5.5 represents the current state of the page on the JValue Hub,
while figure 5.6 illustrates the modified version we altered in accordance with the
principles of the NUDGE framework.

Reduction The developer intent for this step emphasizes that when the process
or interaction cycle is complex, it is best to break it down into smaller, more
manageable steps. Simplifying these steps can enhance the user experience and
reduce perceived stress.

43

5. Demonstration

Figure 5.5: MR overview page

Figure 5.6: Modified MR overview page

44

5. Demonstration

Given that this process step involves a multifaceted workflow requiring substantial
user input, we aim to simplify it to encourage engagement and reduce information
overload and confusion. Furthermore, we want to increase user interaction by
providing multiple opportunities and methods for engagement across different
parts of the process.

To address the potential for information overload, we divided the displayed in-
formation into subpages dedicated to specific categories, as illustrated in figure
5.6, change 1. This approach ensures that users receive only the right and relev-
ant information at the right time, making it easier to process. The categories are
organized into navigation bar tabs, similar to those already used throughout the
application, creating a familiar interface. A clear visual hierarchy highlights the
currently selected category, giving users fast contextual awareness of the displayed
content.

For example, as shown in figure 5.6 the initial page provides general context for
the merge request, such as its description and versioning details. This contextual
information helps users understand where the merge request’s changes fit within
the project and whether it is relevant to the current version, offering valuable
points of reference.

Tunneling The developer intent for tunneling in this specific step is to guide
the user’s attention to the specific requests made by the other party. This ap-
proach aims to streamline the interaction for the user and reduce the complexity
of locating relevant changes or requests in a merge request within a single inter-
action cycle.

To specifically bring the user’s attention towards requests made by the contrib-
utor, we incorporated a category called ”conversations” specifically dedicated
to any interactions between the two parties. These, as can be seen in figure 5.7,
change 4, provide the contributor with the option to comment on specific changes
they’ve made as well as the project admin with the option to answer. The current
user can comment back on changes made and any questions that might arise with
it.

In line with this intent, as seen in Figure 5.6, change 2, we repositioned the
”Accept” button to a more general location, ensuring it remains visible and easily
accessible across all subpages of the navigation bar. This adjustment allows the
user to progress to the next step in the overarching workflow without any barriers.
Additionally, we included a ”Reject” option to provide users with clear choices,
enabling smoother navigation throughout the process.

Simulation and Tunneling When analyzing this process step within the
JValue Hub, we came to the conclusion that a notable source of user adversity

45

5. Demonstration

Figure 5.7: Conversations subpage of a MR

here might stem from information overload and the resulting sense of confusion
or loss of control. To mitigate this, like shown in figure 5.6, change 3, we again
added indicators of changes in the project’s metrics, this time to motivate the
user to explore the changes in more detail. By showcasing potential benefits, we
again want to encourage the user to engage with the proposed modifications and
interact with the contributor who submitted the merge request. This approach
not only seeks to reduce feelings of overwhelm but also to foster meaningful en-
gagement, aligning with the goals of both simulation and tunneling principles.

Alternative Implementations for Step 2 Figure 5.8 presents an alternative
option for dividing the complex overview page into distinct categorical subpages
using a navigation tab bar. In this approach, instead of employing icons for
categorization, we implemented a numbered list to represent the different cat-
egories. This design choice provides an additional layer of structure, making it
particularly suitable for processes that involve straightforward progression rather
than prolonged engagement in a single step or iterative interactions with the
contributor.

Self-Monitoring The developer intent for the technique of Self-Monitoring of
this process step is to provide users with a sense of control and an overview of their
position within the process. For lengthy or complex workflows, self-monitoring
becomes essential to reinforce the user’s perception of control. As illustrated in
figure 5.8, change 5, one potential enhancement involves displaying progress in-
dicators, like numbered tabs, to ensure the user does not overlook any requests
from the contributor. This approach is particularly effective if the process does
not heavily depend on iterative back-and-forth interactions. Additionally, includ-

46

5. Demonstration

Figure 5.8: Alternative modifications for the MR overview page

ing navigation prompts, such as a ”Next” button or progress indicators at the
bottom of the page, could further guide users through the process. Finally, as
shown in figure 5.8, change 6, positioning the ”Accept” and ”Reject” buttons at
the bottom of the last sub-page of the numbered process also provides a clear
and accessible method for concluding the workflow.

Rehearsal In terms of the developer intent for and goal of the technique re-
hearsal, it’s to offer a brief rehearsal of the changes made that can help the user
to feel prepared before proceeding with the actual integration.

In the context of figure 5.8, change 8, an optional feature could allow the pro-
ject owner to see which changes they have viewed already and select specific
changes from the merge request that they wish to incorporate. This would act
as a rehearsal, enabling the user to preview and evaluate changes before final
integration.

Tailoring For tailoring and its intent to provide information and context of the
specific step to the user accordingly, the JValue Hub could implement context-
specific fields that offer descriptions and guidance for new users. These fields
could appear during the first interaction with a merge request or be dismissible,
allowing users to opt out of seeing them in the future. However, we decided to
not implement this feature in the current use case. Adding such context fields, we
concluded, would introduce unnecessary visual complexity to an already detailed
user interface. Additionally, the contribution review process is currently still in
a prototype state, and as for now misses some features to come, like automated
tests or advanced configuration options often seen in tools like GitHub. Since we

47

5. Demonstration

would be adding tooltips for unfinished tools, we postponed these elements for a
future session.

5.4 Summary
For the demonstration of the NUDGE framework on the open data platform
JValue Hub, we used polar sampling to select two steps to apply the framework
on: Initiate Choice for Contribution Integration and Interact on Contribution
Request Changes. These steps were chosen to demonstrate a range of complexity
within the steps and necessary user engagement.

We adapted the framework’s process dimension by analyzing collaboration work-
flows in tools like GitHub and GitLab and abstracting a more general open source
collaboration process. We defined roles for the Artifact User (contributor) and
Artifact Owner/Admin (reviewer) and broke down the process into steps and
defined our developer intents, both according to the rules of thumb provided in
chapter 4.5.1. Each step was then mapped to behavioral techniques through its
developer intents.

For the application of the framework on the JValue Hub, we implemented tech-
niques such as:

• Tunneling: Highlighted new merge requests with visual cues to prompt
action.

• Tailoring: Reduced uncertainty by marking reliable contributors.

• Simulation: Displayed potential impacts of contributions to simulate pos-
sible outcomes.

• Reduction: Organized information into manageable subpages to simplify
workflows.

• Self-Monitoring: Added progress indicators for clearer navigation.

We showcased our implementations visually through modified screenshots of the
JValue Hub’s user interface guided by more detailed explanations of our altera-
tions and reasonings.

48

6 Evaluation

This chapter focuses on the evaluation of the framework. It starts by defining
the success criteria of our objective definition in chapter 3 in more detail. We
then detail the evaluation method and process, followed by a discussion of the
results. Finally, we examine which success criteria were met based on the findings
of the evaluation, providing insights into the framework’s strengths and areas for
improvement.

Similar to the demonstration, we utilized the abstracted open source collaboration
process for the evaluation. However, instead of using the JValue Hub as the
artifact, we worked with the widely known tool GitHub. We selected GitHub as
the tool for applying the framework on due to the participants’ familiarity with
its interface and collaboration processes, ensuring a consistent starting point and
avoiding the need for tool-specific training. Furthermore, as a well-established
platform for collaboration GitHub was well-suited for drawing comparisons to
other potential application scenarios.

While the same overarching process was applied (figure 5.2), different steps of
the process were used to suit the specific context of this evaluation.

6.1 Evaluation Objectives and Success Criteria
We evaluated the framework using the following success criteria, which we defined
as detailed extensions of the overarching thesis objectives outlined in chapter 3.
The goal of this evaluation is to determine whether these criteria are successfully
met from the perspective of our assumed primary user group.

6.1.1 Evaluation Objectives
The primary objective of this evaluation is to assess the usability, effectiveness,
accessibility, and adaptability of the conceptual behavioral design framework de-
veloped in this thesis. Specifically, the evaluation seeks to determine how well
the framework facilitates intuitive design for developers with little to no prior

49

6. Evaluation

experience in behavioral design or design. It aims to evaluate the framework’s
ability to make behavioral design concepts accessible and actionable for these
users, particularly in open source collaboration contexts.

Referring back to the objectives we defined in chapter 3, the evaluation focuses
on the following key aspects:

1. Usability: How user-friendly, intuitive, and easy-to-learn the framework is
for developers unfamiliar with behavioral design concepts. User satisfaction
after applying the framework is also a critical indicator.

2. Effectiveness: The extent to which the framework achieves its intended
outcomes — namely, enabling (behavioral) design improvements aligned
with specific user or developer goals.

3. Adaptability: The framework’s flexibility in addressing a range of use
cases of different domains, particularly how well it supports customization
to specific contexts or scenarios.

4. Accessibility: The framework’s success in making behavioral design con-
cepts and decision-making processes understandable and approachable for
non-designers, especially those reluctant to engage with unfamiliar design
principles.

6.1.2 Success Criteria
To evaluate the framework against these objectives, a set of success criteria and
corresponding indicators was established. We aimed to comprehensively evaluate
various aspects of the framework’s performance, through assessing the criteria of
its usability, effectiveness, adaptability, and accessibility. A table summarizing
our defined success criteria and their corresponding success indicators can be seen
in table 6.1.

50

6. Evaluation

Criterion Success Indicator
Usability
User-Friendliness The framework should be easy to navigate and

apply for developers with minimal design experi-
ence.

Intuitiveness The framework should be logical and self-
explanatory, with minimal confusion or frustra-
tion.

Learnability Participants should understand core concepts
after a brief introduction or one session of use.

Satisfaction Users should report positive feedback, indicating
value added to their workflow.

Effectiveness
Design Improvements The framework should guide users to actionable,

contextually relevant design solutions aligned
with behavioral design principles.

Goal Alignment Outcomes achieved should align with the pre-
defined goals of the design or process being im-
proved.

Accessibility
Understandability The framework should clearly communicate be-

havioral design concepts in ways that are easy to
grasp for non-designers.

Approachability The framework should reduce the intimidation or
reluctance felt by developers unfamiliar with be-
havioral design, encouraging their active engage-
ment.

Clarity of Process Decision-making processes and workflows within
the framework should be clearly outlined and easy
to follow without excessive guidance or trial and
error.

Adaptability
Customizability The framework should allow for easy adjustments

to suit specific use cases or project goals.
Ease of Modification Modifications or updates should require minimal

time and impact a small number of framework
components.

Table 6.1: Overview of the success criteria and associated indicators

The framework’s usability was a primary focus, as it needed to be accessible and
practical for developers with varying levels of design experience.

51

6. Evaluation

Effectiveness focused on how well the framework facilitated actionable solutions
that were aligned with the provided behavioral design principles. Adaptability
was assessed in terms of the framework’s flexibility to accommodate different
use cases and project goals. Accessibility focused on ensuring the framework is
inclusive, enabling a wide range of users, regardless of their prior expertise or
background, to engage with and apply its principles effectively.

6.2 Evaluation Method and Process
The following chapter outlines the methodology used to evaluate the framework.
It then delves into the evaluation process itself, detailing how the framework was
assessed and describing the specific scenarios in which it was applied.

6.2.1 Evaluation Method
To evaluate the framework, we conducted a Think-Aloud Protocol with five par-
ticipants. Each participant was given the same series of specific process steps of
a use case to apply the NUDGE framework on while verbalizing their thoughts,
actions, and decision-making processes in real-time. Recognizing shifts in their
voice and analyzing the interviews, we gained in-depth insights into the par-
ticipants’ cognitive processes, helping to identify usability challenges, areas of
confusion, and the framework’s overall intuitiveness. Observations and verbal
feedback were documented and later analyzed to identify patterns, common is-
sues, and potential improvements.

The Think-Aloud Protocol was particularly suitable for this research as it aligned
with assessing and evaluating the framework’s practical application by non-design
experts, one of the objectives defined in chapter 3. By observing participants’
real-time interactions, it is possible to assess its accessibility, clarity, and effect-
iveness in guiding design decisions based on the participants’ reactions (Eccles
and Arsal, 2017; Fonteyn et al., 1993).

6.2.2 Evaluation Process
For the evaluation we presented participants with different scenarios tied to Git-
Hub’s collaboration process. Each of these scenarios focused on achieving a spe-
cific goal using the NUDGE framework. For the evaluation we used the frame-
work, which we had previously adapted to the open source collaboration context
for the demonstration.

Referring back to the polar sampling we did for the selection of process steps
within the demonstration of the framework in chapter 5.1, we used the same
matrix to choose fitting steps for the evaluation. So that in combination of the

52

6. Evaluation

steps used in the demonstration and the ones used for the evaluation, we could
cover the framework comprehensively. Two process steps of varying complexity
were selected via this polar sampling approach to ensure the inclusion of diverse
scenarios and techniques. Similar to the demonstration’s selection, these steps
captured both simple and complex tasks to test the framework’s flexibility and
depth.

The evaluation involved five participants, all experienced computer scientists and
developers with extensive expertise in application development but limited expos-
ure to design and behavioral design. This selection aligned with the framework’s
target audience of developers who may lack formal training in design but aim to
apply behavioral design principles effectively. The participants’ familiarity with
GitHub, an established tool for code collaboration, ensured a consistent starting
point for all sessions, avoiding the need for tool-specific training and preventing
misunderstandings stemming from unfamiliarity.

As explained in the former solution design chapter 4, the complete process of
using the framework is done in two steps. The first step involves adapting the
framework to a specific use case, as was done for the open source collaboration
process in the demonstration chapter 5. The second step involves applying the
framework’s suggestions to the product or artifact being optimized, according to
the previously formulated developer intents.

Because the first step, the adaptation phase, is very time-intensive, the evaluation
within this master’s thesis focused only on the second step, the application phase.
This focus allowed for better comparability of results across different evaluation
sessions, since all participants worked with the same developer intents and con-
tents of the adapted framework. It required less time, and could therefore yield
tangible changes in the artifact within just one session per participant - therefore
participants were able to see the final outcomes of their implementations in the
artifact and could assess for their value.

We utilized the adapted framework developed during the demonstration chapter
5 for the open source collaboration process, as GitHub facilitates this process
for project collaboration and had already been integrated into the abstraction
process used in the adapted framework.

Overall, the evaluation process consisted of five individual sessions. Between
sessions, the framework was adjusted to address significant usability issues im-
mediately, ensuring these did not obstruct the following sessions or the identi-
fication and resolution of other challenges within the framework. This iterative
process not only enhanced the artifact incrementally but also ensured a smoother
evaluation process for subsequent sessions. The framework’s iterative refinement
allowed for progressive improvement of the artifact throughout the evaluation.
An excerpt showing how the framework appeared at the beginning of the evalu-

53

6. Evaluation

ation sessions and how it evolved in later versions can be found in chapter 6.5.
A more detailed explanation of the changes we made to the framework, the un-
derlying rationale, and why it developed in specific directions is also provided
there.

Session Design and Structure To apply the framework, participants were
presented with two steps of the abstracted open source collaboration process
(figure 5.2) and therefore also GitHub’s collaboration process on which they were
to apply the framework to achieve a specific, predefined goal. These steps in
combination with their intended goals and their representation through GitHub’s
user interface will henceforth be referred to as scenarios.

Participants were to use the NUDGE framework adapted to the open source
collaboration process, shown in chapter A.1, figure 1. A Miro board was shared as
the workspace. On this board, the task description was written out. Additionally,
the abstracted open source collaboration process itself was displayed, with the
selected steps to be addressed marked to provide better context and positioning.
Screenshots of the GitHub user interface of the presented process steps were also
available on the board, on which participants were to work and implement their
design changes on. An overview of the setup can be found in the appendix chapter
A.2 in figure 2.

To observe the participants’ interaction with the framework, participants ac-
cessed both the board and the framework, still in the form of a table shared via
Google Sheets at this stage, and shared their screen. This allowed us to observe
the process alongside the participants’ Think-Aloud commentary. Observations
focused not only on the content of what was said but also on where participants
lingered, how often they switched their focus between the framework and the task
description on the Miro board, and similar behaviors.

Each session began with an introductory briefing to provide participants with con-
text and align their understanding of the framework and its intended use. This
included a demonstration of an example scenario, complete with a sample imple-
mentation, to familiarize participants with the process of implementing changes
in the context of the session. Afterwards, we addressed questions to clarify any
uncertainties before the tasks commenced.

Participants were then given time to read the task description themselves. After
they indicated readiness, any further questions were addressed. Once everything
was clear, participants were informed that urgent questions could still be raised
during the task but that we as the observers would otherwise refrain from inter-
vening, leaving the participants to work independently.

Each of the two scenarios was allocated 15 minutes, though this served more
as a guideline than a strict limit. Participants who finished early could simply

54

6. Evaluation

move on to the next scenario. If a participant exceeded the 15-minute mark, we
provided a gentle reminder of the time and encouraged them to wrap up their
current implementation within the next few minutes.

The Scenarios The scenarios used in the sessions were carefully structured
to progressively introduce complexity, leveraging learning effects. At the be-
ginning of each session, an example scenario was presented alongside a sample
implementation to provide a clear starting point. Participants were then tasked
with working on two scenarios: one simpler and one more complex. The simpler
scenario was conducted first, closely resembling the example scenario, to allow
participants an easier entry point and to reserve sufficient cognitive resources for
becoming acquainted with the framework.

Example Scenario: Initiating Choice for Forking The example scenario
focused on the step Initiate Choice for Forking. The objective was to encourage
users to fork a project as an initial step in the collaboration process.

Scenario 1: Initiate Choice for Contribution The first scenario handled
by the participants was of the step Initiate Choice for Contribution. It was very
similar to the example scenario with only a different objective to nudge users
towards making the choice to contribute to a project. This scenario had a very
small scope regarding the achievement of the predefined goal and was straight-
forward to execute. It served to familiarize participants with the foundational
elements of the framework.

Scenario 2: Create Contribution Request The second scenario was more
complex and involved a multi-step process: Create Contribution Request. It
presented a wide range of solution possibilities due to its broader scope and
allowed for a deeper exploration of the framework’s application.

6.3 Evaluation Results
The following results are based on the Think-Aloud sessions we conducted with
participants. We begin by presenting some numerical insight to provide a quant-
itative overview of how the sessions unfolded. This is followed by a comprehensive
qualitative analysis, which examines key themes, insights, and challenges associ-
ated with the application of the framework, as well as scenario-specific feedback.

6.3.1 Numerical Insights
We derived the following figures from our notes of the evaluation sessions. These
numbers provide insights into the progression of the sessions, commonalities

55

6. Evaluation

between them, and notable differences.

Due to the qualitative nature of the evaluation, quantitative data was not the
primary focus. However, these numerical observations highlight some usage pat-
terns and recurring feedback trends:

Metric Observation
Average Completion Time
per Scenario

Scenario 1: ~15 minutes; Scenario 2: ~18
minutes

Frequency of Mentioned
Techniques

Tunneling: 5/5 sessions; Tailoring: 4/5
sessions; Simulation: 3/5 sessions

Instances of Overlapping
Techniques

Mentioned in 4/5 sessions; personalization and
tailoring most frequently cited as overlapping

Average Number of
Suggestions per Participant

4-5 distinct suggestions per session

Table 6.2: Numerical insights of the evaluation sessions

6.3.2 Qualitative Data
Thematic analysis of participants’ feedback revealed several key themes, insights,
and challenges with the framework’s usability and application. First, we present
general insights, followed by insights specific to each scenario.

Key Themes and Insights Participants viewed the framework as a flexible
”mental framework” rather than a rigid tool. They appreciated its guidance for
structuring their thought processes without enforcing prescriptive rules. Tech-
niques such as tunneling, tailoring, simulation, and reduction were particularly
valued for their clarity and applicability, standing out as practical and accessible
elements within the framework.

Through applying the framework, participants observed clear improvements in
their perceived user experience. These included a sharper focus on primary ac-
tions and a reduction in complexity by tailoring information to user expertise.
The framework facilitated thought processes about design and user experience
aspects that might not have been explicitly considered otherwise, functioning
well as a kind of checklist for design considerations and providing direction for
structured idea generation.

The framework demonstrated effectiveness by enabling participants to generate
actionable, context-specific design ideas. Improvements included increasing the
visibility of key contribution actions and tailoring interfaces for novice users.
The framework also served as a valuable prompt for structured thinking towards

56

6. Evaluation

design strategies, particularly benefiting participants unfamiliar with behavioral
design principles.

During the evaluation sessions, the techniques tunneling and tailoring were the
most frequently mentioned and applied by participants. Their repeated use across
scenarios indicated their clarity and practicality, making them particularly useful
for guiding participants in improving user experience.

Challenges in Application Participants often found the framework text-
heavy, leading to cognitive overload. Some struggled to distinguish between
overlapping techniques like tailoring and personalization. Several participants
also noted that some framework elements seemed redundant, particularly some
developer intents that were displayed multiple times and were mapped to different
techniques. They were reported to be worded similarly or identically, compound-
ing the confusion. Participants also expressed uncertainty about whether using
a mixture of techniques or fluid transitions between them were acceptable. The
accessibility of the framework was another area of mixed feedback. Participants
appreciated the examples provided but emphasized a need for more concise and
clear guidance to make the framework easier to use, particularly for those new to
behavioral design concepts and within the first use of the framework.

Scenario-Specific Feedback In comparing the scenarios, participants found
scenario 1 to be easier to address due to its narrower scope and simpler tasks. In
contrast, scenario 2 presented greater complexity, but leveraged learning effects
of the implementations within the first scenario. However, it also highlighted
redundancies and repetitive information in the framework itself. This occasionally
distracted participants, requiring more effort to navigate and apply the framework
effectively.

Scenario 1: Simpler and Exploratory Scenario 1 was encouraging parti-
cipants to explore and ideate without overloading them at first use. Given the
limited scope and interaction possibilities of scenario 1, participants gravitated
toward techniques such as tailoring and personalization to adapt the user in-
terface’s context based on user expertise. They identified opportunities to show
more explanatory content for novice users and reduce distractions for experienced
users.

Participants regularly approached scenario 1 with a focus on highlighting key ac-
tions for contribution. They considered how to emphasize overlooked elements,
reduce irrelevant visual elements, and motivate user contributions through con-
textual cues.

57

6. Evaluation

Specific Interventions:

• Participants emphasized overlooked elements such as the ”contribute” but-
ton, using the tunneling technique’s visual hierarchy adjustments to make
them more prominent.

• They reduced the prominence of elements irrelevant to the user’s immedi-
ate intent, such as deemphasizing the ”code” button when it was not the
primary focus.

• All participants made changes to reposition key buttons, moving them to
more central locations for greater visibility.

• They suggested motivational tools, such as showcasing contributors or high-
lighting successful pull requests, to foster a sense of community and encour-
age engagement.

Scenario 2: Complex but Focused Scenario 2 was more challenging due
to the fact that the process step this covered, create contribution request, was
of higher complexity and a multi-task process step. While this required parti-
cipants to invest more effort, it leveraged learning effects and allowed for the
application of repeatable patterns identified in scenario 1. The larger and more
complex scenario allowed for a wider range of varied implementations among the
participants. The increased complexity also led to more nuanced changes, par-
ticularly in simplifying processes and addressing the varied needs of novice and
experienced users.

Participants typically focused on simplifying the user journey and breaking down
complex workflows into manageable steps. They applied techniques such as re-
duction to streamline the process and tailoring to adjust the experience for users
of different expertise levels. The learning effects from scenario 1 were evident, as
participants applied similar strategies with greater precision in scenario 2.

Specific Interventions:

• Participants incorporated additional steps into the existing process with
visual progress indicators to simplify complex workflows, aligning with the
reduction and self-monitoring technique.

• Tailoring was introduced through contextual explanations aimed at novice
users, combined with options for experienced users to skip onboarding con-
tent.

• Additional recommendations for novice users included explanatory tooltips.

58

6. Evaluation

• Participants suggested adding summary views aligned with the rehearsal
and simulation techniques, allowing users to review their steps before final-
izing actions.

Overall, scenario 1 provided an opportunity for participants to focus on explor-
atory changes with immediate visual impact, while scenario 2 required them to
tackle more systemic improvements.

6.3.3 Alignment with Success Criteria
The evaluation of the framework demonstrated mostly positive outcomes in re-
lation to the success criteria, highlighting strengths as well as areas for improve-
ment.

Objectives and Success Criteria Met
Usability
User-friendliness Yes
Intuitiveness Partially
Learnability Yes
Satisfaction Yes
Effectiveness
Design improvements Yes
Goal alignment Yes
Accessibility
Understandability Partially
Approachability Yes
Clarity of process Partially
Adaptability Partially

Table 6.3: Assessment of met objectives and success criteria

Usability In terms of usability, the framework proved effective in facilitating
ideation and enabling participants to generate meaningful design improvements.

• User-friendliness: Even with little to no prior exposure to behavioral
design, participants were able to apply the framework effectively, meeting
this criterion.

• Intuitiveness: This criterion was only partially met. Some points of con-
fusion arose, particularly in the earlier versions of the framework during the
first scenario. Issues such as the redundancy of developer intents required
additional clarification.

• Learnability: The framework successfully met this criterion, as all parti-
cipants demonstrated a clear understanding of its core concepts. A learning

59

6. Evaluation

effect was also observed, with participants becoming more proficient over
time.

• Satisfaction: This criterion was met most successfully. After their ses-
sions, the framework exceeded participants’ earlier expectations in terms of
usefulness, prompting creative and contextually relevant suggestions. Many
participants were pleasantly surprised by their ability to generate innovat-
ive ideas, showcasing the framework’s potential to unlock new perspectives,
even for those without a design background.

Effectiveness The framework successfully met our success criterion of effect-
iveness by guiding participants in identifying design improvements through be-
havioral design principles that aligned with their goals.

• Design improvements were observed in all sessions and by all parti-
cipants. The framework effectively facilitated the generation of contextu-
ally relevant design solutions, which were implemented successfully.

• Goal alignment was also achieved, as participants followed the developer
intents and implemented changes that fulfilled the scenario-specific goals.

Accessibility In terms of accessibility, the framework effectively introduced
behavioral design concepts to non-experts, lowering barriers to entry. However,
participants noted that further refinements could enhance its accessibility, making
the concepts even more actionable for users with limited prior design experience.

• Understandability: This criterion was only partially met. While the
framework provided clear communication of its behavioral design concepts,
some participants found the explanations to be too brief and expressed a
desire for more detailed guidance.

• Approachability: This criterion was successfully met. The framework’s
mapping of appropriate techniques to specific process steps encouraged par-
ticipants to actively engage with the different behavioral design strategies.

• Clarity of process: This criterion was mostly met. Participants found the
process itself to be clear; however, since they did not adapt the framework
to the use case themselves and instead worked with predefined developer
intents, some confusion arose regarding the intent behind certain elements.

Adaptability Of the two phases of using the framework — the adaptation
phase and the application phase — this evaluation focused solely on the applic-
ation phase. For the evaluation, we used the version of the framework that had
already been adapted as part of the demonstration. As a result, we cannot make
definitive statements about how adaptable the framework is to other use cases.

60

6. Evaluation

Although the framework’s structure and design provides adaptability for use cases
that can be formulated as formal processes, further research is needed to explore
and evaluate how effectively it adapts to different contexts, particularly in terms
of its usefulness.

6.4 Limitations of the Evaluation
While the evaluation process provided valuable insights into the usability, effect-
iveness, accessibility and adaptability of the framework, some constraints and
limitations may have impacted the findings.

Sample Size The evaluation involved five participants, a relatively small sample
size that limits the statistical generalizability of the results. While the qualitative
insights gathered were detailed, a larger and more diverse group of participants
would provide stronger evidence for the framework’s usability and accessibility
across different user groups.

Participant Background and Bias Participants were all experienced de-
velopers with high expertise in application development but limited exposure to
behavioral design. While this aligns with the primary target audience of the
framework, it introduces potential biases, such as:

• Familiarity Bias: Participants’ prior knowledge of tools like GitHub
might have influenced their ability to generate ideas independently of the
framework, skewing the evaluation of its effectiveness.

• Acquaintance bias: Since participants knew the evaluator personally,
their responses might have been influenced by a desire to provide positive
feedback.

These factors may limit the applicability of findings to developers with differing
levels of experience or those unfamiliar with GitHub’s workflows and interface.

Time Constraints The evaluation sessions were time-limited to approximately
15-18 minutes per scenario, which may not have been sufficient for participants to
fully explore the framework’s capabilities. As a result, some techniques or deeper
insights might have been overlooked due to time pressure.

Framework Complexity Participants reported that the framework felt text-
heavy and redundant. This complexity might have hindered their ability to use it
effectively within the constrained evaluation period. As a result, usability issues
identified in the evaluation may partially reflect the testing conditions and the
limited time frame rather than inherent flaws in the framework. In practical real

61

6. Evaluation

life applications of the framework, it is unlikely that time constraints will be as
stringent.

Iterative Changes to the Framework The framework was iteratively up-
dated between sessions based on feedback from earlier participants. While this
iterative process improved the artifact, it introduced variability across sessions,
as participants interacted with slightly different versions of the framework. This
limits the consistency of the findings and makes it challenging to isolate the
impact of specific changes.

6.5 The Framework’s Evolution through its Eval-
uation

This section provides a brief overview of how the appearance and structure of the
NUDGE framework evolved based on feedback from the evaluation process.

The framework was initially designed as a table, with developer intents in com-
bination with the technique and the process step serving as the key for each row
and can be seen in figure 6.1. At this stage it was supposed to be used more
as a manual or handbook, where developers could find inspiration if needed.
The rows’ associated columns included details such as user abilities, the relevant
process step and mapped behavioral technique, and specific details of that tech-
nique, such as its summary. The first version of the framework also featured a
column for prioritizing specific rows, allowing developers adapting the framework
to highlight the most promising techniques for a given process step.

However, this prioritization column proved problematic. Participants often over-
looked it or found it confusing, as their own priorities frequently differed from
those presented in the framework. This misalignment left participants unsure
about their technique choices. As a result, the prioritization column was removed
in version 2.

Even without the prioritization column, some participants still found the table’s
structure confusing due to redundant information. For example, the process step
cell was repeated across multiple rows since it was associated with multiple de-
veloper intents and techniques, creating unnecessary clutter. In version 3 (figure
6.2), we attempted to address this by consolidating redundant cells, such as com-
bining the “process step” cell of rows where a single process step was mapped to
multiple behavioral techniques

Despite these changes, some usability issues persisted. Some participants struggled
to view the framework as a cohesive whole and were overwhelmed by the remain-
ing redundancy. To resolve these challenges, we completely reimagined the frame-

62

6. Evaluation

Figure 6.1: NUDGE framework version 1-2

Figure 6.2: NUDGE framework version 3

63

6. Evaluation

work’s structure in version 4, introducing a three-dimensional visualization that
maps process steps to behavioral design techniques through developer intents on
a visual level as well. This new format aims to provide a clearer, more intuitive
overview of the framework’s structure and functionality and can be seen in detail
in chapter A.1, figure 1.

6.6 Summary
The evaluation of the behavioral design framework demonstrated its potential to
enhance usability and effectiveness in open source collaboration contexts, while
also identifying areas for refinement. This section summarizes the key takeaways
and recommendations for improvement derived from the evaluation process.

Key Takeaways

1. Fulfilment of Objectives: The framework successfully addressed most
of its primary objectives, including usability, effectiveness, and accessibil-
ity. It provided developers an actionable tool to enhance behavioral design
practices in their workflows. Participants were able to generate contex-
tually relevant design improvements and align outcomes with predefined
goals, validating the framework’s intended purpose.

2. Success Criteria:

• Usability: The framework was user-friendly and learnable, with par-
ticipants reporting mostly positive experiences and satisfaction. How-
ever, redundancies and text-heavy content occasionally caused cognit-
ive overload, which affected the intuitiveness criterion.

• Effectiveness: Participants consistently identified actionable design
improvements, aligning with behavioral design principles and fulfilling
this evaluation goal.

• Accessibility: The framework lowered barriers for non-designers,
though additional refinement is needed to simplify explanations and
reduce perceived complexity.

• Adaptability: While we assume the framework to be adaptable
to different domains, the framework’s application phase wasn’t con-
sidered in this evaluation and could therefore not be evaluated.

3. Methodological Insights: Using a Think-Aloud Protocol revealed the
framework’s strengths, such as its structured approach to design ideation,
while also surfacing challenges like participants’ initial confusion with re-
dundant content.

64

6. Evaluation

4. Framework Evolution: The framework evolved significantly during the
evaluation, transitioning from a text-heavy table format to a more visual,
intuitive structure. These changes addressed usability issues and aim to
increase clarity.

Recommendations for Improvement

1. Simplify Content: Reduce text-heavy explanations and streamline re-
dundant information to improve accessibility and reduce cognitive load.

2. Enhance Guidance: Provide clearer instructions and more concise ex-
amples to support first-time users in understanding and applying the frame-
work.

3. Broader Applicability: Conduct evaluations in diverse domains beyond
open source collaboration to assess generalizability.

The evaluation highlighted the framework’s strengths in guiding developers to-
ward effective behavioral design solutions, while also identifying areas for im-
provement to enhance usability and scalability. In the context of open source
collaboration, the framework appeared to be particularly valuable, as the ma-
jority of participants responded positively, noting that the changes it facilitated
were both impactful and unexpected. The evaluation’s findings provide a found-
ation for future refinements and broader adoption of the framework, advancing
the integration of behavioral design into development practices.

65

6. Evaluation

66

7 Conclusion

The NUDGE framework marks a meaningful progression in connecting behavioral
design principles with developer-focused workflows. By addressing challenges in
creating intuitive, user-focused solutions in tech-heavy environments, it empowers
developers to enhance usability without requiring formal design training. As a
structured tool, the NUDGE framework enables developers to apply behavioral
design strategies effectively and goal-oriented, helping them overcome obstacles
in user behavior and design. Drawing from Fogg’s Behavior Model and persuasive
technology strategies (Fogg, 2003, 2009), this framework is designed to be both
practical and accessible.

Core elements of the NUDGE Framework include

• its conceptual design, which ensures that the adaptation and application
phases can be tailored to specific use cases while remaining adaptable to
evolving contexts.

• its emphasis on process customization and developer intent mapping. By
defining a clear, measurable process and formulating goals and intentions
for each step through developer intents, the framework’s effectiveness is
significantly enhanced.

• its concept and behavioral blocks, containing techniques based on Fogg’s
persuasive technology strategies that offer practical action plans for ad-
dressing user behavior (Fogg, 2003).

While the framework’s contributions are promising, there are limitations to con-
sider, such as scalability issues in highly complex systems and an initial time
invest for the frameworks adaptation to a use case. Future work would benefit
from expanding the behavioral techniques library to incorporate emerging insights
from the field of behavioral design, allowing the framework to evolve alongside
the ecosystem. Enhancing scalability for larger, more complex systems would
also be valuable. The NUDGE framework currently operates only on a concep-
tual level. Hands-on tools could simplify it’s adaptation and application and
improve its usability. Additionally, testing the framework across various contexts

67

7. Conclusion

and industries would help assess its generalizability beyond the tested contexts
and refine its design.

In its application to the JValue platform, the NUDGE Framework has shown
promise in addressing usability challenges and identifying the right behavioral
strategies to resolve them. The positive evaluation results further emphasize
its usefulness in developer-driven environments, particularly in the open source
collaboration space. These findings suggest that the NUDGE Framework holds
potential for making behavioral design principles more accessible and actionable
for developers.

Integrating behavioral design into development processes plays a key role in cre-
ating intuitive, user-centered solutions. The NUDGE Framework illustrates how
developers can apply structured methodologies to enhance usability and influence
user behavior. By bridging the gap between design and development, it supports
the creation of collaborative, accessible, and effective solutions, contributing to
the advancement of behavior-driven design in development workflows.

68

Appendices

69

Appendix A: Demonstration and Evaluation Resources

A Demonstration and Evaluation Resources

A.1 The NUDGE Framework Adapted to the Open Source
Collaboration Use Case

Figure 1: The open source collaboration use case adapted NUDGE framework,
used for the demonstration and evaluation of the framework

71

Appendix A: Demonstration and Evaluation Resources

A.2 The Evaluation Session Setup

Figure 2: A high-level overview of the evaluation session setup

72

Appendix B: Overview of the Base Set of Behavioral Blocks

B Overview of the Base Set of Behavioral Blocks

B.1 Technique: Reduction
Technique Summary: Streamline complicated processes into individual, clear,
simple tasks to make it easier for users to reach their goals with minimal effort,
enhancing the value they gain compared to the effort required. Divide overarch-
ing goals into smaller, achievable sub-goals, and present only the information
necessary for each task at the right moment.

Trigger for User Action: Since reduction refers to simplifying the user exper-
ience by removing unnecessary elements, minimizing cognitive load, and stream-
lining interactions, there specifically aren’t any user triggers for this technique.

Example Implementation: Minimize visual clutter and cognitive load by
eliminating unnecessary information. Reduce content overload by breaking a
complex task into smaller, manageable ones. Split larger goals into sub-goals,
each with its own distinct visual space and order. Focus on these sub-spaces/goals
individually, and use appropriate methods to present only the relevant informa-
tion at the right time.

B.2 Technique: Tunneling
Technique Summary: Direct users’ focus through a series of elements in a
particular sequence, typically starting with the most prominent and progressing
to the less significant. Leverage the system to lead users through a process or
experience, offering actionable steps that progressively move them toward the
desired behavior.

Trigger for User Action: Visual hierarchy guides the user’s attention and
structures their perceived information intake.

Example Implementation: Apply contrast, size, color, position, white space,
alignment, repetition, proximity, and typography both within and between your
elements. For example, the size and boldness of a headline’s font directs users’
attention from the largest and most prominent to the smallest.

B.3 Technique: Tailoring
Technique Summary: Tailor the content, layout, and design to better match
the distinct needs, preferences, and behaviors of various user groups. Modify the
system’s features to accommodate the unique requirements and abilities of these

73

Appendix B: Overview of the Base Set of Behavioral Blocks

users. Information becomes more meaningful when it’s tailored to align with the
specific needs, interests, personality, usage context, or any other relevant factor
tied to the intended purpose or goal.

Trigger for User Action: Customized content has a higher perceived inform-
ational value for the user, so anything the user can relate to themselves can work
as a trigger.

Example Implementation: Consider not only the information needed at a
particular moment, but also the reasons behind it and the best way to present
it. Developing personas to navigate the process can help capture the interests,
personalities, and usage contexts of various user groups. For instance, a novice
may need more contextual details than an experienced user, such as offering visual
and textual support for beginners while providing hotkeys for power users.

B.4 Technique: Personalization
Technique Summary: Provide personalized content and services for the sys-
tem’s users. Minor adjustments, such as altering the layout of a website or
rearranging the order of information displayed, can notably enhance the user
experience. Understanding the diverse use cases, along with varying goals and
information priorities, helps identify potential opportunities for personalization.
However, it’s essential to remember that there’s a balance between the advantages
of personalization and the added complexity it brings to visuals and processes.

Trigger for User Action: Any cues that indicate the artifact is personalized
for the current user.

Example Implementation: Leverage contextual data, such as the system’s
default theme to detect light or dark mode, or use the user’s current location or
browsing history to offer personalized recommendations.

B.5 Technique: Self-Monitoring
Technique Summary: Give users the ability to monitor their progress or
status in relation to reaching a goal. The progress should ideally be simple to
assess and offer options for adjustments if needed.

Trigger for User Action: Facilitate easy measurement and tracking of per-
formance or status to help users understand their progress. Typically based on
the need to provide users with feedback, which can help them make informed
decisions and adjust their behaviors accordingly.

74

Example Implementation: Simple tools like progress bars offer clear indicat-
ors of users’ progress toward their current (sub-)goals. Make sure that correcting
actions is easy, allowing users to adjust their behavior instantly. In more complex
systems, combining various sources of self-monitoring data can provide valuable
insights into the broader context. Graphical displays of real-time feedback or
behavioral data, such as trends, patterns, and recommendations, can further en-
hance understanding.

B.6 Technique: Simulation
Technique Summary: Illustrate the connection between cause and effect in
relation to a user’s behavior, providing insight into how their inputs influence the
resulting outcomes.

Trigger for User Action: Any cues that convey information about the ex-
pected outcomes of interactions with different elements of the artifact.

Example Implementation: The wording on buttons can convey or simulate
the cause-and-effect relationship of the action, while subtly persuading users.
Simulation can be achieved through any description of an action, along with
foreshadowing, such as visual cues that preview how the action might appear.

B.7 Technique: Rehearsal
Technique Summary: Providing means with which to rehearse a behavior /
alterations previously made. Support learning and memory retention by encour-
aging repeated exposure and practice with the interface. This is especially crucial
for complex tasks or systems where users need time to gain familiarity.

Trigger for User Action: Trigger a learning curve through repetition in the
UI and process design, or by reviewing the user’s information input. Gamification
and interactive tutorials can also support this.

Example Implementation: Provide a central location for users to review all
changes they’ve made, allowing them to reflect on their thought process, actions,
and the outcomes of those actions. For example, showing all inputs and their
effects after submitting a form.

75

76

References

Ashley, J., & Desmond, K. (2005). Success with user-centered design manage-
ment. Interactions, 12(3), 27–32. https : / / doi . org / 10 . 1145 / 1060189 .
1060211

Bay Brix Nielsen, C. K. E., Cash, P., & Daalhuizen, J. (2024). The power and
potential of behavioural design: Practice, methodology, and ethics. Journal
of Engineering Design, 35(5), 504–542. https://doi.org/10.1080/09544828.
2024.2322897

Bucher, A. (2020). Engaged: Designing for behavior change. Rosenfeld Media.
Cash, P., Vallès, X., Echstrøm, I., & Daalhuizen, J. (2022). Method use in be-

havioural design: What, how, and why? International Journal of Design.
https://doi.org/10.57698/V16I1.01

Cash, P. J., Hartlev, C. G., & Durazo, C. B. (2017). Behavioural design: A process
for integrating behaviour change and design. Design Studies, 48, 96–128.
https://doi.org/10.1016/j.destud.2016.10.001

Chiang, I.-Y., Lin, P.-H., Kreifeldt, J. G., & Lin, R. (2021). From theory to
practice: An adaptive development of design education. Educ. Sci. (Basel),
11(11), 673.

Chopra, A. K., Mylopoulos, J., Dalpiaz, F., Giorgini, P., & Singh, M. P. (2010).
Requirements as goals and commitments too. In Intentional perspectives
on information systems engineering (pp. 137–153). Springer Berlin Heidel-
berg. https://doi.org/10.1007/978-3-642-12544-7_8

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional require-
ments in software engineering. Springer US. https://doi.org/10.1007/978-
1-4615-5269-7

Eberhard, K. (2021). The effects of visualization on judgment and decision-
making: A systematic literature review. Management Review Quarterly,
73(1), 167–214. https://doi.org/10.1007/s11301-021-00235-8

Eccles, D. W., & Arsal, G. (2017). The think aloud method: What is it and how
do i use it? Qualitative Research in Sport, Exercise and Health, 9(4), 514–
531. https://doi.org/10.1080/2159676x.2017.1331501

Fogg, B. (2003). Persuasive technology. Elsevier. https://doi.org/10.1016/b978-
1-55860-643-2.x5000-8

77

https://doi.org/10.1145/1060189.1060211
https://doi.org/10.1145/1060189.1060211
https://doi.org/10.1080/09544828.2024.2322897
https://doi.org/10.1080/09544828.2024.2322897
https://doi.org/10.57698/V16I1.01
https://doi.org/10.1016/j.destud.2016.10.001
https://doi.org/10.1007/978-3-642-12544-7_8
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/s11301-021-00235-8
https://doi.org/10.1080/2159676x.2017.1331501
https://doi.org/10.1016/b978-1-55860-643-2.x5000-8
https://doi.org/10.1016/b978-1-55860-643-2.x5000-8

References

Fogg, B. (2009). A behavior model for persuasive design. Proceedings of the 4th
International Conference on Persuasive Technology. https://doi.org/10.
1145/1541948.1541999

Fonteyn, M. E., Kuipers, B., & Grobe, S. J. (1993). A description of think aloud
method and protocol analysis. Qualitative Health Research, 3(4), 430–441.
https://doi.org/10.1177/104973239300300403

Heltweg, P., & Riehle, D. (2023). A systematic analysis of problems in open
collaborative data engineering. ACM Transactions on Social Computing,
6(3–4), 1–30. https://doi.org/10.1145/3629040

Khadilkar, P. R., & Cash, P. (2020). Understanding behavioural design: Barriers
and enablers. Journal of Engineering Design, 31(10), 508–529. https://
doi.org/10.1080/09544828.2020.1836611

Khaled, R., Noble, J., & Biddle, R. (2005). An analysis of persuasive technology
tool strategies. IWIPS, 167–173.

Levesque, M. (2004). Fundamental issues with open source software development.
First Monday, 9(4). https://doi.org/10.5210/fm.v9i4.1137

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based
generalization: A unifying view. Machine Learning, 1(1), 47–80. https :
//doi.org/10.1023/a:1022691120807

Pal, S., Nair, A., & Zuo, Z. (2024). Collaborative dynamics in open source soft-
ware development: Unveiling the influence of team interaction and the role
of project manager. Journal of Operations Management, 70(7), 1076–1099.
https://doi.org/10.1002/joom.1324

Parsons, P., & Sedig, K. (2013). Common visualizations: Their cognitive utility.
In Handbook of human centric visualization (pp. 671–691). Springer New
York. https://doi.org/10.1007/978-1-4614-7485-2_27

Raza, A., & Capretz, L. F. (2015). Do open source software developers listen to
their users? First Monday: Peer-Reviewed Open Journal on the Internet,
17 (3), 1–9. https://doi.org/10.48550/ARXIV.1507.06893

Stanford Behavior Design Lab. (2019). Behavior design lab at stanford univer-
sity [Accessed on September 28, 2024. Year derived from last update on
copyright.]. Retrieved September 28, 2024, from https://behaviordesign.
stanford.edu/

Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015). Social barriers
faced by newcomers placing their first contribution in open source software
projects. Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, 1379–1392. https://doi.org/10.
1145/2675133.2675215

Toledo, F. P. d., Devincenzi, S., Kwecko, V., Mota, F. P., & Botelho, S. S. d. C.
(2018). A framework for modeling persuasive technologies based on the
fogg behavior model. 2018 IEEE Frontiers in Education Conference (FIE),
1–5. https://doi.org/10.1109/fie.2018.8659195

78

https://doi.org/10.1145/1541948.1541999
https://doi.org/10.1145/1541948.1541999
https://doi.org/10.1177/104973239300300403
https://doi.org/10.1145/3629040
https://doi.org/10.1080/09544828.2020.1836611
https://doi.org/10.1080/09544828.2020.1836611
https://doi.org/10.5210/fm.v9i4.1137
https://doi.org/10.1023/a:1022691120807
https://doi.org/10.1023/a:1022691120807
https://doi.org/10.1002/joom.1324
https://doi.org/10.1007/978-1-4614-7485-2_27
https://doi.org/10.48550/ARXIV.1507.06893
https://behaviordesign.stanford.edu/
https://behaviordesign.stanford.edu/
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1109/fie.2018.8659195

References

Tyler, R. W. (1966). The behavioral sciences and the schools. Teachers College
Record: The Voice of Scholarship in Education, 67 (10), 200–214. https:
//doi.org/10.1177/016146816606701008

van Kuijk, J., Daalhuizen, J., & Christiaans, H. (2019). Drivers of usability in
product design practice: Induction of a framework through a case study of
three product development projects. Design Studies, 60, 139–179. https:
//doi.org/10.1016/j.destud.2018.06.002

Voorheis, P., Zhao, A., Kuluski, K., Pham, Q., Scott, T., Sztur, P., Khanna,
N., Ibrahim, M., & Petch, J. (2022). Integrating behavioral science and
design thinking to develop mobile health interventions: Systematic scoping
review. JMIR mHealth and uHealth, 10(3), e35799. https://doi.org/10.
2196/35799

Wildeboer, G., Kelders, S. M., & van Gemert-Pijnen, J. E. (2016). The rela-
tionship between persuasive technology principles, adherence and effect of
web-based interventions for mental health: A meta-analysis. International
Journal of Medical Informatics, 96, 71–85. https://doi.org/10.1016/j.
ijmedinf.2016.04.005

Wölbling, A., Krämer, K., Buss, C. N., Dribbisch, K., LoBue, P., & Taherivand,
A. (2012). Design thinking: An innovative concept for developing user-
centered software. In Software for people (pp. 121–136). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-31371-4_7

79

https://doi.org/10.1177/016146816606701008
https://doi.org/10.1177/016146816606701008
https://doi.org/10.1016/j.destud.2018.06.002
https://doi.org/10.1016/j.destud.2018.06.002
https://doi.org/10.2196/35799
https://doi.org/10.2196/35799
https://doi.org/10.1016/j.ijmedinf.2016.04.005
https://doi.org/10.1016/j.ijmedinf.2016.04.005
https://doi.org/10.1007/978-3-642-31371-4_7

	Introduction
	Problem Definition
	Objective Definition
	Solution Design
	Design Requirements
	Theoretical Foundations
	Conceptual Design Process
	The Framework’s Conceptual Design
	The Framework’s Structure: How It Works
	The Framework’s Structure: Why it Works

	How to Adapt and Apply the Framework
	Adapting the Framework to a Use Case
	Applying the Adapted Framework to a Specific Use Case

	Strengths, Limitations, and Opportunities for Extension by Design
	Strengths
	Limitations
	Opportunities for Extension

	Assessment of Met Design Requirements
	Summary

	Demonstration
	Selecting Process Steps to Demonstrate
	Adapting the Framework to Our Open Source Collaboration Use Case
	Applying the Adapted Framework on the JValue Hub
	Selected Process Steps

	Summary

	Evaluation
	Evaluation Objectives and Success Criteria
	Evaluation Objectives
	Success Criteria

	Evaluation Method and Process
	Evaluation Method
	Evaluation Process

	Evaluation Results
	Numerical Insights
	Qualitative Data
	Alignment with Success Criteria

	Limitations of the Evaluation
	The Framework's Evolution through its Evaluation
	Summary

	Conclusion
	Appendices
	Demonstration and Evaluation Resources
	The NUDGE Framework Adapted to the Open Source Collaboration Use Case
	The Evaluation Session Setup

	Overview of the Base Set of Behavioral Blocks
	Technique: Reduction
	Technique: Tunneling
	Technique: Tailoring
	Technique: Personalization
	Technique: Self-Monitoring
	Technique: Simulation
	Technique: Rehearsal

	References

