License Text Viewer for Simplified
Open Source Compliance

BACHELOR THESIS

Julian Schutz

Submitted on 24 March 2025

Friedrich-Alexander-Universitit Erlangen-Niirnberg
Faculty of Engineering, Department Computer Science
Professorship for Open Source Software

Supervisor:
Martin Wagner, M.Sc.
Prof. Dr. Dirk Riehle, M.B.A.

=AU

Friedrich-Alexander-Universitat

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others. The thesis was not examined before, nor has it been
published. The submitted electronic version of the thesis matches the printed
version.

Erlangen, 24 March 2025

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 24 March 2025

https://creativecommons.org/licenses/by/4.0/

il

Abstract

The software development landscape has changed drastically over the years. With
an estimated up to 98% of codebases including open-source software (Nagle et
al., 2022) and the rise of package managers and development frameworks, it has
never been simpler to start incorporating numerous amounts of open-source pro-
jects. So simple, in fact, that managing different dependencies’ software licenses
went from a cumbersome task to an impossible one, especially when licenses are
mentioned in various files outside of dedicated license declarations. This creates
a demand for tools that assist in the process of managing license compliance,
as carefree misuse of open-source code can quickly turn into a legal liability for
companies and private developers alike.

This thesis presents a License Text Viewer feature for one such assisting tool:
SCA Tool. The License Text Viewer makes recognizing modified licenses and
evaluating the impact of the modifications easy by providing the user with the
context of the original file of a mentioned license and displaying the difference to
the closest unmodified license text in simple and efficient fashion.

iii

v

Contents

1 Introduction 1
2 Literature Review 3
2.1 License Fundamentals 3
2.1.1 Permissive Licenses 3

2.1.2 Copyleft Licenses 4

2.1.3 Proprietary Licenses 4

2.2 Additional Tools 4
2.2.1 OSS Review Toolkit 4

2.2.2 ScanCode Toolkit 5

223 NPMdiff 5

2.2.4 REST and GraphQL API 6

2.3 Related Work 7
2.3.1 ScanCode Workbench 7

2.3.2 OpossumUI 7

3 Requirements 9
3.1 Functional Requirements 9
3.2 Non-functional Requirements 10

4 Architecture 11
4.1 Analyzing and Scanning 11
4.2 Database 12
4.3 Application Programming Interface (API) 12
4.4 Web Interface 13

5 Design and Implementation 15
5.1 Backend 15
5.1.1 License Finding APT 15

5.1.2 License Text API 16

5.2 Frontend 16
52.1 GitHub API 17

5.2.2 Web Interface

6 Evaluation

7 Conclusion

References

vi

23

25

27

List of Figures

5.1 Sample Governance View Table
5.2 Steps performed on initial start of License Text Viewer

5.3 License Text Viewer page

vii

viil

Acronyms

FOSS Free and Open-Source Software
OSS Open-Source Software

ORT OSS Review Toolkit

REST REpresentational State Transfer
API Application Programming Interface
URL Uniform Resource Locator

X

1 Introduction

In the software development world of today, open-source components have be-
come the foundation of any new application or system. It is estimated that Free
and Open-Source Software (FOSS) is included in up to 98% of codebases (Nagle
et al., 2022). Applications can easily incorporate hundreds of open-source de-
pendencies due to transitive dependencies. This collaborative nature accelerates
development, but also introduces more license compliance and copyright issues
than a more isolated approach would. It has never been simpler to include a few
packages in a project, which themselves often also have dependencies, all without
taking even one glance at the licenses and copyright statements involved in using
that code.

Software licenses form the legal groundwork for open-source development to func-
tion, but they also specify constraints and obligations like copyright does. There
are countless variations of software licenses, ranging from permissive licenses like
the MIT license, to copyleft licenses like the GPL license, each with at least
slightly differing requirements or obligations.

This situation can lead to multiple problems: Identifying which licenses are a part
of a codebase is an arduous task when it just involves visiting each dependency’s
page and checking the declared license, but becomes an insurmountable task when
considering transitive dependencies and the fact that it is incredibly easy to miss a
deeply nested license and miscategorize a project. Issues like this lead to conflicts
between declared licenses and the actual licenses of code within a project - and
others that incorporate incorrectly licensed code. This means the declared license
is unfortunately not meaningful enough on its own and any license information
embedded in source files or other adjacent documents has to be a part of the
consideration process. Another issue is the potential for anyone to slightly modify
an existing license text for their specific project, which drastically increases the
complexity in reviewing licenses since modifications, of course, do not change
the legal binding of the license. When failing to properly manage licenses and
their obligations, legal disputes about the damaged intellectual property are just
waiting to happen.

1. Introduction

SCA Tool is a software composition analysis tool that aims to tackle these prob-
lems by providing users with a wide range of features that assist in managing
license compliance for a project that implements open-source code. SCA Tool
provides users with an overview of dependencies, including transitive dependen-
cies, and lists not only the declared license for each dependency, but also the
detected licenses mentioned in other files. In addition, SCA Tool informs users
about known vulnerabilities in any used dependency and can produce a software
bill-of-material, which lists all components that are included in a project.

This thesis presents an addition to the SCA Tool feature set, the License Text
Viewer. It aims to help solve the issue of manual license modifications going un-
noticed and simplify the process of evaluating if a dependency should be removed.
The License Text Viewer achieves this by displaying detected licenses in the con-
text of their source file and not relying solely on the automatic license detection,
displaying the default license text of the detected license as well as highlighting
the differences between the two. The navigation between files is kept simple, as
the manual evaluation process needs to be kept as intuitive and simple as possible
for users. After all, this process otherwise being an arduous task is a part of the
reason some projects end up categorized incorrectly in the first place.

2 Literature Review

The first section of this chapter provides an overview of the software licensing
landscape and presents the major categories one needs to familiarize themselves
with when handling the different licenses used by an open-source software pro-
ject, as incorrect assessments of licenses can cause conflicts between the targeted
license and those contained within.

Afterwards, some of the tools and architectures used by SCA Tool will be detailed.
Finally, the current state of technology in regards to license evaluation tools, as
well as the differences between SCA Tool and existing tools are presented.

2.1 License Fundamentals

When working with software licensing, understanding the restrictions and oblig-
ations of different kinds of licenses is key to avoid misuse of software and legal
disputes. License identifiers like spdxIDs can be used to easily differentiate li-
censes. While it is possible to divide software licenses into very thin categories,
knowledge of the three types of licenses discussed in this chapter, moving from
the least restrictive permissive licenses over the copyleft licenses to the most re-
strictive proprietary licenses is sufficient for the context of this thesis. It allows
an understanding of the conflicts that can occur when multiple licenses are in-
cluded in the same project and showcase the need for proper classification. It is
important to be alert of modifications to license templates, as even small changes
like including or removing a "not” can fundamentally change the content of a
license.

2.1.1 Permissive Licenses

Permissive licenses offer the most flexibility to users, allowing them to redistrib-
ute and modify the licensed code with barely any restrictions. Licenses like MIT,
Apache or FreeBSD require the licensed material to include the license and copy-
right notice, but allow users to freely use the software and its code for almost any
purpose, including proprietary commercial products. Permissive licenses are by

2. Literature Review

far the most common licenses found in open-source communities, where building
on each other’s work is highly encouraged. (Ballhausen, 2019)

2.1.2 Copyleft Licenses

The most crucial condition shared by copyleft licenses is the requirement that any
distribution of the licensed material must share the same license as the original
material. Copyleft licenses still allow code to be used, modified and distributed,
even for commercial products (Ballhausen, 2019). In the latter case, this com-
mercial product would then also need to be published under the same license,
e.g. the GPL license.

This eliminates the case of a company using open-source software, modifying it
and then selling it while keeping their modifications closed-source, as it would be
possible - and frequently happens - with permissive licenses.

2.1.3 Proprietary Licenses

Proprietary licenses have very strict terms and usually come with licensing agree-
ments of varying contents for use. They are typically used by companies wishing
to keep their software under control and commercially viable.

Code associated with a proprietary license is usually not publicly available. As
such, the specific conditions of the various types of proprietary licenses are not
often encountered when working with open-source. The more likely way to come
into contact with them is when working on a project which is going to use a
proprietary license itself.

2.2 Additional Tools

This section will cover tools that have been integrated into the architecture of
SCA Tool or are being integrated into it for the purpose of implementing the
License Text Viewer.

2.2.1 OSS Review Toolkit

The OSS Review Toolkit (ORT) is a free open-source toolkit designed to effi-
ciently manage dependencies for open-source software. ORT can assist in auto-
mating a variety of tasks surrounding open-source compliance, like generating
a software bill of materials, correcting package metadata or conducting policy
checks. The toolkit consists of seven tools that can be combined as needed. The
Analyzer acts as the foundation, the output of which is used as the input for all
other tools. It detects the dependencies of a software project by querying used

2. Literature Review

package managers and builds a full list of dependencies including transitive de-
pendencies. Several package managers for multiple programming languages are
currently supported, including, but not limited to, Gradle and Maven for Java,
NPM and Yarn for JavaScript, PIP for Python and Cargo for Rust. (‘Introduc-
tion | OSS Review Toolkit’, n.d.)

The other tools of the ORT include the Downloader, which downloads the source
code for all dependencies listed in the Analyzer’s output. The Advisor queries a
security advisor service for known vulnerabilities within the Analyzer result. The
Scanner wraps license scanners like ScanCode and allows storing their results
to reduce resources spent scanning files multiple times by reusing scan results
(‘Scanner | OSS Review Toolkit’, n.d.). The Evaluator runs a check of custom
policy rules and detects any policy violations. The Reporter is used to visualize
results in a readable manner and the Notifier can send notifications of results via
channels like e-mail. (‘Introduction | OSS Review Toolkit’, n.d.)

2.2.2 ScanCode Toolkit

The ScanCode Toolkit is a tool for software composition analysis of open-source
software. It can identify copyrights, dependencies, and licenses and has existing
integration into ORT. When a scan of a codebase is initiated, ScanCode first
classifies the files based on their file types, then extracts any archived or binary
files if applicable. Afterwards, a large amount of license detection rules are used
to detect license snippets, which are then queried against a license search index
to find matches. To detect copyright notices, a parser specialized in the forms
of copyright statements is used. Finally, metadata about packages is collected
before the scan result is saved in one of the available formats like JSON, XML, CSV
or HTML, ready to be used for another tool next (‘Overview — ScanCode-Toolkit
documentation’, n.d.). Each file’s scan result contains its path in the codebase,
the copyright statements and licenses the scanner detected in addition to the line
range the license or copyright was detected in, and reference information about
the detected license. (‘ScanCode Toolkit Documentation’, n.d.)

2.2.3 NPM:iff

Diff is a popular library for JavaScript integrated into the NPM package manager
that provides tools to identify changes between two blocks of text. It is espe-
cially useful for precisely highlighting small differences, like when reviewing code
changes, or for the purposes of SCA Tool, reviewing differences in license texts.
The functionality of Diff is based on Eugene W. Myers’ "An O(ND) Difference
Algorithm and Its Variations"! with some small changes. Diff provides functions
with differing token sizes like characters in diffChars, words in diffWords, lines

thttp:/ /www.xmailserver.org/diff2.pdf

http://www.xmailserver.org/diff2.pdf

2. Literature Review

in diffLines or sentences in diffSentences. Depending on the function, the
texts are split into tokens of corresponding size. Then, using the aforementioned
algorithm, the smallest set of insertions and deletions of single tokens to change
the first input text into the second one are determined. The functions then return
a list of change objects, listing the tokens added, deleted or kept chronologically
from the beginning of the first input text to its end. (‘diff’, 2024)

If the options available for tokens do not fit the user’s needs, they can also
split the texts into tokens beforehand and then pass arrays of tokens to Diff’s
diffArray function. Diff also provides options for each function like the option to
ignore leading and trailing whitespaces and the option to perform the difference
calculation case-insensitive. (‘diff’, 2024)

2.2.4 REST and GraphQL API

REpresentational State Transfer (REST) and GraphQL are two widely used API
architectures. Both handle the exchange of data between servers and clients and
are supported by GitHub, but they differ greatly in structure, efficiency, and
flexibility (‘Comparing GitHub’s REST API and GraphQL APT’, n.d.).

In REST-based APIs, every endpoint handles one resource and supports standard
HTTP methods such as GET, PUT or DELETE. Parameters can be used to filter
results, but the fields each resource returns are fixed. For example, when querying
GitHub’s REST API about repositories with GET /search/repositories?q=
stars:>100, it is possible to filter the number of results with a parameter by
limiting the repositories to ones with over 100 stars, but the data returned per
repository is fixed (Brito & Valente, 2020). This results in constantly retrieving
more data from an endpoint than necessary.

GraphQL on the other hand works with just a single endpoint that handles the
client’s query. The data is instead exposed by a graph. Each node is an object
containing fields and edges, which can reference another object. GraphQL also
supports the creation of type schemas which define the fields available in objects
of said type. The user’s GraphQL query, unlike a REST API query, specifies the
exact requested information by traversing through the data graph and listing the
fields necessary. This solves the REST APT’s issue of over-fetching at the cost of
slightly more complex server structure and client query code. (Brito & Valente,
2020)

Another advantage of GraphQL over REST is that the complexity available in
GraphQL queries can achieve amounts of information retrieval in a single query
which would only be possible with REST by issueing multiple queries due to the
fixed nature of endpoints in REST architecture. This advantage is especially
important when working with a high number of requests and rate-limits being a
concern. REST architecture has the benefit of being able to use standard built-in

2. Literature Review

HTTP caching, whereas GraphQL would need a custom solution for its dynamic
queries.

2.3 Related Work

In this section, two similar tools to SCA Tool that aim to make handling open-
source license compliance easier will be discussed and their differences to SCA

Tool will be highlighted.

2.3.1 ScanCode Workbench

ScanCode Workbench? is an open-source application built to provide a visual
user interface for scan results created by ScanCode Toolkit. As such, its features
are vastly more limited than what SCA Tool provides. After manually loading
the JSON file of a scan result, the ScanCode Workbench saves the data from the
scan result in a SQLite file and allows users to navigate the directory structure
of the scanned codebase and view the detected licenses accompanied by the path
of the source file (‘ScanCode Workbench Documentation’, n.d.). This is not too
different from the existing SCA Tool governance view as detailed in section 4.4.
However, the addition of the License Text Viewer will provide users with more
in-depth information about specific license detections.

The ScanCode Workbench can also present information about the detected copy-
rights as well as the dependencies contained in the codebase. As the ScanCode
Workbench works with only one scan result at a time, checking the licenses used
by those dependencies requires scanning them one at a time and then loading the
scan results (‘ScanCode Workbench Documentation’, n.d.). Additionally, due to
the nature of the ScanCode Workbench being a visualizer for all the information
contained in a scan result, there is a substantial portion of information available
that might not interest users who just want to prevent licensing issues as simple
as possible, like for example the specific rule used to reach a license match, the
runtime of the scan or statistics about the programming languages, licenses, and
file types used in the codebase. SCA Tool aims to not overwhelm users with un-
necessary masses of information and to keep the focus on providing the important
information concisely.

2.3.2 OpossumUI

OpossumUT? is an open-source tool with a focus on auditing and managing open-
source license compliance data from sources like a ScanCode result JSON file.

Zhttps://github.com /aboutcode-org/scancode-workbench
3https://github.com /opossum-tool /OpossumUI

https://github.com/aboutcode-org/scancode-workbench
https://github.com/opossum-tool/OpossumUI

2. Literature Review

When using OpossumUI, users are presented with statistics about licenses in the
codebase and can navigate through the codebase’s directory structure, similar
to ScanCode Workbench. OpossumUI’s focus lies in the process of reviewing
and editing the license and copyright information, called Attributions in Opos-
sumUI, for specific files. When working from a scan result provided by ScanCode,
the relevant files are marked as having a potential Attribution by the scan res-
ult but still require the user accepting that Attribution. Users can fill in gaps
in the scan result’s information or fill out the Attribution themselves, which
SCA Tool does not currently support. The fully manually reviewed Attributions
can then be exported in formats like a SPDX software bill-of-materials. (‘Opos-
sumUI/USER _GUIDE.md - opossum-tool/OpossumUI’, n.d.)

Similar to ScanCode Workbench, OpossumUI works on a single scan result at a
time. The application is focused on completing and reviewing a scan result as
opposed to SCA Tool’s approach of encompassing all the basic needs for license
compliance.

3

Requirements

This chapter lists the requirements for the License Text Viewer contribution to
SCA Tool which are motivated by the issues described in the Introduction and
the initial thesis listing. They were extended with additional features deemed ad-
equate during development. They are divided into functional and non-functional
requirements. Each requirement is assigned a numerical value which will be used
to refer to specific requirements for the rest of this thesis. The fulfillment of the
requirements will be evaluated at the end of this thesis.

3.1

Functional Requirements

The functional requirements indicate the behavior relating to the License Text
Viewer that SCA Tool has to offer after the contribution.

F-01:

F-02:

F-03:

F-04:

F-05:
F-06:

F-07:

The system has to be able to provide an overview of licenses used and high-
light ones that deviate from the corresponding standard license template.

The system has to be able to display the contents of a License Finding in
context of its source file to allow users to personally evaluate the use of that
dependency in their project.

The system has to be able to display the closest license template to a
detected license.

The system has to be able to display multiple license templates simultan-
eously.

The system has to be able to accommodate F-02 and F-03.

The system has to be able to highlight the difference in license texts pro-
cured by F-02 and F-03.

The system has to be able to toggle the visibility of the difference described
in F-06 as displaying the difference is not appropriate when they have no
similarities to each other.

3. Requirements

F-08: The system has to be able to switch the license template used to generate
the difference described in F-06 if there are multiple templates.

F-09: The system has to be able to display relevant information about License
Findings including the number of Findings available as well as the full
license expression for each.

3.2 Non-functional Requirements
The non-functional requirements list the quality attributes which the License
Text Viewer should provide.

NF-01: The display of text should be scaled properly for any screen size to support
a variety of device environments.

NF-02: The display of multiple licenses templates should be efficient and viewing
each different template should not require manual scrolling.

NF-03: The progress of fetching license texts should take less than 10 seconds.

NF-04: Any API calls should be performed efficiently to improve performance and
avoid any rate-limits as much as possible.

10

4 Architecture

In this chapter, the architecture of SCA Tool that is relevant for the License
Text Viewer will be introduced. SCA Tool’s backend is built in Java and uses
the Spring Boot framework which helps simplify development of Java applications
and provides easy integration with the frontend, built in TypeScript for additional
type safety over JavaScript. The frontend also uses the React library to create
components for the user interface.

This chapter will examine the inner processes that happen in SCA Tool when a
user starts an AnalysisTask of a project, reflected in the structure of this chapter.
To initiate the AnalysisTask for a project, a user that is logged in creates a new
project in SCA Tool’s web interface and performs the setup for a new CodeUnit.
This entails giving SCA Tool access to the repository in question, e.g. by provid-
ing the Uniform Resource Locator (URL) for the git repository.

4.1 Analyzing and Scanning

The first step of the analyzing process is to build a dependency graph for the
Code Unit which includes not only the dependencies directly mentioned in the
repository, but also all recursive dependencies. For this task, SCA Tool’s analyzer
unit makes use of ORT, specifically its Analyzer. The ORT Analyzer detects
various package managers for different programming languages within a project,
e.g. NPM for JavaScript, and then creates a list containing all dependencies
managed by the package managers.

The complete list of dependencies is then passed to the scanner unit, which creates
individual ScanTasks for each dependency package that needs to be scanned. The
scanning of all files is handled by ScanCode, which scans all files in a directory
for copyright and licenses, among other information. Every dependency’s files
are scanned, the results of which are then saved to SCA Tool’s database.

11

4. Architecture

4.2 Database

SCA Tool saves the information extracted from a ScanTask to the database in the
form of packages, not to be confused with the dependency packages managed by
package managers. Each package in the context of SCA Tool’s database includes
metadata about the scanned dependency, the declared license, as well as the
concluded license. Additionally, every instance of a detected License Finding is
saved with the path of the file it was found in, the start and endline of said snippet
and the score given by ScanCode, ranging from 0 to 100. This score however,
is only a mark of how accurate a Finding matches the data from the database.
For example, simple lines such as "licensed under MIT license" will receive
a score of 100 in the same way the complete license text of the MIT license would
receive a score of 100.

SCA Tool uses a mirror of the ScanCode license database* as a baseline of default
license texts bundled with their corresponding spdxID. This 1icense_texts table
receives new entries from successful scans, adding any detected license snippets
or mentions to the database. The license_texts table acts as a collection of
the standard licenses that the License Text Viewer can use to compare them to
specific Findings.

4.3 API

SCA Tool contains multiple API endpoints that allow the browser-based fron-
tend to communicate with the backend and retrieve all the information that is
necessary to run the website. The OpenAPI Generator Gradle plugin is used to
generate the basic Controllers as well as the interface the frontend uses to make
API queries based on the API specification. However, the code in the backend
Controllers that retrieves data according to the API query and prepares it is not
generated.

For this thesis, the most important pre-existing API Controller is the Governance
Controller. It provides the data needed when users visit the governance tab,
including the governance rulesets and the governance view, which handles the
content displayed on the governance tab. The Governance View API provides
the Web Interface with a number of rows, one for every dependency, as well as
the licenses and corresponding categories of each row.

4https:/ /scancode-licensedb.aboutcode.org/

12

https://scancode-licensedb.aboutcode.org/

4. Architecture

4.4 Web Interface

For this thesis, the relevant portion of the Web Interface is the governance tab,
which is one of the options users have to view the results of the scanning process.
There, users choose a default template to decide the intended use case of the pro-
ject, which will later determine what kind of licenses are marked as problematic,
e.g. a copyleft license is marked as prohibited for a proprietary project.

The user is then presented with a table view where each row is one dependency
found in the project. The columns list the name of that dependency, if it is
allowed according to the current template’s ruleset, and the License Integrity,
which marks confidence in the result between Low, Medium and High. The last
column provides an overview of the specific license names that were detected in
the dependency combined into one license expression. This might be as simple
as a single MIT but will list all licenses with AND if there are multiple. The
licenses that are allowed in the current ruleset are marked green and prohibited
ones red. If a single file is licensed under multiple licenses, they will be listed as
(first_license OR second_license).

This display allows users to notice dependencies that might cause issues. How-
ever, it does not allow the user to dig deeper into those issues to evaluate the
exact circumstances and determine if a dependency can still be used or not. This
thesis aims to solve this issue.

13

4. Architecture

14

5 Design and Implementation

This chapter details the changes and additions made to SCA Tool’s architecture
for the purpose of the License Text Viewer. The changes to the backend will be
covered in section 5.1 and the changes to the frontend in section 5.2.

5.1 Backend

The License Text Viewer requires data in the frontend which is not already avail-
able with existing API endpoints. To be able to access the necessary data, a new
API endpoint was created and one existing endpoint was modified. Both of them
included changes in the API specification used by SCA Tool.

5.1.1 License Finding API

The License Finding API is used by the frontend to provide users with easily di-
gestible details about specific findings. Each License Finding contains the package
name, the URL, path, revision, starting line, and ending line of the license snip-
pet in the original file, as well as the license snippet’s text, the detected spdxID,
the score, and the isLicense flag.

The License Finding API is integrated into the existing Governance View API
described in section 4.3, which is queried when the governance tabs are loaded.
The query that retrieves the License Findings thus provides them for all package
IDs of the current CodeUnit. Having access to all findings’ data on the governance
tab page allows the score attribute to be used prior to starting the License Text
Viewer itself, which is further explained in section 5.2.

The information about the original file is used by the GitHub API (section 5.2.1)
to display the license snippet within the context of its entire file. The spdxID is
used in the License Text API as described in section 5.1.2. The detailed uses for
each attribute are explained in section 5.2.

15

5. Design and Implementation

5.1.2 License Text API

The License Text API is the newly created endpoint in SCA Tool’s Governance
Controller. It is responsible for fetching the default license texts for a single
package from the license_texts table. The response texts are then used to
compare the default license texts to the detected license snippet’s texts, the
method of which is further detailed in section 5.2.2.

As an API query parameter, the License Text API receives a list of license expres-
sions, one from each License Finding of the package in question. It is important
to note the potential special cases that can occur within the license expressions.
If a single file is licensed under two different licenses, the corresponding license
expression is not a simple spdxID, but will instead be in the form of spdxID1
OR spdxID2 or spdxID1 AND spdxID2. For this reason, the input list of license
expression needs to be prepared before the database can be queried. To achieve
this, the license expressions containing AND or OR are temporarily split up,
as the full expression is needed for the response.

The database is then queried with a list of spdxIDs and returns a tuple of a
spdxID and the corresponding default license text for each unique input from the
license_texts table.

The data is then prepared for the response form. Every unique license expres-
sion is paired with the list of license pairs as received in the previous step. For
basic license expressions that only contain a simple spdxID, this list will just
contain one entry. A special case like MIT OR BSD-3-Clause will then have
two list entries in the form of [(MIT, licensetext_of_MIT), (BSD-3-Clause,
licensetext_of_BSD-3-Clause)]. This form allows the frontend to access each
license text of a license expression separately while retaining the information of
which license expression contains which licenses.

5.2 Frontend

The License Text Viewer page can be navigated to via an additional column, titled
License Text Viewer, which is added to the end of the governance view. Each
row of the new column contains a button that allows users to inspect the licenses
of that row’s package if the scanning process for that package has concluded
already. If the scan has not finished, the button is colored in red and will not
navigate to the License Text Viewer when clicked. For packages that contain
a Finding with a particularly low score, the threshold being 60 out of 100, the
button that navigates to the License Text Viewer is colored in orange to signify
a point of interest.

Figure 5.1 provides an sample view of the governance tab. In this example,

16

5. Design and Implementation

v No problems found

No rule violations have been detected for your components.

Component Classification LicenseInt... 1 License License Text Viewer
npm/mime-db@1.52.0 Low
npm/asynckit@0.4.0 Medium
npm/axios@1.3.5 Medium

npm/combined-stream@1.0.8 Medium
npm/delayed-stream@1.0.0 Medium
npm/follow-redirects@1.15.2 Medium
npm/form-data@4.0.0 Medium
npm/mime-types@2.1.35 Medium
npm/proxy-from-env@1.1.0 Medium

Rows per page: 10 ¥ -9 0of 9

Figure 5.1: Sample Governance View Table

the package npm/mime-db@1.52.0 has not finished the scanning process and the
package npm/axios@1.3.5 contains a License Finding with a score below 60.

When navigating to the License Text Viewer’s page, the inspected package’s full
license expression of the governance view table, as described in section 4.4, and
the portion of License Findings for the inspected package are passed to the License
Text Viewer. When first loading the page, the License Text API is queried using a
list of spdxID attributes from the License Findings. Additionally, the GitHub API
is queried using the Finding’s URL, path and revision. Currently, only GitHub
links are supported in the scope of this thesis, but the code can be extended in
the future to support alternatives such as GitLab as well. The communication
and steps performed by the frontend when first loading the License Text Viewer
are illustrated in Figure 5.2.

5.2.1 GitHub API

The frontend’s GitHub API aims to provide users with the context of the ori-
ginal file for the license snippets of a package. Requesting a file’s contents at a
specific revision is simple using either GitHub’s REST API or GraphQL API.
For ease of use in a TypeScript environment, the License Text Viewer uses

npm:octokit/core®. Octokit is a JavaScript client library developed by Git-

Shttps://www.npmjs.com /package/Qoctokit /core

17

https://www.npmjs.com/package/@octokit/core

5. Design and Implementation

Frontend Backend GitHub API

License Text Viewer started

display three column view

display license snippet

License Text API request (package license expression)

>
»

Single GraphQL query (repository, paths, revisions)

4

Return License Texts (list of (spdxID, list of textpairs))

display entire source file

License Text Viewer now running

o

Frontend Backend GitHub API

Figure 5.2: Steps performed on initial start of License Text Viewer

Hub. It provides minimalistic methods for common interactions with GitHub
paired with thorough documentation, either via the REST API or the GraphQL
API and handles the authentication process as well.

While requesting a single file is easy using the REST API, requesting potentially
hundreds is not possible in a single request. This combined with the rate-limit
of 5000 requests per hour for authenticated users led to the decision to use the
GraphQL API instead of the REST API (‘Rate limits and node limits for the
GraphQL API’, n.d.). A single GraphQL query can be used to request the files
for all paths in the current package’s Findings at the corresponding revision.

The data necessary to form the GraphQL query is gathered by splitting the
License Finding’s GitHub URL attribute. The owner of the repository as well as
the name of the repository are extracted from the split attribute. Additionally,
the query requires the path of the requested file, which is also available as an
attribute. The complete query contains as many file requests for the repository
in question as there are License Findings available, each specifying the revision
and the path of the file. A successful response contains an array, with each entry
corresponding to one of the file requests and containing its text.

18

5. Design and Implementation

5.2.2 Web Interface

The License Text Viewer page presents general information at the top. Below
this header, three columns of equal width are displayed with their own titles.
Each column’s content can be scrolled individually. The default license text, as
retrieved by the License Text API, resides in the left column and the detected
license snippet from the project in the right. The center showcases the difference
between the two with a diff generated using npm:diff.

The header contains metadata about the currently inspected package. It starts
with the package ID at the top and the license expression of the entire package
below it. The license expression concatenates different licenses with AND in the
same way as the governance view column. Then follows information concerning
the detected License Findings, which are sorted by their license spdxID first and
their score second. This way, users are presented with the Findings that are most
likely to cause issues for each license first. The index of the current Finding and
the number of Findings available are listed and similarly, information about the
group of Findings with the current license is displayed, including the amount of
Findings with the current license and the index of the current Finding within
that group.

On either side of the header, two navigation buttons are located. The buttons
above the right column traverse the list of Findings forwards or backwards. The
ones above the left column instead jump between the license groups, switching to
the next or previous Finding that has a different license. In the case of a package
only containing one license, the left-side buttons will navigate to the first Finding.

The left columns title is the license expression of the current Finding and its cor-
responding default license text. If multiple licenses were detected in the current
Finding by ScanCode, they are displayed below one another with headlines con-
taining their individual spdxID in between. As some license texts can be quite
long and scrolling through them to read the next one is impractical, the spdxIDs
that form the current Finding’s license expression can be clicked to automatically
scroll to that headline.

The right column contains the path for the current Finding’s source file within the
original project as its title. The entire source file’s contents are displayed below.
The section detected as a license snippet, defined by the Finding’s startLine
and endLine attributes, is highlighted. As source files can be very long as well,
the box containing the text will automatically scroll to the highlighted section
when it is first loaded. In the case of the GitHub API query failing, or if a link
to a GitHub repository is not available, the highlighted license snippet is instead
displayed by itself and a status message next to the path informs the user that
the GitHub API query was unsuccessful.

19

5. Design and Implementation

The middle column lists the title Diff and the current visibility status of its
contents, either OFF or ON next to the title. If the visibility is set to OFF, the
contents of the left and right column each take up half the horizontal screen
space instead of a third. The middle columns content is the difference between
the default license text of the left column and the detected license snippet of
the right column. To achieve this, npm:diff is used. For this use case, the
diffWords function yields better results than diffChars and diffLines. When
using diffLines, it can be difficult to spot small difference in long sentences
with a quick glance. diffChars instead runs into the problem of fragmenting
words, making readability more difficult than necessary. Any additions made to
the default license by the license snippet are marked in green, any deletion is
marked in red. The portion of the text that stays identical between the two is
kept black. In cases of a Finding containing multiple licenses, the input used for
diffWords is set to the first of those licenses by default. When a license in the
left columns title is clicked and scrolled to, the diffWords input also changes to
that license’s text accordingly.

SCA Tool a : @

pkg:npm/source-map-support@0.5.21
—— e

(BSD-3-Clause OR MIT) AND MIT
1of 2 with BSD-3-Clause OR MIT Finding 1 of
BSD-3-Clause OR MIT License Jamd-test/require.js

License 6
Diff ON

Permission is hereby granted, free of charge, to~
any person obtaining

MIT License:

Permission is hereby granted, free of charge, to
any person obtaining

a copy of this software and associated
documentation files (the

"Software"), to deal in the Software without
restriction, including

without limitation the rights to use, copy,
modify, merge, publish,

distribute, sublicense, and/or sell copies of the
Software, and to

permit persons to whom the Software is
furnished to do so, subject to

Dojo Foundation All Rights Reserved.
Available via the MIT or new BSD license.
a copy of this software and associated see: http://github.com/jrburke/requirejs for
documentation files (Available via the details

"Software"), to deal in the Software without */

restriction, including var requirejs,require,define;

without limitation the rights to use, copy, (function(zZ){function H(b){return"[object
modify, merge, publish, Function]"===L.call(b)}function I(b)

distribute, sublicense, and/ MIT or sell copies {return"[object Array]"===L.call(b)}function

of the Software, and to y(b,c){if(b){var e;for(e=0;e<b.length&&(!b[e]|!
permit persons to whom the Software is c(ble],e,b));e+=1);}}function M(b,c){if (b){var
furnished to do so, subject to e;for(e=b.length-1;-1<e&&(!ble]|'c(ble],e,b));e-
the following conditions: =1);}}function t(b,c){return ga.call(b,c)}function

the following conditions:

The above copyright notice and this permission
notice shall be

included in all copies or substantial portions of
the Software.

The above copyright notice and this permission
notice shall be

included in all copies or substantial portions of
the Softwarenew BSD license.

I(b,c)return t{b,c)&&blclHunction F(b,c)for(var
e in b)if(t(b,e)&&c(ble],e))break}function
Qlb,c,e,h}{ca&F (c,function(c,)if(e]|
t(b,j))h&&"string"!==typeof c?(blj]||
(bli1={h,Q(bljl,

c,e,h)):b[jl=c});return b}function u(b,c){return

THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND.

function(){return c.apply(b,arguments)}}

THF QOFTWARF IQ PROVINFN "AQ IQ" function aalh\{throw h-Yiinction ha(h){f(1

Figure 5.3: License Text Viewer page

Figure 5.3 provides an example of the License Text Viewer page when viewing the
first Finding of npm/source-map-support@0.5.21, with the Diff column enabled
and the license set to MIT.

However, displaying the diff between the license snippet and the license default
text is not always useful since not all detected license snippets are full license
texts, some simply mention a license, like in the line "license: MIT". For this
reason, the visibility of the column’s content can be toggled on or off by clicking

20

5. Design and Implementation

the Diff ON/OFF title. The default setting corresponds to the isLicense flag set
for the current Finding by ScanCode, which marks if a text snippet is an actual
license text or not. It very accurately determines lines like "license: MIT" as
not being a license text, sets isLicense to false and leads to the Diff columns
contents not being visible by default. There are cases of false negatives, where
a license snippet does contain a similar enough text to the default license that
displaying the difference does make sense but isLicense is false. In cases like
this, users can simply click the Diff OFF title to switch the display of that diff
on.

21

5.

Design and Implementation

22

6

Evaluation

This chapter will evaluate the success of each target requirement as defined in
chapter 3.

F-01: Was fulfilled by implementing the License Text Viewer.

F-02: Was partially fulfilled. The License Text Viewer can only access
the original file of a license snippet if the dependency is on GitHub via the
GitHub API.

F-03: Was fulfilled. When the ScanCode scan result detects a license, the
license_texts table, which uses ScanCode’s license database as a baseline,
will contain a default license text. The License Text API fetches the text
and the frontend displays it and the license snippet even in the case of the
GitHub API not being available.

F-04: Was fulfilled. When files are licensed under multiple licenses, the
License Text API retrieves all mentioned license texts and the frontend
displays them below one another.

F-05: Was fulfilled. The left and right column in the License Text Viewer
page contain the necessary texts.

F-06: Was fulfilled. The License Text Viewer uses npm:diff to gener-
ate the difference between the highlighted detected license snippet and the
default license text.

F-07: Was fulfilled. Clicking the diff status header will toggle the visib-
ility of the diff column on or off. By default, the column is visible if the
isLicense flag is set to true for the current License Finding.

F-08: Was fulfilled. Clicking the name of the license in the header of the
left column will change the diff input to the text of the selected license and
will scroll to the beginning of its license text.

F-09: Was fulfilled. The header section displays the name and full license
expression of the current package, the number of Findings with the current

23

6. Evaluation

24

license and the total number in addition of the license expression and path
for the current Finding.

NF-01: Was fulfilled. Both smaller and larger screen spaces still contain
all information and all functionalities.

NF-02: Was fulfilled. Clicking the license name in the header of the left
column will automatically scroll to the beginning of its text.

NF-03: Was fulfilled. For a package with 141 Findings, the GitHub API
takes 1.5 seconds and the License Text API which returned 24 license texts
takes 160 milliseconds.

NF-04: Was partially fulfilled. The License Text Viewer calls the License
Text API as well as the GitHub API once on initial startup but has no
caching strategies in place to reduce the amount of necessary API calls
when restarting the License Text Viewer.

7 Conclusion

The License Text Viewer presented in this thesis addresses the problem of mod-
ified licenses by providing users of SCA Tool with an efficient way to manually
evaluate changes in license texts. By displaying detected licenses within the con-
text of their original file and generating a colored visualized diff between the
detected license text and the closest default license text, the License Text Viewer
drastically simplifies the process of evaluating such modifications. This imple-
mentation successfully met most requirements, and the remaining ones at least
partially. There are options open for improving the License Text Viewer which
were not in the scope of this thesis:

e Asof now, the License Text Viewer can only show the context of the original
file for packages available on GitHub. The code can be extended to support
other file sources as well by adjusting the function detailed in section 5.2.1.

e Performance can be improved slightly and the risk of reaching rate-limits
can be reduced by implementing a custom caching solution which stores
the result of a GitHub request and prevents the License Text Viewer from
sending the same request again when closing and re-opening the License
Text Viewer with the same package.

e The accuracy of scan results is not perfect, which is why the License Text
Viewer displays the entire source file. Improving the scan results is not a
simple task as SCA Tool currently uses ScanCode Toolkit for scans. If it
is possible to improve the scan results and the isLicense flag in them,
users would need to manually toggle the visibility of the diff column less
frequently and could place higher trust in the scan results, even when the
original source file is not available.

Looking forward, the future of license management appears more promising as
tools like SCA Tool and others are developed rapidly to reign in the massive
amounts of neglected license management. The improvement of automated li-
cense management tools will assist in catching up to the incredible size of modern-
day open-source software development.

25

7. Conclusion

26

References

Ballhausen, M. (2019). Free and open source software licenses explained. Com-
puter, 52(6), 82-86. https://doi.org/10.1109/MC.2019.2907766

Brito, G., & Valente, M. T. (2020). Rest vs graphql: A controlled experiment.
2020 IEEE International Conference on Software Architecture (ICSA),
81-91. https://doi.org/10.1109/1CSA47634.2020.00016

Comparing GitHub’s REST API and GraphQL API |GitHub docs|. (n.d.). Re-
trieved March 24, 2025, from https://docs.github.com /en/rest /about-the-
rest-api/comparing-githubs-rest-api-and-graphql-api?apiVersion=2022-
11-28

Diff [Npm]|. (2024, September 6). Retrieved March 24, 2025, from https://www.
npmjs.com /package /diff

Introduction | OSS review toolkit. (n.d.). Retrieved March 24, 2025, from https:
/ Joss-review-toolkit.github.io/ort /docs /intro

Nagle, F., Dana, J., Hoffman, J., Randazzo, S., & Zhou, Y. (2022, March). Census
II of free and open source software — application libraries. The Linux
Foundation. https://doi.org/10.70828 / KHEH5209

OpossumUI/USER __ guide.md - opossum-tool/OpossumUI |GitHub|. (n.d.). Re-
trieved March 24, 2025, from https://github.com/opossum-tool /OpossumUI/
blob/main/USER_ GUIDE.md

Overview — ScanCode-toolkit documentation. (n.d.). Retrieved March 24, 2025,
from https: / /scancode - toolkit . readthedocs . i0 / en / latest / reference /
overview.html#explain-how-scancode-works

Rate limits and node limits for the GraphQL API |GitHub docs|. (n.d.). Retrieved
March 24, 2025, from https://docs.github.com /en /graphql /overview /
rate-limits-and-node-limits-for-the-graphql-api

ScanCode toolkit documentation. (n.d.). Retrieved March 24, 2025, from https:
/ /scancode-toolkit.readthedocs.io/en/latest /

ScanCode workbench documentation. (n.d.). Retrieved March 24, 2025, from https:
/ /scancode-workbench.readthedocs.io/en/develop/

Scanner | OSS review toolkit. (n.d.). https://oss-review-toolkit.github.io/ort/
docs/tools/scanner

27

https://doi.org/10.1109/MC.2019.2907766
https://doi.org/10.1109/ICSA47634.2020.00016
https://docs.github.com/en/rest/about-the-rest-api/comparing-githubs-rest-api-and-graphql-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/about-the-rest-api/comparing-githubs-rest-api-and-graphql-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/about-the-rest-api/comparing-githubs-rest-api-and-graphql-api?apiVersion=2022-11-28
https://www.npmjs.com/package/diff
https://www.npmjs.com/package/diff
https://oss-review-toolkit.github.io/ort/docs/intro
https://oss-review-toolkit.github.io/ort/docs/intro
https://doi.org/10.70828/KHEH5209
https://github.com/opossum-tool/OpossumUI/blob/main/USER_GUIDE.md
https://github.com/opossum-tool/OpossumUI/blob/main/USER_GUIDE.md
https://scancode-toolkit.readthedocs.io/en/latest/reference/overview.html#explain-how-scancode-works
https://scancode-toolkit.readthedocs.io/en/latest/reference/overview.html#explain-how-scancode-works
https://docs.github.com/en/graphql/overview/rate-limits-and-node-limits-for-the-graphql-api
https://docs.github.com/en/graphql/overview/rate-limits-and-node-limits-for-the-graphql-api
https://scancode-toolkit.readthedocs.io/en/latest/
https://scancode-toolkit.readthedocs.io/en/latest/
https://scancode-workbench.readthedocs.io/en/develop/
https://scancode-workbench.readthedocs.io/en/develop/
https://oss-review-toolkit.github.io/ort/docs/tools/scanner
https://oss-review-toolkit.github.io/ort/docs/tools/scanner

	Introduction
	Literature Review
	License Fundamentals
	Permissive Licenses
	Copyleft Licenses
	Proprietary Licenses

	Additional Tools
	OSS Review Toolkit
	ScanCode Toolkit
	NPM:diff
	REST and GraphQL API

	Related Work
	ScanCode Workbench
	OpossumUI

	Requirements
	Functional Requirements
	Non-functional Requirements

	Architecture
	Analyzing and Scanning
	Database
	API
	Web Interface

	Design and Implementation
	Backend
	License Finding API
	License Text API

	Frontend
	GitHub API
	Web Interface

	Evaluation
	Conclusion
	References

