
Elevated Testing Depth and Quality

for Design Implementations

through Screenshot Testing

BACHELOR'S THESIS

Alexandru-Vlad Vamos
,

Submitted on 4 November 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg

Faculty of Engineering, Department Computer Science

Professorship for Open Source Software

Supervisor:
Christian Schrödel

Prof. Dr. Dirk Riehle, M.B.A.

Declaration of Originality

I con�rm that I have written this thesis unaided and without using sources other
than those listed and that this thesis has never been submitted to another exam-
ination authority and accepted as part of an examination achievement, neither
in this form nor in a similar form. All content that was taken from a third party
either verbatim or in substance has been acknowledged as such.

Erlangen, 4 November 2024

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 4 November 2024

i

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

The human factor in manual design veri�cation makes the process time-consuming
and error-prone. This thesis develops a strategy for automating design veri�ca-
tion in Android applications with the help of screenshot testing. Such an objective
requires choosing the right tool, managing the screenshot data and integrating
screenshot testing into the CI/CD process. Maximizing the value that screenshot
testing adds to the software project requires formulating a test case implement-
ation strategy that de�nes what parts of the application UI should be veri�ed
and when. This research also touches on topics such as image comparison al-
gorithms and Git's problematic handling of binary �les. The objective of the
strategy developed in this thesis is the reduction of manual testing e�orts in re-
gards to design veri�cation and the quick and reliable detection of UI regressions
in Android applications.

iii

iv

Contents

1 Introduction 1

2 Literature Review 3
2.1 Test Automation . 3

2.1.1 Testware Relevant for Screenshot Testing 3
2.1.2 Goals of Test Automation 4
2.1.3 Drawbacks and Bene�ts of Test Automation 4

2.2 Snapshot Testing and Screenshot Testing 4
2.2.1 Bene�ts and Drawbacks of Snapshot Testing 5

2.3 arc42 and Architecture Decison Records 6

3 Requirements 7
3.1 Functional Requirements . 7
3.2 Quality Goals . 8
3.3 Stakeholders . 9

4 Architecture 11
4.1 Screenshot Testing . 11
4.2 Android Application Architecture 11
4.3 Screenshot Test Structure . 12

5 Design and Implementation 15
5.1 Screenshot Comparison Algorithms 15

5.1.1 Open-Source Algorithms 15
5.1.2 Enhanced Closed-Source Algorithms 16
5.1.3 Side-by-Side Comparison 16
5.1.4 Conclusion . 21

5.2 Screenshot Testing Tool . 21
5.2.1 Tool Selection . 21
5.2.2 Tool Setup and Usage . 25

5.3 Testcase Implementation Strategy 30
5.3.1 What parts of the application UI will be tested? 30

v

5.3.2 When and in what order should the screenshot tests be
implemented? . 32

5.4 CI/CD Pipeline Integration . 33
5.4.1 Platform-Dependent Rendering Di�erences 34

5.5 Data Management . 35
5.5.1 Storing and Versioning with Git 35
5.5.2 Storing and Versioning with Git LFS 37
5.5.3 Custom Storage and Versioning Solution 38
5.5.4 Conclusion . 39

5.6 Pixel Di�erences and Tolerance Parameters 39

6 Evaluation 43
6.1 Quality Goals . 43

6.1.1 Functional Suitability . 43
6.1.2 E�ciency and Performance 44
6.1.3 Reliability . 44
6.1.4 Maintainability . 44
6.1.5 Scalability . 44

6.2 Main Shortcoming and Future Research 45

7 Conclusion 47

Appendices 49
A Tools and Resources . 51
B API References . 51
C Mock Android Application . 52

References 53

vi

List of Figures

4.1 Section of the SDLC . 12
4.2 Simpli�ed representation of the MVVM pattern 12
4.3 Basic representation of the screenshot test structure 13

5.1 Reference and actual screenshots from �rst regression scenario . . 17
5.2 Di�erence images from �rst scenario (shifted button) 18
5.3 Di�erence images from second scenario (changed button color) . . 19
5.4 Di�erence images from third scenario (shifted text element) 20
5.5 Example of a Roborazzi di�erence image 29
5.6 Recommended implementation approach 32
5.7 Questions for �ltering the screenshot test backlog 33
5.8 CI/CD pipeline with screenshot testing 34
5.9 Roborazzi rendering di�erences between screenshot tests run on

the macOS and Windows operating systems 35
5.10 Git binary �le handling experiment 36
5.11 Custom screenshot data management solution 38
5.12 Detailed example of rendering di�erence 40
5.13 Detailed example of UI regression 41

6.1 What does screenshot testing cover? 45

C.1 Welcome screen of the mock Android application 52

vii

viii

List of Tables

3.1 Quality goals . 8
3.2 Stakeholder expectations . 9

5.1 Tool comparison (with insights from Soares (2023a)) 25
5.2 Roborazzi Gradle tasks (`Roborazzi documentation', 2024) 28

ix

x

Listings

5.1 Paparazzi integration (in build.gradle.kts) 22
5.2 Simple Roborazzi screenshot test example 23
5.3 Complete Roborazzi integration (in build.gradle.kts) 26
5.4 Complete Roborazzi screenshot test example 27
5.5 XML-based screenshot . 28
5.6 Example screenshot test execution in Jenkins 34
5.7 Git LFS setup . 37

xi

xii

Acronyms

ADB Android Debug Bridge

ADR Architecture Decision Record

AI Arti�cial Intelligence

API Application Programming Interface

APK Android Application Package

CI/CD Continuous Integration/Continuous Delivery

CV Computer Vision

DOM Document Object Model

E2E End-to-End

HMI Human-Machine Interface

HTML Hypertext Markup Language

JSON JavaScript Object Notation

JVM Java Virtual Machine

LFS Large File Storage

ML Machine Learning

MVVM Model-View-ViewModel

OEMs Original Equipment Manufacturers

PbP Pixel-by-Pixel

SDLC Software Development Life Cycle

UI User Interface

VCS Version Control System

xiii

XML Extensible Markup Language

xiv

1 Introduction

A considerable amount of the e�ort that is poured into developing an Automotive
Human-Machine Interface (HMI) is aimed at accurately implementing the design
speci�cation. As is generally the case for User Interface (UI) implementation,
the typical approach is to attempt to recreate the design speci�cation in code
as accurately as possbile. However, despite the growing amount of value that
Original Equipment Manufacturers (OEMs) place on the precise implementation
of design speci�cations and the safety-critical role that UI plays in Automotive
HMI, design implementations are mostly only veri�ed through manual tests. This
has several signi�cant disadvantages. On the one hand, manual tests depend on
human e�ort, which makes them less time-e�ective and raises the probability
of error (McMillan, 2024). On the other hand, since manual testing requires
ever-growing amounts of human e�ort to be scalable, design implementations are
usually not veri�ed in detail, which leads to UI regressions that only get noticed
by chance or by the end user.

The objective of this thesis is to develop a concrete strategy for automating design
veri�cation in Android applications. This will be achieved through screenshot
testing, which Google describes as being an "e�ective way to verify how your
UI looks to users" (`Compose Preview Screenshot Testing', 2024). Among other
things, such a strategy seeks to reduce the amount of manual testing e�ort that
is invested into design veri�cation and to enable quick and reliable detection of
UI regressions.

In order to achieve that, this thesis will tackle challenges such as the comparison of
currently available screenshot testing tools, what layers of the application UI they
should target in order to maximize e�ciency and how screenshot testing can be
integrated into Continuous Integration/Continuous Delivery (CI/CD) processes.

Additionally, the thesis is strectured in such a way as to serve as a road map for
teams that seek to implement their own testing strategy.

1

1. Introduction

2

2 Literature Review

This chapter sums up relevant literature, gathers insights that are relevant to
screenshot testing and explores the documentation strategy that this thesis will
use.

2.1 Test Automation

The practice of automated screenshot testing falls under the broader discipline
of test automation. Therefore, developing a screenshot testing strategy requires
proper knowledge about the goals, bene�ts, drawbacks and practices of test auto-
mation. This section draws on key insights from Baumgartner et al. (2022).

2.1.1 Testware Relevant for Screenshot Testing

Baumgartner et al. (2022) list several relevant testware that the discipline of test
automation "[creates] and [deploys]" (p. 7), of which a few are highly relevant
for screenshot testing and which this thesis will examine in detail.

The �rst is the software, which includes the automation tool (Baumgartner et al.,
2022). Its "selection ... [is a] complex task" (p. 7), which this thesis aims to
complete.

The second testware that is relevant for screenshot testing is the test data, which
is "the fuel that drives test execution" (Baumgartner et al., 2022, p. 7). In
particular, screenshot testing relies on graphical data. How this data is generated,
stored, used and maintained are all matters of concern that this thesis deals with.

A third and last relevant testware that Baumgartner et al. (2022) mention is
the test environment. While older Android screenshot testing tools depend on
the Android instrumentation and thus require a physical or emulated Android
device, some newer tools can run screenshot tests as simple unit tests and require
no instrumentation (Soares, 2023a). This thesis will take this novel development
into consideration.

3

2. Literature Review

2.1.2 Goals of Test Automation

A screenshot testing strategy is also required to adhere to the two central object-
ives of test automation that Baumgartner et al. (2022) put forth:

� "improve test e�ciency and thus reduce the overall cost of testing" (p. 9),

� "[mainain] or [increase] quality" (p. 10).

2.1.3 Drawbacks and Bene�ts of Test Automation

Developing a screenshot testing strategy further requires awareness of the po-
tential drawbacks of test automation and the e�ort to minimize their impact.
One relevant drawback that Baumgartner et al. (2022) mention is the additional
cost and e�ort required for automation. For example, this encompasses both the
e�ort to implement the testing tool into the software project and the e�ort to
train the team on utilizing that tool. Additionally, the cost of maintenance needs
to be kept down, as it has the potential to heavily reduce the added value that
automated screenshot testing provides (Baumgartner et al., 2022).

However, being aware of the general bene�ts of test automation is helpful as well,
as a screenshot testing strategy should aim to maximize them. Baumgartner
et al. (2022) mention that automation enables building a constantly growing test
suite that can be executed on every software release or at any other time for
instant feedback. Indeed, manual testing is not as scalable as automated testing,
as the former requires a constantly growing amount of time and e�ort. Another
relevant bene�t that they mention is that test automation enables the manual
tester to shift their focus to tasks that are harder or impossible to automate and
therefore yield more value, especially "explorative testing or the targeted use of
various dynamic manual testing procedures" (Baumgartner et al., 2022, p. 11).

2.2 Snapshot Testing and Screenshot Testing

Fujita et al. (2023) de�ne snapshot testing as "a type of output comparison
testing technique that asserts whether the outputs by the current state of the
product remain unchanged" (p. 335). They also make the important observation
that the objective of snapshot tests "di�ers from those of unit and functional
tests that de�ne the correct behavior of the products" (p. 335). In other words,
instead of verifying correct implementation, snapshot tests verify whether the
implementation "matches a certain golden standard" (Cruz et al., 2023, p. 5).
The snapshots can come in several forms: JavaScript Object Notation (JSON)
objects, Document Object Model (DOM) trees and images (Yerburgh, 2018).
Screenshot testing, then, can be described as a category of snapshot testing that
is concerned only with image snapshots.

4

2. Literature Review

At the time of writing, there is a pressing lack of academic work on the topic
of screenshot testing. However, the slightly more common academic papers that
explore snapshot testing can provide important insights for the development of a
screenshot testing strategy.

Cruz et al. (2023) have performed research on the adoption of snapshot testing
"through a grey literature review" (p. 1). For this, they have selected 50 relevant
documents and drawn conclusions from them about the snapshot testing practice.

2.2.1 Bene�ts and Drawbacks of Snapshot Testing

Out of the 50 documents, 54% mention that snapshot testing is "easy to im-
plement" (Cruz et al., 2023, p. 4). The second-most mentioned bene�t is that
it "prevents regression" (p. 4). However, according to the authors, only 12%
of sources describe snapshot testing as an alternative to End-to-End (E2E) UI
tests, which, especially in Android, are known to be "fragile" and "�aky" (Cop-
pola et al., 2023, p. 120) and resource intensive, as they require a running Android
device.

On the other side, Cruz et al. (2023) show that the most commonly mentioned
drawback is the fragility of snapshot tests. What is meant by this is that the
snapshot tests easily break, even with the smallest change in the snapshot. The
developer then has to decide whether the snapshot requires an update or whether
the test has detected a bug.

However, two of the lesser mentioned drawbacks that Cruz et al. (2023) list are
especially relevant for screenshot testing in particular. The �rst one is the large
size of snapshots. As mentioned above, screenshot tests use images in favor of
text-based snapshots like JSON objects. This could aggravate the size problem
even further, as images usually require larger amounts of storage space than text
�les. The second relevant drawback is the �aky nature of snapshot tests (Cruz
et al., 2023). Furthermore, the �akiness of Android test execution environments
(Coppola et al., 2023) makes this problem even worse.

There are also insights from Cruz et al. (2023) that can hardly be applied to
screenshot testing in particular. For example, as a remedy for snapshot test
fragility, they recommend that "snapshot results should be treated as part of the
code" (p. 4) and that they should be "commited and changed the same way
as the source code" (p. 4�5). While this is suitable in the case of text-based
snapshots like DOM trees, it becomes di�cult when dealing with screenshots.
Not only can an image not be changed in the same way as a text-based �le, but,
as `Git Large File Storage (LFS)' (n.d.) shows, Git is ine�cient when it comes to
versioning binary �les. This is yet another challenge that will be tackled in this
thesis.

5

2. Literature Review

2.3 arc42 and Architecture Decison Records

Accurately documenting the research process and research �ndings is paramount
to the objective of this thesis. This section explores how the arc42 and Architecture
Decision Record (ADR) templates can be adapted to �t the style and purpose of
this academic work.

"arc42 o�ers a clear, simple and e�ective structure to document and communicate
your software system" (`arc42 documentation', n.d.). The o�cial documentation
states that the arc42 template in its entirety answers the following two questions:

� "What should yout document/communicate about your architecture?"

� "How should you document/communicate?"

In total, arc42 contains 12 comprehensive sections. However, with e�ciency
being one of its core principles, the template has been created with the intention
of being easily adaptable to speci�c project needs (`Why arc42?', n.d.). Thus,
this thesis will adapt and utilize the components of the arc42 approach that are
relevant to its objectives, such as:

� Introduction and Goals, with the three proposed subsections Requirements
Overview, Quality Goals and Stakeholder,

� Building Block View,

� Architectural Decisions.

Most importantly, the concept of Architectural Decisions will be used to com-
municate the important conclusions of this research and the resulting decisions
about the screenshot testing strategy developed in this thesis. These will be
structured according to a simpli�ed version of the ADR template presented by
Nygard (2011). As such, each important �nding or decision will be followed by
an ADR that consists of two parts: Context and Decision.

6

3 Requirements

Requirements are crucial in any software engineering project. They provide dir-
ection for the implementation of the project and a standard by which the �nal
product can be evaluated. Thus, it is important to carefully consider at an early
stage of development what the requirements should include. This chapter con-
tains a comprehensive list of requirements for the screenshot testing strategy
developed in this thesis, structured across three key perspectives provided by the
arc42 template.

3.1 Functional Requirements

The �rst perspective is the functional one. The following list gathers the central
functional requirements of the screenshot testing strategy:

� The engineer (e.g. manual tester or software developer) will be able to
perform automated screenshot regression testing on the software project.

� The engineer will have at his disposal a high-level Application Program-
ming Interface (API) with optional low-level control that can be used to
implement screenshot tests.

� The engineer will be able to create and store reference screenshots for any
screenshot test case.

� The engineer will be able to run the implemented screenshot tests in a local
environment (i.e. on the engineer's local machine).

� The automated screenshot testing system can be seamlessly integrated into
the CI/CD pipeline and thus into the larger test suite of the software pro-
ject.

� The screneshot testing system will output individual test results and test
reports that will o�er both simple insights (e.g. passed or failed) and com-
plex insights (e.g. a graphical di�erence representation) about the state of
the test object.

7

3. Requirements

3.2 Quality Goals

The second perspective is the quality one. The following table includes the re-
quired quality goals of the strategy, partly selected from ISO/IEC 25010 (2023):

Quality Goal Description

Functional Suitability Ful�ll the "stated and implied needs"
(ISO/IEC 25010, 2023) and functional re-
quirements (see section 3.1).

E�ciency and Performance Minimize the amount of required resources
(e.g. time, implementation e�ort and hard-
ware resources) and maximize the added
value per invested e�ort, especially in com-
parison to manual design veri�cation.

Reliability Provide accurate and reliable outputs that
aid the software development process.

Maintainablility Allow for easy maintenance of the screenshot
test implementations, data and architecture.

Scalability Accomodate a constantly growing test object
and test suite.

Table 3.1: Quality goals

8

3. Requirements

3.3 Stakeholders

The third perspective is that of the stakeholders. The following table lists each
stakeholder and their expectations for the screenshot testing strategy:

Role Expectations

Manual Tester Automated screenshot tests are easy to implement
and to run. There is little required training. There
is an obvious reduction in time required for UI val-
idation.

Software Developer Includes the manual tester's expectations and
goals. Additionally, the test delivers a precise test
result that the developer can make use of in the
debugging process.

Team Lead The e�ort required to implement automated
screenshot tests is minimized. Strain is taken o�
the manual tester; they can shift their focus to ex-
ploratory and usability testing.

Product Owner The automated screenshot testing results provide
an overview of the UI health. There are less incon-
sistencies between the design speci�cation and the
actual design implementation. Visual bugs and re-
gressions are detected sooner.

DevOps The source code repositories do not get pol-
luted with binary image �les. Automated screen-
shot testing is tightly integrated into the CI/CD
pipeline of the software project. The testing archi-
tecture is highly scalable.

End User The application's UI has no visual regressions,
which leads to an enhanced user experience and
increased user satisfaction.

Table 3.2: Stakeholder expectations

9

3. Requirements

10

4 Architecture

The current chapter explains the architecture of a screenshot test and how screen-
shot testing relates to the architecture of Android applications, but also how this
�ts into the larger picture of software development processes.

4.1 Screenshot Testing

When it comes to Android tests, the most wide-spread are those of the func-
tional type. According to `Functional Testing: A Detailed Guide' (2024), func-
tional "tests [ensure] that the system behaves according to the speci�ed functional
requirements and meets the intended business needs." Conventional unit, integ-
ration and E2E UI tests are �tting examples for this category. For instance, in a
contacts application, one unit test might check that the contact sorting function
works as intended, while an E2E UI test might verify that the correct contact
details are displayed after clicking on a particular contact. On the other hand,
snapshot/screenshot testing is generally thought to belong to the opposite, non-
functional category of tests (Fujita et al., 2023; Soares, 2023b; `What is Non-
Functional Testing?', 2024). This distinction is illustrated in �gure 4.1, which
places the practice of screenshot testing in the broader context of the Software
Development Life Cycle (SDLC).

4.2 Android Application Architecture

Another distinction between more common test types and screenshot testing is
the component of the application architecture targeted by them. The Model-
View-ViewModel (MVVM) architecture pattern that is common among modern
Android applications is depicted in �gure 4.2. While conventional unit tests cover
any of the three layers and E2E UI tests cover them all at once, for example,
screenshot testing is only concerned with the View layer, which holds the UI
source code.

11

4. Architecture

Figure 4.1: Section of the SDLC

Figure 4.2: Simpli�ed representation of the MVVM pattern

4.3 Screenshot Test Structure

Figure 4.3 shows the basic structure of an Android screenshot test. The inputs
are the UI source code and the reference screenshots. The component called UI
Renderer represents the component of the screenshot testing tool that creates a
graphical representation of the UI source code, e.g. the Android graphics pipeline
or the Layoutlib library. The screenshot test then uses a comparison algorithm
to compare the generated UI representation delivered by the UI Renderer against
the reference screenshot and �nally delivers the test result.

12

4. Architecture

Figure 4.3: Basic representation of the screenshot test structure

13

4. Architecture

14

5 Design and Implementation

Using the requirements and the architecture considerations presented in chapters
3 and 4 respectively, the objective of this chapter is to develop a concrete screen-
shot testing strategy. In addition, the topics that the following sections tackle
are ordered in such a way as to allow this thesis to serve as a roadmap for teams
looking to develop their own screenshot testing strategy.

5.1 Screenshot Comparison Algorithms

A central aspect of any screenshot testing tool is the comparison algorithm that
it uses to decide whether the actual screenshot, which represents the current
UI implementation, di�ers from the reference screenshot. At the time writing,
Android screenshot testing tools fall into one of two categories:

� open-source tools that use conventional Pixel-by-Pixel (PbP) comparison
algorithms,

� closed-source tools that use their own proprietary algorithms advertised
as being augmented by Computer Vision (CV), Machine Learning (ML)
and/or Arti�cial Intelligence (AI) (`Revolutionize UI testing with Visual
AI', n.d.; `Visual testing powered by computer vision', n.d.).

An informed decison between the two options requires a closer look at their
algorithms and how they behave.

5.1.1 Open-Source Algorithms

The �rst category, which makes use of conventional open-source PbP comparison
algorithms, contains screenshot testing libraries such as Cashapp's Paparazzi and
Takahiro Menju's Roborazzi. The underlying principle, which can be observed in
`PixelPerfect.kt [Source Code]' (2024) and `ImageComparator.kt [Source Code]'
(2024), is simple: the algorithm compares each pixel of the actual screenshot
with its coordinate-counterpart from the reference screenshot. Optionally, the
comparison is in�uenced by one or more tolerance parameters, which allows the

15

5. Design and Implementation

developer to �ne-tune each test to better achieve the desired behavior. For in-
stance, Roborazzi uses Dropbox's open-source "multiplatform image di�ng lib-
rary" (`di�er GitHub', 2024) called di�er, whose API accepts three parameters
that alter the library's behaviour:

� One parameter represents the maximum allowed Euclidean distance between
the values of two pixels that are being compared. This is used to decide
whether the two pixels are considered to be equal or not.

� Two additional parameters increase the tolerance of the algorithm towards
small di�erences caused, for example, by anti-aliasing.

In addition, Roborazzi accepts another parameter that de�nes the maximum
percentage of pixels that are allowed to change before the test fails.

5.1.2 Enhanced Closed-Source Algorithms

The second category of screenshot testing tools, those that are advertised as
being augmented by CV, ML and/or AI (`Revolutionize UI testing with Visual
AI', n.d.; `Visual testing powered by computer vision', n.d.), use algorithms that
are di�cult to analyze closely due to their closed-source nature. And while these
tools also o�er parameters that alter their behaviour, it often remains unclear
what exact in�uence they have. On top of this, due to the ambiguous language
that is used to describe such tools, it is also unclear to what degree they make
use of the more advanced software technologies mentioned above.

5.1.3 Side-by-Side Comparison

For this reason, this section provides a simple side-by-side comparison of the
two tool categories mentioned above. Roborazzi is selected to represent the
open-source category, while Aplitools Eyes from Aplitools and App Percy from
Browserstack represent the closed-source category. Since a comprehensive com-
parison would require an amount of e�ort that exceeds the scope of this thesis,
three representative and real-world UI regression scenarios are chosen for this
task:

� The �rst regression scenario targets the common occurence of a slightly
shifted interactive UI element.

� The second regression scenario deals with the accidental change of the color
of a UI element.

� The third and last regression scenario targets the slight shift of a text UI
element.

16

5. Design and Implementation

These three regression scenarios have been tested on the welcome screen of a
mock Android application created solely for the purpose of this research. The
complete welcome screen can be seen in appendix C.

In the �rst scenario, the bottom padding of a UI button has been increased.
Figures 5.1a and 5.1b show the reference UI state and the faulty UI state re-
spectively. Figures 5.2a, 5.2b and 5.2c show the di�erence images provided by
each tool after the UI regression has been introduced.

(a) Reference screenshot (b) Actual screenshot

Figure 5.1: Reference and actual screenshots from �rst regression scenario

With Roborazzi, all pixels that have changed are marked red in the di�erence
image. While Roborazzi's comparison behaviour can be slightly altered, as men-
tioned above, the general characteristics of the provided di�erence image are rep-
resentative for any choice of tolerance parameters. In this scenario, App Percy's
di�erence image strogly resembles that of Roborazzi, as can be seen in �gure 5.2b.
While its proprietary algorithm has a higher tolerance for di�erences than the
default Roborazzi setup (the area marked with red pixels is smaller than the area
taken up by pixels with di�ering values), �gures 5.2a and 5.2b only have minimal
di�erences and it is not evident that App Percy's behaviour is superior to that
of Roborazzi. On the other hand, Aplitools Eyes marks the area that contains
changed pixels by covering it with one single rectangle shape and thus groups all
di�erences that are in the vicinity of the button together. While this does make
for a simpler and cleaner graphical representation, it also makes it more di�cult
to point out the exact pixels that have been changed.

In the second and third scenarios, the button color is changed and the text is
shifted, as seen in �gures 5.3 and 5.4 respectively. The three tools show the

17

5. Design and Implementation

(a) Roborazzi (b) App Percy

(c) Aplitools Eyes

Figure 5.2: Di�erence images from �rst scenario (shifted button)

same behaviour as in the �rst scenario: Roborazzi and App Percy deliver similar
di�erence images that mark all or nearly all di�erent pixels, while Aplitools Eyes
highlights the rectangular areas that show pixel di�erences.

Both categories of screenshot testing tools have further advantages and disad-
vatages. For example, closed-source tools like App Percy and Aplitools Eyes
provide advanced online platforms for analyzing test runs and test results. How-
ever, if hosting such tools locally is not supported, they are out of reach for
projects where design implementations are con�dential. In addition, at the time
of writing, the two closed-source tools do not leverage the more advanced techno-
logies to o�er contextual descriptions about the UI regressions, neither do they
o�er possible solutions. On the other hand, open-source tools like Roborazzi

18

5. Design and Implementation

(a) Roborazzi (b) App Percy

(c) Aplitools Eyes

Figure 5.3: Di�erence images from second scenario (changed button color)

19

5. Design and Implementation

(a) Roborazzi (b) App Percy

(c) Aplitools Eyes

Figure 5.4: Di�erence images from third scenario (shifted text element)

20

5. Design and Implementation

bene�t from community engagement and contributions. For example, according
to GitHub, Roborazzi has 16 contributors in total (`Roborazzi GitHub', 2024).
Additionally, they can be forked and expanded in order to suit the needs of any
particular project.

5.1.4 Conclusion

The three examples shown above indicate that there are few signi�cant di�er-
ences between the visual result representations of the two screenshot testing tool
categories. While further and more ample research has to be carried out in order
to de�nitively conclude which one o�ers superior functionality, in light of the ad-
vantages of open-source tools mentioned above, this research currently does not
�nd compelling reasons to recommend closed-source tools that use allegedly AI-
enhanced comparison algorithms over open-source screenshot testing tools that
use conventional PbP comparison algorithms, such as Roborazzi.

The following ADR sums up the decision of this section:

Context
At the time of writing, one can choose between open-source tools with
conventional PbP comparison and closed-source tools that use pro-
prietary, enhanced (`Revolutionize UI testing with Visual AI', n.d.;
`Visual testing powered by computer vision', n.d.) comparison al-
gorithms.

Decision
The screenshot testing strategy developed in this thesis recommends
choosing an open-source screenshot testing tool that uses a conven-
tional PbP comparison algorithm.

5.2 Screenshot Testing Tool

Based on the insights from section 5.1 of this thesis, the current section aims to
tackle the challenge of choosing a �tting screenshot testing tool and to o�er an
overview of its setup and usage.

5.2.1 Tool Selection

Choosing the right screenshot testing tool is a crucial step that requires careful
consideration. The �rst reason for this are the additional costs required for its
setup and usage (Baumgartner et al., 2022). Furthermore, making the wrong
choice raises the costs even further, as the process has to be repeated.

For this reason, this subsection o�ers a comparison of three open-source Android

21

5. Design and Implementation

screenshot testing tools. The selection of the tools has been made primarily based
on the following conditions:

� The tool has been widely-adopted in the Android community. In this re-
search, this means that the respective public repository is required to have
at least 500 stars.

� At the time of writing, the tool is being actively developed/maintained, i.e.
has had at least one new release in the last 12 months.

The selected screenshot testing tools are:

� Pedro Gómez's Shot (released 2017),

� Cashapp's Paparazzi (released 2021), which disrupted the Android screen-
shot testing scene by "using an innovative approach that allows screenshot
tests to execute as a plain-old JVM unit test" (Soares, 2023a),

� Takahiro Menju's Roborazzi (released 2023), which further "enhances Paparazzi's
capabilities" (`Roborazzi documentation', 2024).

Side-by-side Comparison

The comparison that this thesis o�ers draws on insights from the thorough com-
parison of Shot, Paparazzi and Dropshots conducted by Soares (2023a).

The �rst comparison criterion is an aggregate of two important characteristics:

� ease of setup and learning e�ort, which are concerned with the upfront
e�ort of integrating a tool into the project,

� ease of use, which represents the reccurring e�ort that using the tool re-
quires, e.g. time required to write a screenshot test.

When it comes to the ease of setup, there are no meaningful di�erences between
the three tools, as Shot, Paparazzi and Roborazzi can each be integrated into
the project through Gradle plugins and/or library dependencies (`Paparazzi doc-
umentation', 2024; `Roborazzi documentation', 2024; `Shot README', 2023).
For instance, Paparazzi only requires adding one line of code to the build.gradle.

kts �le, which integrates its Gradle plugin, as can be seen in listing 5.1. According
to the source code, the plugin then handles all further dependencies in the back-
ground (`PaparazziPlugin.kt [Source Code]', 2024).

1 p lug in s {
2 id ("app . cash . paparazz i ") v e r s i on "<vers ion>"
3 }

Listing 5.1: Paparazzi integration (in build.gradle.kts)

22

5. Design and Implementation

There are also no signi�cant di�erences among these three tools with regard
to learning e�ort and ease of use. For example, compared to popular Android
UI testing libraries such as Espresso and UI Automator, which have extensive
APIs (see links in appendix B), the Shot, Paparazzi and Roborazzi APIs are
all relatively simple (see links to their documentation in appendix A). Listing
5.2 shows a simple Roborazzi screenshot test. Beside taking a screenshot of
MainActivity's root view, the test is con�gured to store the reference screenshot
under the outputs directory.

1 @RunWith(androidx . t e s t . ext . j u n i t . runners . AndroidJUnit4 : : c l a s s)
2 @GraphicsMode (GraphicsMode .Mode .NATIVE)
3 c l a s s Tr i v i a lS c r e en sho tTes t {
4 @get : Rule
5 va l composeTestRule = createAndroidComposeRule<MainActivity >()
6
7 @get : Rule
8 va l roborazz iRu le = RoborazziRule (
9 RoborazziRule . Options (
10 outputDirectoryPath = "outputs "
11)
12)
13
14 @Test
15 fun capture () {
16 composeTestRule . onRoot () . captureRoboImage ()
17 }
18 }

Listing 5.2: Simple Roborazzi screenshot test example

In this example, the Android test rule RoborazziRule receives an object of type
Options that speci�es the name of the desired output directory (outputs). Taking
the screenshot only requires calling the captureRoboImage() method on the object
provided by composeTestRule.onRoot(), which is standard Android API.

The second comparison criterion is the required test environment, which Soares
(2023a) also mentions. In other words, the deciding question is whether the
screenshot tests require an instrumented environment, i.e. a physical or emu-
lated Android device. Similar to conventional E2E UI tests, Shot depends on the
Android instrumentation to run its tests. This has several important disadvant-
ages such as the required start-up and shut-down times of physical or emulated
Android devices, which can slow down development and the CI/CD pipeline ex-
ecution. An additional disadvantage is the �akiness of the Android instrument-
ation, which leads to instrumented tests often failing because of instrumentation
failures and not because the test itself has failed, e.g. a failed or improper in-
stallation of the application before the test (Pandey et al., 2018). Paparazzi and
Roborazzi have none of the above mentioned problems, as they do not require

23

5. Design and Implementation

instrumentation; they run the tests on the Java Virtual Machine (JVM), just like
any basic unit test, and depend on third-party UI rendering libraries.

The third criterion is the test execution speed (Soares, 2023a), which is tightly
related to the second criterion. This goes beyond the already mentioned lack of
start-up and shut-down times with tools like Paparazzi and Roborazzi. "There is
no need to build test APKs wrapping the test code, no ADB invocations [and] no
intensive data transfer via USB or Wi�" (Soares, 2023a). Coppola et al. (2019)
state that "the instrumentation of Android emulators is signi�cantly slower than
the direct execution on the JVM" (p. 3214). Thus, Paparazzi and Roborazzi
screenshot tests o�er execution speeds higher than those of Shot screenshot tests.

The fourth criterion covers whether the tool allows the screenshot test to be
run against "di�erent device speci�cations" and "di�erent global states" (Soares,
2023a). For example, a screenshot test for a card view could be performed under
a light or dark mode con�guration, for small or large font size, for di�erent
screen widths and di�erent resolutions. If, for example, the card color for dark
mode is accidentally changed, only a screenshot test that covers the dark mode
con�guration will catch the regression. Thus, it is important that screenshot tests
cover the most relevant UI variations. With Shot, this is hard to do, as "changing
the device state at the testing time is not trivial when leveraging physical or
emulated devices" (Soares, 2023a). However, since screenshot testing tools like
Paparazzi and Roborazzi "e�ectively replace the entire Android graphics pipeline
with a fake one" (Soares, 2023a), they o�er the possibility to trivially change
such "device speci�cations" and "global states". This signi�cantly reduces the
amount of time needed to run the screenshot tests across di�erent application
states, because starting two emulators with di�erent screen resolutions is not
required, for example.

Finally, Roborazzi o�ers an important advantage over Paparazzi. It is able to
integrate with Robolectric tests (`Roborazzi documentation', 2024) and thus en-
ables UI interaction in screenshot tests, e.g. clicking, scrolling, swiping, which
further enhances the potential of screenshot testing. Since Shot tests are essen-
tially Android UI tests, interacting with the UI is also possible.

Table 5.1 provides a concise overview of the points discribed above.

24

5. Design and Implementation

Criterion / Tool Shot Paparazzi Roborazzi

Total Required E�ort minimal minimal minimal
Requires Instrumentation yes no no
Execution Speed slower fast fast
Support for UI Variations hard easy easy
Supports UI Interaction yes no yes

Table 5.1: Tool comparison (with insights from Soares (2023a))

Conclusion

The following ADR sums up the decision of this section:

Context
Shot, Paparazzi and Roborazzi are three widely-adopted and up-to-
date Android screenshot testing tools. While they all follow the same
general structure of a screenshot test presented in �gure 4.3, their
implementations of it and thus also their behaviour di�er signi�cantly,
as the above comparison shows.

Decision
The screenshot testing strategy developed in this thesis adopts Takahiro
Menju's Roborazzi as the overall best choice, as it requires minimal ef-
fort, does not depend on the Android instrumentation and its screen-
shot tests are relatively fast. Roborazzi tests also make screenshot
testing di�erent UI variations easy and support UI interaction.

5.2.2 Tool Setup and Usage

The remaining part of this subsection provides an introduction into the setup and
usage of the Roborazzi screenshot testing library and o�ers a test implementation
example.

Integrating Roborazzi into an Android project is trivial, albeit slightly more com-
plex than Paparazzi because of its Robolectric dependency. Listing 5.3 shows all
the steps that are required. First, Roborazzi requires the integration of Ro-
bolectric by adding the JUnit framework and the Robolectric framework depend-
encies. Additionally, the isIncludeAndroidResources property is set to true for unit
tests. Second, the Roborazzi Gradle plugin, which is responsible for generating
the Gradle tasks used to run the screenshot tests, and the three Roborazzi de-
pendencies need to be added to the project. Thus, the complete Roborazzi setup
only requires changes to the build.gradle.kts source �le.

25

5. Design and Implementation

1 p lug in s {
2 . . .
3
4 // Roborazzi Gradle Plugin
5 id (" i o . g ithub . takahirom . r obo ra z z i ") v e r s i on "<vers ion>"
6 }
7
8 android {
9 te s tOpt ions {
10 un i tTes t s {
11 i s Inc ludeAndro idResources = true
12 }
13 }
14 }
15
16 dependenc ies {
17 . . .
18
19 // Required f o r Robo l e c t r i c
20 test Implementat ion (" j un i t : j u n i t :<vers ion>")
21 test Implementat ion (" org . r o b o l e c t r i c : r o b o l e c t r i c :<vers ion>")
22
23 // Required f o r Roborazzi
24 test Implementat ion (" i o . g ithub . takahirom . r obo ra z z i : r obo ra z z i :<

vers ion>")
25 test Implementat ion (" i o . g ithub . takahirom . r obo ra z z i : roborazz i=

compose:<vers ion>")
26 test Implementat ion (" i o . g ithub . takahirom . r obo ra z z i : roborazz i=

j un i t=r u l e :<vers ion>")
27 }

Listing 5.3: Complete Roborazzi integration (in build.gradle.kts)

Furthermore, writing a screenshot test is just as simple as the setup. Listing 5.4
shows a slightly more complex screenshot test used to verify the home screen of
a mock Android application. One should note that Roborazzi test classes are
located in the test source set of the Android application, similar to conventional
unit tests.

As can be seen in the code, the basis of a Roborazzi screenshot test is a simple unit
test. A unit test requires a test class, e.g. HomeScreenTest, and a test method an-
notated with @Test, e.g. testHomeScreen(). Roborazzi further requires two Annota-
tions, @RunWith(androidx.test.ext.junit.runners.AndroidJUnit4::class) and @GraphicsMode

(GraphicsMode.Mode.NATIVE), and the central element of the screenshot test, which
is the invocation of the screenshot method, e.g. captureRoboImage(). In this ex-
ample, the screenshot method receives a lambda parameter that de�nes the UI
layout that should be tested. Additionally, the Roborazzi documentation o�ers
several other alternatives for calling the screenshot method, e.g. using Jetpack

26

5. Design and Implementation

1 @RunWith(androidx . t e s t . ext . j u n i t . runners . AndroidJUnit4 : : c l a s s)
2 @GraphicsMode (GraphicsMode .Mode .NATIVE)
3 @Config (q u a l i f i e r s = Robo l e c t r i cDev i c eQua l i f i e r s . Pixe l7Pro)
4 c l a s s HomeScreenTest {
5
6 p r i va t e va l customImageComparator = SimpleImageComparator (
7 maxDistance = 0.01 f ,
8 hSh i f t = 2 ,
9 vSh i f t = 2
10)
11 p r i va t e va l customThresholdVal idator = Thresho ldVal idator (0 . 02F)
12
13 @OptIn(ExperimentalRoborazziApi : : c l a s s)
14 @get : Rule
15 va l roborazz iRu le = RoborazziRule (
16 RoborazziRule . Options (
17 outputDirectoryPath = " base l i n e=s c r e en sho t s " ,
18 roborazz iOpt ions = RoborazziOptions (
19 compareOptions = RoborazziOptions . CompareOptions (
20 imageComparator = customImageComparator ,
21 r e s u l tVa l i d a t o r = customThresholdVal idator
22)
23)
24)
25)
26
27 @Test
28 fun testHomeScreen () {
29 captureRoboImage {
30 AppTheme {
31 HomeScreen ()
32 }
33 }
34 }
35 }

Listing 5.4: Complete Roborazzi screenshot test example

27

5. Design and Implementation

Compose test rules.

However, as mentioned in subsection 5.1.1, Roborazzi's behaviour can be altered
to better �t the requirements of the project or of individual test cases. In
listing 5.4, the RoborazziRule object represents the API through which this can
be achieved. First, the reference screenshot directory is changed to baseline

=screenshots. Second, the behaviour of the Roborazzi comparison algorithm is
altered by changing four parameters: the threshold through ThresholdValidator and
the maxDistance, hShift and vShift through SimpleImageComparator. In addition to
that, the test class is annotated with @Con�g(quali�ers = RobolectricDeviceQuali�ers.

Pixel7Pro), which speci�es that the UI should be rendered under Pixel 7 Pro device
speci�cations.

XML-based UI Implementations

At the time of writing, the Jetpack Compose UI library is o�cially recommended
by Android for creating application UIs (`Jetpack Compose (Get Started Page)',
n.d.), as it "simpli�es and accelerates UI development on Android". However,
Android projects that have not yet migrated to using Jetpack Compose, or never
will, still exist. The Roborazzi API also supports testing Extensible Markup
Language (XML)-based, legacy Android UI code.

Listing 5.5 shows how this can be achieved, thanks to Roborazzi's integration with
the Espresso UI testing library. Espresso's onView() method delivers an object,
which Roborazzi uses as a receiver for its captureRoboImage() method. This takes
a screenshot of the UI element with the welcome_text identi�er.

1 onView (withId (R. id . welcome_text)) . captureRoboImage ()

Listing 5.5: XML-based screenshot

Gradle Tasks

Screenshot testing tools like Roborazzi are controlled through the Gradle tasks
provided by their respective Gradle plugins. Table 5.2 describes the behaviour of
the three most important Roborazzi Gradle tasks.

Task E�ect

recordRoborazziDebug Records new reference screenshots.
compareRoborazziDebug Runs the screenshot tests and generates

reports that contain the test results.
verifyRoborazziDebug Runs the screenshot tests and fails if

one test has failed.

Table 5.2: Roborazzi Gradle tasks (`Roborazzi documentation', 2024)

28

5. Design and Implementation

As is explained in detail in `Roborazzi documentation' (2024), recordRoborazziDebug
generates the reference screenshots for each screenshot test, while compareRoborazziDebug
and verifyRoborazziDebug can be used to run the screenshot tests, which compare
the current UI implementation against the reference screenshots generated by the
recordRoborazziDebug.

Outputs

Next to Hypertext Markup Language (HTML) reports and JSON objects that
summarize the test runs, Roborazzi also creates comparison images (`Roborazzi
documentation', 2024), which are also called di�erence images. Figure 5.5 shows
an example of such a di�erence image, where the test object is the welcome screen
of a mock Android application created solely for the purpose of this research. The
reference screenshot is on the left side of the �gure, while the actual screenshot
is on the right side. The di�erences between the two are depicted in the middle
part of the �gure.

Figure 5.5: Example of a Roborazzi di�erence image

29

5. Design and Implementation

5.3 Testcase Implementation Strategy

Section 5.2.2 shows that implementing screenshot tests with Roborazzi is trivial
and requires a minimal amount of e�ort. However, maximizing the added value
that screenshot testing provides requires a screenshot testing strategy that an-
swers the following questions:

� What parts of the application UI will be tested?

� When and in what order should the screenshot tests be implemented?

For example, a team that writes the screenshot tests long after each UI feature
has been implemented and has already created several UI regressions does not
take full advantage of the bene�ts of screenshot testing. The same is true for a
project where historically stable parts of the application UI are tested, leaving
the unstable and repression-prone components uncovered. Thus, maximizing
the value that screenshot testing adds to a software project depends on �nding
suitable answers to the two important questions listed above.

5.3.1 What parts of the application UI will be tested?

Before answering the �rst question, it is helpful to de�ne both extremes of what
can be screenshot tested using Roborazzi or any similar screenshot testing tool.
On the one hand, testing an individual, low-level UI element, e.g. custom button
or custom icon, represents the minimal granularity of a screenshot test. On the
other hand, screenshot testing an entire screen, e.g. the home screen or settings
screen, corresponds to the maximum granularity. Any answer to the �rst question
lies between these bounds.

Soares (2023b) puts forth two answers to this question and bases the decision
between them on the existence of a design system or lack thereof. A design system
represents a tool that "explains how a team should create products" (Perez-
Cruz, 2019, p. 2) and it includes a UI component library (Fanguy, 2019) that
provides common, project-speci�c UI building blocks and serves to uphold the
common design language of the software project, be that one single application or
a complete software system such as an automotive infotainment system. Soares
(2023b) recommends the following procedure:

� In the absence of a design system, the screenshot tests should be implemen-
ted at the screen level.

� In the presence of a design system, implementing screenshot tests at the
design system level yields the most value.

Targeting complete screens in the absence of a design system is the most e�ective
strategy, as screen-level tests represent the upper limit of screenshot test granu-

30

5. Design and Implementation

larity and doing so minimizes the amount of screenshot tests that are required.
On the other hand, if a design system exists, targeting its individual, low-level UI
elements allows for catching UI regressions at their root and thus signals the ex-
istence of a regression sooner in the SDLC. Additionally, if the amount of screens
outnumbers that of design system elements, this leads to a further reduction in
the amount of test cases (Soares, 2023b).

However, this procedure overlooks a problem that arises when application UIs
are built using a design system: all the possible points of failure that inevitably
appear where the UI elements from the design system are con�gured, populated
with data, arranged and integrated into a complete screen. Thus, the more the
application source code has to manipulate the UI elements from the design sys-
tem in the ways described above, the greater this risk becomes. For instance, a
calculator application that receives its button UI elements from a design system
still has to label them and properly arrange them, maybe even dynamically ar-
range them, to �t the typical calculator pattern. Both tasks have the ability to
introduce UI regressions into the application.

For those reason, this thesis considers screenshot testing complete screens to be
just as valuable towards preventing UI regressions as testing the design system
UI elements. Therefore, the recommended procedure is an altered version of the
one presented by Soares (2023b):

� In the absence of a design system, the screenshot tests should be implemen-
ted at the screen level.

� In the presence of a design system, screen-level screenshot tests should be
implemented in conjunction with design system screenshot tests.

The context and decision of the matters explored in this subsection are summed
up in the following ADR:

Context
Roborazzi screenshot tests, or those that are implementd using similar
testing tools, can cover any type of UI element, be that a complete
screen or a low-level, design system UI element. However, as argued
above, not all possible test objects are equal in the value that they
add.

Decision
The screenshot testing strategy developed in this thesis recommends
always implementing screen-level screenshot tests. Additionally, if a
design system exists, its individual UI elements should be screenshot
tested as well.

31

5. Design and Implementation

5.3.2 When and in what order should the screenshot tests

be implemented?

The timing of screenshot test implementation is another crucial concern surround-
ing the screenshot testing strategy. For instance, postponing the implementation
of a screenshot test for a new and unstable UI component means a higher risk of
UI regression. Similarly, prioritizing the veri�cation of an old and stable screen
over a new and unstable one is relatively ine�ective, as the latter has by de�nition
a higher probability of introducing UI regressions into the application.

Considering the repeadly mentioned triviality of implementing a Roborazzi test,
this thesis recommends implementing the screenshot test immediately following
the implementation of the UI feature, be that a low-level UI component or a
complete screen. While this does slow down the pace of feature implementation,
such a coupled feature-test-approach maximizes screenshot test coverage at any
given moment and prevents the buildup of test debt in the form of a screenshot
test backlog. Figure 5.6 illustrates an example of the recommended screenshot
testing approach.

Figure 5.6: Recommended implementation approach

However, in projects where screenshot testing has not been implemented from the
beginning, the screenshot test backlog has to be dealt with. As argued above,
not every potential screenshot test is equally valuable at any given time. Thus,
the objective is to choose the most impactful screenshot test. Due to the large
diversity of project requirements and application UIs, instead of prescribing a
concrete approach, this thesis provides a list of general and open questions that
aid in choosing an appropriate screenshot test case from the backlog. This is
illustrated as a Venn diagram in �gure 5.7. The list includes questions for test

32

5. Design and Implementation

cases that involve both low-level UI components or complete screens. It tar-
gets takes both importance � through questions such as "Which screens are the
most central to the application?" � and urgency � through questions like "Which
screens have caused the most visual regressions?". In addition, the list can be
further expanded by any development team to better suit their speci�c project
requirements and challenges.

Figure 5.7: Questions for �ltering the screenshot test backlog

The following ADR sums up the decision of this section:

Context
At any given time, some potential screenshot tests are more valuable
than others. Additionally, the list of potential screenshot tests grows
constantly as the UI evolves.

Decision
The screenshot testing strategy developed in this thesis recommends
implementing the screenshot tests immediately following the imple-
mentation of the UI feature. In the case of an existing screenshot test
backlog, the most valuable screenshot test will be chosen according
to the list of questions presented in �gure 5.7.

5.4 CI/CD Pipeline Integration

CI/CD is a widely-used DevOps best-practice (Pittet, n.d.). It is typically
achieved through a CI/CD pipeline that is run on an automation server and

33

5. Design and Implementation

is made up of several critical steps. For example, a pipeline for a typical An-
droid application includes building the code, running tests and delivering the
�nal binary �les (Harsh, 2024). This section of the thesis is concerned with
the integration of Roborazzi screenshot testing into a CI/CD pipeline, which is
illustrated in �gure 5.8.

Figure 5.8: CI/CD pipeline with screenshot testing

How Roborazzi can be controlled through Gradle tasks is already explained in
subsection 5.2.2. Since Roborazzi tests run on the JVM, i.e. do not require
instrumentation, and the reference screenshots are stored directly in the project
directory, integrating Roborazzi screenshot testing into a CI/CD pipeline only
requires the execution of a suitable Gradle task. For instance, listing 5.6 shows
an example of a screenshot test execution in a Jenkins CI/CD pipeline.

1 s tage ('Run Roborazzi Screenshot Tests ') {
2 sh (' . / gradlew ver i fyRoborazz iDebug ')
3 }

Listing 5.6: Example screenshot test execution in Jenkins

5.4.1 Platform-Dependent Rendering Di�erences

Roborazzi screenshot tests exhibit platform-dependent rendering behavior (Hoisie,
2024), which "is due to variations in how graphics libraries render components
on di�erent platforms" (`Roborazzi FAQ', 2024). Figure 5.9 provides an example
of such rendering di�erences and shows UI renderings of two stacked, pill-shaped
UI elements. Figure 5.9a represents the Roborazzi UI render on the macOS oper-
ating system, while �gure 5.9c represents the Roborazzi UI render on Windows.
To the naked eye, these renders look identical. However, as seen in �gure 5.9b,
the di�erence image generated by Roborazzi shows that some pixels around the
borders of the two UI elements have slightly di�erent color values. Thus, if the
reference screenshot is generated on macOS and the screenshot test is run on
Windows, for example, the test will detect UI changes and fail.

Thus, `Roborazzi FAQ' (2024) recommends generating the reference screenshots
and running the screenshot tests in the CI/CD pipeline, as it keeps the platform-
dependent rendering di�erences constant.

34

5. Design and Implementation

(a) macOS render (b) Di�erence image (c) Windows render

Figure 5.9: Roborazzi rendering di�erences between screenshot tests run on the
macOS and Windows operating systems

5.5 Data Management

Screenshot tests depend on a reference that the test object is compared against,
i.e. reference screenshots. This introduces the challenge of handling and stor-
ing constantly growing and potentially large amounts of data. This subsection
describes three options for dealing with this challenge.

5.5.1 Storing and Versioning with Git

The �rst option is to completely rely on the screenshot testing tool and the
Version Control System (VCS), e.g. Git. As already mentioned, the directory
where reference screenshots are stored can be speci�ed through the RoborazziRule.
One would simply have to choose a directory that is being tracked by Git, which
is usually not the case for the default build/outputs/roborazzi output directory, and
commit the reference screenshots just like any other �le. One advantage of this
straight-forward approach to screenshot data management is the minimal amount
of setup that it requires. The second advantage is the process-related simplicity
of using one VCS to version both the reference screenshots and the source code
together.

However, the disadvantage is that this can lead to excessively large Git reposit-
ories, as Git is ine�cient at versioning large binary �les such as PNGs. "While

35

5. Design and Implementation

text-based �les can generate plaintext di�s, any change to a binary �le requires
Git to completely replace the �le in the repository" (`Git Large File Storage
(LFS)', n.d.). Figure 5.10 depicts an experiment that illustrates this problem.
The example Git repository has a total size of 12KB and it contains one single
PNG �le of 10KB, which is a common �le size for reference screenshots. Making
one minimal change to the PNG �le, e.g. chaning one pixel value, and commiting
the changes results in the repository taking up a total of 22KB, which is 10KB
more than before the change. Repeating these steps leads to the repository tak-
ing up a total of 32KB. Thus, this experiment con�rms that a tiny change in the
contents of a PNG image results in an increase in required disk space equal to
the size of the �le.

Figure 5.10: Git binary �le handling experiment

While adding 10KB to the size of the Git repository is irrelevant, this problem
can scale up drastically. The following thought experiment illustrates this risk
and uses an imaginary large Android application as an example. The application
contains 200 individual screens and 150 individual low-level UI components, each
of them being screenshot tested. Each test object is tested under 17 separate
circumstances, which represent a selection of the 32 possible variations of the
following UI parameters:

� light/dark mode,

� portrait/landscape mode,

� color blind mode on/o�,

� 4.5 inch/6.7 inch screen size,

� Left-to-Right/Right-to-Left display mode (e.g. for the arabic writing sys-
tem).

Additionally, the UI of the application has been majorly updated twice and each
screenshot test has had its reference screenshot changed 5 times on average for
each major UI version. Thus, on average, 15 reference screenshot versions exist
for each screenshot test. In sum, if each reference screenshot takes up 15KB of

36

5. Design and Implementation

disk space on average, the versioning of the reference screenshots alone requires
a total of 1.33GB.

Thus, a possibly grave consequence of using the approach presented above is
reaching a repository size limit. For comparison, at the time of writing, the
repository hosting service called Bitbucket limits the size of cloud repositories at
4GB and, after reaching the limit, one can only "push changes that undo the
latest commits" (`Reduce repository size', n.d.). Furthermore, larger repositories
mean that Git operations such as cloning take longer, as Git has to handle larger
amounts of data.

5.5.2 Storing and Versioning with Git LFS

The second option is to integrate the open-source Git extension called Git Large
File Storage (Git LFS). While it does not enhance Git's capabilities of versioning
binary �les, it does solve the problem of quickly growing repository sizes when
working with binary �les. Git LFS works by replacing large �les in the repository
with pointers to an external storage location (`Git LFS Documentation', n.d.).
Thus, "large �les are downloaded during the checkout process rather than during
cloning or fetching" (`Git LFS', n.d.). Well-known source code repository hosting
platforms such as GitHub and Bitbucket o�er built-in Git LFS support (`About
storage and bandwidth usage', n.d.; `Use Git LFS with Bitbucket', n.d.) and thus
handle the storage of the binary �les in the background. Additionally, Git LFS is
easy to set up and to use. Listing 5.7 shows the steps that are required for setup
on local developer machines according to `Git LFS Documentation' (n.d.).

1 // I n s t a l l the Git LFS extens i on .
2 g i t l f s i n s t a l l
3
4 // Spec i f y what f i l e s should be tracked us ing Git LFS .
5 g i t l f s t rack " * . png"
6
7 // Make sure that " . g i t a t t r i b u t e s " i s t racked .
8 g i t add . g i t a t t r i b u t e s

Listing 5.7: Git LFS setup

The �rst command installs the Git LFS extension. Using the second command,
the developer can specify which �les should be tracked using Git LFS. In this
example, all �les that have the .png extension are being tracked using Git LFS.
The last command makes sure that the . gitattributes �le is being tracked by Git, as
that is where the record of LFS-tracked �les is stored (Gruber, 2019). From this
point on, the LFS-tracked �les can be updated using conventional Git commands,
just like all other �les (`Git LFS Documentation', n.d.). Thus, Git LFS enhances
Git's functionality at a relatively low cost of setup and use, and requires no extra
e�ort for CI/CD pipeline integration.

37

5. Design and Implementation

5.5.3 Custom Storage and Versioning Solution

The third option is to develop a custom screenshot data management system
that stores the reference screenshots on a remote server, e.g. an artifact so-
trage server, and handles the data transfer between the local environment and
the remote storage location. One possible implementation is depicted in �gure
5.11. When Roborazzi records new reference screenshots in the local environ-
ment, it stores them in the temporary screenshot storage location. The custom
Gradle task uploadScreenshots then transfers the screenshots further to the remote
screenshot storage location. Reversely, before a Roborazzi test is run, the custom
Gradle task downloadScreenshots fetches the reference screenshots from the remote
storage location and places them back into the temporary storage location, where
Roborazzi can use them for comparison.

Figure 5.11: Custom screenshot data management solution

One advantage of such a custom screenshot data management system is the de-

38

5. Design and Implementation

coupling of the screenshot data from the VCS. For example, this allows the
development team to only store the latest version of reference screenshots or im-
plement a custom versioning system, as opposed to keeping track of the complete
history of the reference screenshots with a VCS such as Git. It also simpli�es
the screenshot test data by making it possible to de�ne only one set of reference
screenshots per project, as opposed to one for each branch.

However, the disadvantage of such an approach is that it requires more e�ort
to implement and set up than using Git LFS. It also requires infrastructure for
the remote screenshot storage location. Thus, it is the responsibility of each
software development team to decide whether implementing a custom screenshot
management solution is worth the extra cost and e�ort.

5.5.4 Conclusion

The following ADR sums up the decision of this section:

Context
Screenshot testing introduces the challenge of managing the screen-
shot data by versioning and storing it appropriately. Subsection 5.5
explores three possibilities for dealing with this challenge.

Decision
The screenshot testing strategy developed in this thesis recommends
a screenshot data management solution that takes the drawbacks of
Git's binary �le handling mentioned in `Git Large File Storage (LFS)'
(n.d.) into account. Therefore, the recommendation is the integration
of Git LFS or the implementation of a custom screenshot data man-
agement solution, such as the one presented in subsection 5.5.3.

5.6 Pixel Di�erences and Tolerance Parameters

This section explores the two types of causes behind the pixel di�erences that one
might encounter when using Roborazzi and how each of them can be tolerated.
Additionally, it warns against potential pitfalls that can reduce the reliability of
the screenshot tests.

On the one hand, pixel di�erences can be caused by platform-dependent UI ren-
dering behavior. This is also mentioned in subsection 5.4.1. More precisely,
according to Roborazzi's main contributor, Takahiro Menju, these di�erences are
caused by how graphics libraries such as Skia and Minikin are implemented for
each platform (Menju, 2024). Figure 5.12 provides a simpli�ed example of such
rendering di�erences. The picture on the left shows the original UI render, while

39

5. Design and Implementation

the picture on the right shows a render of the same UI element, but with a dif-
ferent UI rendering behavior. As the red markings show, this results in slightly
changed pixel values, which can cause the screenshot test to fail.

Figure 5.12: Detailed example of rendering di�erence

With Roborazzi, three parameters can be used in order to tolerate such pixel
value di�erences. The usage of these parameters can be seen in listing 5.4. As
noted in subsection 5.1.1, maxDistance de�nes the maximum Euclidean distance
between the color values of two pixels that are considered to be equal. Then,
if the maximum distance has been exceeded, hShift and vShift de�ne the area in
which the comparison algorithm is allowed to further search for a matching pixel,
in case it has been slightly shifted because of small changes in the rendering
behavior.

On the other hand, pixel di�erences can also be caused by the UI implementation
itself, which is precisely the pixel di�erences that screenshot tests aim to detect.
An example of this is shown in �gure 5.13. The left picture shows the original
UI state, while the right picture shows the same UI element that is now shifted
left. Such a UI regression could be caused by the accidental change of a padding
value, for example.

However, such pixel di�erences can be tolerated as well. The threshold parameter,
whose usage can also be seen in listing 5.4, de�nes the maximum allowed per-
centage of pixels with changed values in order for the test to pass.

With regard to these four parameter options that Roborazzi o�ers, a possible
pitfall is adjusting the wrong type of parameter. This is illustrated in the following
example. Say that one particular screenshot test is too sensitive to UI rendering
di�erences. According to this section, one should then adjust maxDistance, hShift

40

5. Design and Implementation

Figure 5.13: Detailed example of UI regression

and/or vShift. Raising threshold instead leads to the following problem. While
the test will indeed tolerate more pixels that are slightly di�erent because of
the UI rendering di�erences, it will also tolerate more pixels that are completely
di�erent, i.e. UI regressions. This is an unwanted side-e�ect, which can reduce
the reliability of the screenshot test.

41

5. Design and Implementation

42

6 Evaluation

This chapter documents whether the quality goals listed in section 3.2 have been
achieved through the screenshot testing strategy developed in this thesis. The
�rst quality goal, Functional Suitability, covers the functional requirements as
well. Additionally, it provides direction for future research by pointing out the
main shortcoming of screenshot testing as it is implemented in this research.

6.1 Quality Goals

Each quality goal from section 3.2 is graded with either achieved, partially achieved
or not achieved.

6.1.1 Functional Suitability

This quality goal requires that the "stated and implied needs" (ISO/IEC 25010,
2023) of the project and the functional requirements listed in section 3.1 be met.
It has been achieved.

The screenshot testing strategy developed in this thesis enables automated screen-
shot regression testing. Roborazzi, the tool of choice, o�ers a high-level API that
abstracts away the screenshot-taking and screenshot comparison processes, as
seen in listing 5.4. It also enables low-level control for de�ning precise tolerance
levels or rendering the UI under particular device speci�cations. The engineer
(e.g. manual tester or software developer) can both create the reference screen-
shots and run the screenshot tests using the Gradle tasks shown in table 5.2. On
top of that, section 5.5 recommends two suitable screenshot data management
solutions that allow for seamless data transfer and storage. As seen in section
5.4, the screenshot testing strategy also covers the integration of screenshot test-
ing into the CI/CD processes. Finally, Roborazzi screenshot tests output HTML
reports, JSON objects and di�erence images that describe the test run outcomes
in detail, which is presented in subsection 5.2.2.

43

6. Evaluation

6.1.2 E�ciency and Performance

This quality goal requires the minimization of invested resources and e�ort and
the maximization of performance. It has been achieved.

As already mentioned, Roborazzi requires a minimal anount of e�ort for its setup
and for learning how to use it. The fact that Roborazzi tests run on the JVM
and do not require a physical or emulated Android device means that no ex-
tra hardware resources are required. Additionally, the testcase implementation
strategy presented in section 5.3 serves to maximize the amount of value that the
screenshot testing strategy adds to the project by recommending what parts of
the application UI should be tested and when.

6.1.3 Reliability

This quality goal requires that the screenshot testing strategy delivers accurate
and reliable results. It has been achieved.

As discussed in subsection 5.4.1, Roborazzi is a�ected by platform-dependent
rendering di�erences. However, the recommendation to create the screenshots
and run the tests in the CI/CD environment (`Roborazzi FAQ', 2024) and the
tolerance parameters presented in subsection 5.6 do solve this problem. Also, the
warning that subsection 5.6 gives regarding the incorrect use of Roborazzi toler-
ance parameters further increases the reliability and accuracy of the screenshot
testing strategy.

6.1.4 Maintainability

This quality goal requires the easy maintenance of the screenshot tests, screenshot
data and testing architecture. It has been achieved.

As shown in subsection 5.2.2, the reference screenshots for Roborazzi tests can be
generated using only one Gradle task. The decision to use either Git Large File
Storage (LFS) or a custom screenshot data management solution, made in section
5.5 of this thesis, also makes for a highly maintainable system. Maintainability
is further improved by the fact that screenshot test impementations are self-
contained inside of their own test classes, as presented in listing 5.4.

6.1.5 Scalability

This quality goal requires the possibility to accomodate a constantly growing test
object and test suite. It has been achieved.

The decision surrounding the screenshot data management and the self-contained
nature of Roborazzi screenshot tests also play into its high scalability. On the one

44

6. Evaluation

hand, more screenshot data can be added without polluting the code repository
with a large amount of binary �les. On the other hand, further screenhsot tests
can be added to the test suite without a�ecting or being a�ected by the existing
tests.

6.2 Main Shortcoming and Future Research

The main shortcoming of the screenshot testing strategy developed in this thesis
is that it fails to automate the complete design veri�cation process. While it does
protect against UI regressions, i.e. against visual bugs that break the design im-
plementation that was once valid, it cannot detect visual bugs that the developer
introduces into the �rst implementation of the UI. This is illustrated in �gure
6.1.

Figure 6.1: What does screenshot testing cover?

The �rst reference screenshot that the screenshot testing tool can create is derived
from the �rst UI implementation. As such, for any subsequent change of the UI

45

6. Evaluation

implementation, there exists a reference implementation that can be used for
comparison. However, this leaves the �rst UI implementation, which originates
directly from the design speci�cation, exposed to visual bugs. If those bugs go
unnoticed by the develper, a screenshot testing strategy such as the one developed
in this thesis cannot detect them either.

The question whether the complete automation of design veri�cation is possible
and how that can be achieved exceeds the scope of this thesis. However, it does
represent a possibly fruitful topic for future research.

46

7 Conclusion

The research presented in this thesis has explored the topic of automating the
design validation process for Android applications through screenshot testing.
The comprehensive screenshot testing strategy this it has put forth tackles cru-
cial questions such as what di�erent types of tools currently exist, which tools
are the best �t for the given requirements and how the tool of choice, in this case
Roborazzi, can be integrated into the project and used for implementing screen-
shot tests. The thesis also o�ered a testcase implementation strategy that helps
identify the screenshot test cases that add the most value to the software project
by answering the questionsWhat should be tested? andWhen should it be tested?
Additionally, topics such as the integration of screenshot testing into the CI/CD
process and Roborazzi's platform-dependent rendering di�erences have also been
addressed.

Despite the fact that, as shown in section 6.1, the strategy developed in this
thesis achieves all the quality goals and meets all the functional requirements
that chapter 3 has established, this research has by no means exhausted the topic
of automatic design validation and screenshot testing. Further questions such
as how the design validation process can be completely automated, minimally
explored in section 6.2, are left unanswered and thus hopefully provide motivation
for future research.

Thus, through the insights that have been put forth and through the sugges-
tions for future research, this thesis can hopefully be a valuable addition to the
body of academic research surrounding design validation and, more speci�cally,
screenshot testing.

47

7. Conclusion

48

Appendices

49

Appendix A: Tools and Resources

A Tools and Resources

The following list contains the internet links to tools and resources mentioned in
this thesis:

� arc42: https://arc42.org/

� Michael Nygard's ADR template: https://www.cognitect.com/blog/
2011/11/15/documenting-architecture-decisions

� Roborazzi: https://github.com/takahirom/roborazzi

� Roborazzi documentation: https://takahirom.github.io/roborazzi/top.
html

� Paparazzi: https://github.com/cashapp/paparazzi

� Paparazzi documentation: https://cashapp.github.io/paparazzi/

� Shot: https://github.com/pedrovgs/Shot

� Shot documentation (README): https://github.com/pedrovgs/Shot/
blob/master/README.md

� Aplitools Eyes: https://applitools.com/platform/eyes/

� App Percy: https://www.browserstack.com/app-percy

� Git: https://git-scm.com/

� Git LFS: https://git-lfs.com/

B API References

The following list contains the internet links to references of APIs mentioned in
this thesis:

� Espresso API: https://developer.android.com/reference/kotlin/androidx/
test/espresso/package-summary

� UI Automator API: https://developer.android.com/reference/kotlin/androidx/
test/uiautomator/package-summary

51

https://arc42.org/
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/takahirom/roborazzi
https://takahirom.github.io/roborazzi/top.html
https://takahirom.github.io/roborazzi/top.html
https://github.com/cashapp/paparazzi
https://cashapp.github.io/paparazzi/
https://github.com/pedrovgs/Shot
https://github.com/pedrovgs/Shot/blob/master/README.md
https://github.com/pedrovgs/Shot/blob/master/README.md
https://applitools.com/platform/eyes/
https://www.browserstack.com/app-percy
https://git-scm.com/
https://git-lfs.com/
 https://developer.android.com/reference/kotlin/androidx/test/espresso/package-summary
 https://developer.android.com/reference/kotlin/androidx/test/espresso/package-summary
https://developer.android.com/reference/kotlin/androidx/test/uiautomator/package-summary
https://developer.android.com/reference/kotlin/androidx/test/uiautomator/package-summary

C Mock Android Application

This mock Android application has been created solely for the purpose of this
research. Figure C.1 shows its welcome screen.

Figure C.1: Welcome screen of the mock Android application

52

References

About storage and bandwidth usage [Accessed: 28.10.2024]. (n.d.). https://docs.
github.com/en/repositories/working-with- �les/managing- large- �les/
about-storage-and-bandwidth-usage

Arc42 documentation [Accessed: 31.10.2024]. (n.d.). https://arc42.org/documentation/
Baumgartner, M., Steirer, T., Wendland, M.-F., Gwihs, S., Hartner, J., & Seidl,

R. (2022). Test automation fundamentals. Rocky Nook.
Compose preview screenshot testing [Accessed: 31.10.2024]. (2024). https : / /

developer.android.com/studio/preview/compose-screenshot-testing
Coppola, R., Ardito, L., & Torchiano, M. (2023). Multi-device, robust, and in-

tegrated android gui testing: A conceptual framework. Testing Software
and Systems, 115�125.

Coppola, R., Morisio, M., Torchiano, M., & Ardito, L. (2019). Scripted gui testing
of android open-source apps: Evolution of test code and fragility causes.
Empirical Software Engineering, 24, 3205�3248.

Cruz, V. P. G., Rocha, H., & Valente, M. T. (2023). Snapshot testing in practice:
Bene�ts and drawbacks. The Journal of Systems and Software, 204.

Di�er github [Accessed: 27.10.2024]. (2024). https://github.com/dropbox/di�er
Fanguy, W. (2019). A comprehensive guide to design systems. Retrieved October

30, 2024, from https://www.invisionapp.com/inside-design/guide- to-
design-systems/

Fujita, S., Kashiwa, Y., Lin, B., & Iida, H. (2023). An empirical study on the
use of snapshot testing. 2023 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 335�340.

Functional testing: A detailed guide. (2024). Retrieved October 29, 2024, from
https://www.browserstack.com/guide/functional-testing

Git large �le storage (lfs) [Accessed: 28.10.2024]. (n.d.). https://docs.gitlab.com/
ee/topics/git/lfs/

Git lfs [Accessed: 28.10.2024]. (n.d.). https://www.atlassian.com/git/tutorials/
git-lfs

Git lfs documentation [Accessed: 28.10.2024]. (n.d.). https://git-lfs.com/

53

https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-storage-and-bandwidth-usage
https://arc42.org/documentation/
https://developer.android.com/studio/preview/compose-screenshot-testing
https://developer.android.com/studio/preview/compose-screenshot-testing
https://github.com/dropbox/differ
https://www.invisionapp.com/inside-design/guide-to-design-systems/
https://www.invisionapp.com/inside-design/guide-to-design-systems/
https://www.browserstack.com/guide/functional-testing
https://docs.gitlab.com/ee/topics/git/lfs/
https://docs.gitlab.com/ee/topics/git/lfs/
https://www.atlassian.com/git/tutorials/git-lfs
https://www.atlassian.com/git/tutorials/git-lfs
https://git-lfs.com/

References

Gruber, F. (2019). Git lfs for dummies [Translated from German to English].
Retrieved October 29, 2024, from https://code�uegel.com/blog/git- lfs-
for-dummies/

Harsh, K. (2024). How to build a ci/cd pipeline for android projects. Retrieved
October 28, 2024, from https://blog.jetbrains.com/teamcity/2024/07/
cicd-for-android/

Hoisie, M. (2024). Comment on issue #1242 in the Now in Android reposit-
ory [Accessed: 30.10.2024]. https://github.com/android/nowinandroid/
issues/1242#issuecomment-2032962982

Imagecomparator.kt [source code] [Accessed: 29.10.2024]. (2024). https://github.
com/dropbox/di�er/blob/main/di�er/src/commonMain/kotlin/com/
dropbox/di�er/ImageComparator.kt

ISO/IEC 25010 (Standard). (2023). International Organization for Standardiza-
tion/International Electrotechnical Commission.

Jetpack compose (get started page) [Accessed: 29.10.2024]. (n.d.). https://developer.
android.com/compose

McMillan, T. (2024). Manual testing vs automated testing: Key di�erences [Ac-
cessed: 31.10.2024]. https://www.testrail.com/blog/manual-vs-automated-
testing/

Menju, T. (2024). Comment on issue #351 in the Roborazzi repository [Ac-
cessed: 31.10.2024]. https : //github . com/takahirom/roborazzi / issues/
351#issuecomment-2100757751

Nygard, M. (2011). Documenting architecture decisions [Accessed: 31.10.2024].
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-
decisions

Pandey, A., Khan, R., & Srivastava, A. K. (2018). Challenges in automation of
test cases for mobile payment apps. 2018 4th International Conference on
Computational Intelligence & Communication Technology (CICT), 1�4.

Paparazzi documentation [Accessed: 29.10.2024]. (2024). https://cashapp.github.
io/paparazzi/

Paparazziplugin.kt [source code] [Accessed: 29.10.2024]. (2024). https://github.
com/cashapp/paparazzi/blob/master/paparazzi-gradle-plugin/src/main/
java/app/cash/paparazzi/gradle/PaparazziPlugin.kt

Perez-Cruz, Y. (2019). Expressive design systems. A Book Apart.
Pittet, S. (n.d.). Continuous integration vs. delivery vs. deployment. Retrieved

October 28, 2024, from https://www.atlassian.com/continuous-delivery/
principles/continuous-integration-vs-delivery-vs-deployment

Pixelperfect.kt [source code] [Accessed: 29.10.2024]. (2024). https://github.com/
cashapp/paparazzi/blob/master/paparazzi/src/main/java/app/cash/
paparazzi/internal/PixelPerfect.kt

Reduce repository size [Accessed: 28.10.2024]. (n.d.). https://support.atlassian.
com/bitbucket-cloud/docs/reduce-repository-size/

54

https://codefluegel.com/blog/git-lfs-for-dummies/
https://codefluegel.com/blog/git-lfs-for-dummies/
https://blog.jetbrains.com/teamcity/2024/07/cicd-for-android/
https://blog.jetbrains.com/teamcity/2024/07/cicd-for-android/
https://github.com/android/nowinandroid/issues/1242#issuecomment-2032962982
https://github.com/android/nowinandroid/issues/1242#issuecomment-2032962982
https://github.com/dropbox/differ/blob/main/differ/src/commonMain/kotlin/com/dropbox/differ/ImageComparator.kt
https://github.com/dropbox/differ/blob/main/differ/src/commonMain/kotlin/com/dropbox/differ/ImageComparator.kt
https://github.com/dropbox/differ/blob/main/differ/src/commonMain/kotlin/com/dropbox/differ/ImageComparator.kt
https://developer.android.com/compose
https://developer.android.com/compose
https://www.testrail.com/blog/manual-vs-automated-testing/
https://www.testrail.com/blog/manual-vs-automated-testing/
https://github.com/takahirom/roborazzi/issues/351#issuecomment-2100757751
https://github.com/takahirom/roborazzi/issues/351#issuecomment-2100757751
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://cashapp.github.io/paparazzi/
https://cashapp.github.io/paparazzi/
https://github.com/cashapp/paparazzi/blob/master/paparazzi-gradle-plugin/src/main/java/app/cash/paparazzi/gradle/PaparazziPlugin.kt
https://github.com/cashapp/paparazzi/blob/master/paparazzi-gradle-plugin/src/main/java/app/cash/paparazzi/gradle/PaparazziPlugin.kt
https://github.com/cashapp/paparazzi/blob/master/paparazzi-gradle-plugin/src/main/java/app/cash/paparazzi/gradle/PaparazziPlugin.kt
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://github.com/cashapp/paparazzi/blob/master/paparazzi/src/main/java/app/cash/paparazzi/internal/PixelPerfect.kt
https://github.com/cashapp/paparazzi/blob/master/paparazzi/src/main/java/app/cash/paparazzi/internal/PixelPerfect.kt
https://github.com/cashapp/paparazzi/blob/master/paparazzi/src/main/java/app/cash/paparazzi/internal/PixelPerfect.kt
https://support.atlassian.com/bitbucket-cloud/docs/reduce-repository-size/
https://support.atlassian.com/bitbucket-cloud/docs/reduce-repository-size/

References

Revolutionize ui testing with visual ai [Accessed: 29.10.2024]. (n.d.). https ://
applitools.com/platform/validate/visual-ai/

Roborazzi documentation [Accessed: 27.10.2024]. (2024). https : / / takahirom .
github.io/roborazzi/top.html

Roborazzi faq [Accessed: 30.10.2024]. (2024). https : / / takahirom . github . io /
roborazzi/faq.html

Roborazzi github [Accessed: 29.10.2024]. (2024). https://github.com/takahirom/
roborazzi

Shot readme [Accessed: 29.10.2024]. (2023). https://github.com/pedrovgs/Shot/
blob/master/README.md

Soares, U. (2023a). The landscape of android screenshot testing in 2023. Retrieved
October 27, 2024, from https ://ubiratansoares .dev/posts/screenshot-
testing-for-android-landscape/

Soares, U. (2023b). Two strategies to drive screenshot testing in mobile projects.
Retrieved October 27, 2024, from https://ubiratansoares.dev/posts/two-
strategies-for-screenshot-testing/

Use git lfs with bitbucket [Accessed: 28.10.2024]. (n.d.). https://support.atlassian.
com/bitbucket-cloud/docs/use-git-lfs-with-bitbucket/

Visual testing powered by computer vision [Accessed: 29.10.2024]. (n.d.). https:
//www.browserstack.com/app-percy/percy-visual- engine?scroll_to=
percy-visual-engine

What is non-functional testing? (2024). Retrieved October 29, 2024, from https:
//www.browserstack.com/guide/what-is-non-functional-testing

Why arc42? [Accessed: 31.10.2024]. (n.d.). https://arc42.org/why
Yerburgh, E. (2018). Testing vue.js applications. Manning Publications.

55

https://applitools.com/platform/validate/visual-ai/
https://applitools.com/platform/validate/visual-ai/
https://takahirom.github.io/roborazzi/top.html
https://takahirom.github.io/roborazzi/top.html
https://takahirom.github.io/roborazzi/faq.html
https://takahirom.github.io/roborazzi/faq.html
https://github.com/takahirom/roborazzi
https://github.com/takahirom/roborazzi
https://github.com/pedrovgs/Shot/blob/master/README.md
https://github.com/pedrovgs/Shot/blob/master/README.md
https://ubiratansoares.dev/posts/screenshot-testing-for-android-landscape/
https://ubiratansoares.dev/posts/screenshot-testing-for-android-landscape/
https://ubiratansoares.dev/posts/two-strategies-for-screenshot-testing/
https://ubiratansoares.dev/posts/two-strategies-for-screenshot-testing/
https://support.atlassian.com/bitbucket-cloud/docs/use-git-lfs-with-bitbucket/
https://support.atlassian.com/bitbucket-cloud/docs/use-git-lfs-with-bitbucket/
https://www.browserstack.com/app-percy/percy-visual-engine?scroll_to=percy-visual-engine
https://www.browserstack.com/app-percy/percy-visual-engine?scroll_to=percy-visual-engine
https://www.browserstack.com/app-percy/percy-visual-engine?scroll_to=percy-visual-engine
https://www.browserstack.com/guide/what-is-non-functional-testing
https://www.browserstack.com/guide/what-is-non-functional-testing
https://arc42.org/why

	Introduction
	Literature Review
	Test Automation
	Testware Relevant for Screenshot Testing
	Goals of Test Automation
	Drawbacks and Benefits of Test Automation

	Snapshot Testing and Screenshot Testing
	Benefits and Drawbacks of Snapshot Testing

	arc42 and Architecture Decison Records

	Requirements
	Functional Requirements
	Quality Goals
	Stakeholders

	Architecture
	Screenshot Testing
	Android Application Architecture
	Screenshot Test Structure

	Design and Implementation
	Screenshot Comparison Algorithms
	Open-Source Algorithms
	Enhanced Closed-Source Algorithms
	Side-by-Side Comparison
	Conclusion

	Screenshot Testing Tool
	Tool Selection
	Tool Setup and Usage

	Testcase Implementation Strategy
	What parts of the application UI will be tested?
	When and in what order should the screenshot tests be implemented?

	CI/CD Pipeline Integration
	Platform-Dependent Rendering Differences

	Data Management
	Storing and Versioning with Git
	Storing and Versioning with Git LFS
	Custom Storage and Versioning Solution
	Conclusion

	Pixel Differences and Tolerance Parameters

	Evaluation
	Quality Goals
	Functional Suitability
	Efficiency and Performance
	Reliability
	Maintainability
	Scalability

	Main Shortcoming and Future Research

	Conclusion
	Appendices
	Tools and Resources
	API References
	Mock Android Application

	References

