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Abstract

This master’s thesis addresses shortcomings in the vulnerability management
component of the Software Composition Analysis (SCA) Tool developed by the
Professorship for Open Source Software (OSS) at the Friedrich-Alexander Uni-
versity Erlangen-Nürnberg (FAU), by proposing a multidimensional classification
and remediation framework for software vulnerabilities. The developed approach
integrates the Common Vulnerability Scoring System (CVSS) for technical im-
pact assessment with the Exploit Prediction Scoring System (EPSS) for real-
world exploit likelihood, offering a balanced view of both intrinsic risk and active
threats. A model and algorithm are introduced to compute contextual classific-
ation scores, complemented by a stakeholder-specific remediation strategy lever-
aging the Stakeholder-Specific Vulnerability Categorization (SSVC) framework.
Additionally, a rank-ordering model prioritizes vulnerabilities, ensuring critical
and data-incomplete vulnerabilities are given immediate attention. The imple-
mentation utilizes data sources such as Open Source Vulnerabilities (OSV) and
incorporates robust caching and daily refresh mechanisms to minimize unneces-
sary traffic and enhance performance. The effectiveness and practical applicab-
ility of the framework are confirmed through evaluations conducted by domain
experts.
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1. Introduction

1 Introduction

In today’s software development landscape, the use of open-source components
is ubiquitous. According to the Open Source Security and Risk Analysis Report
2024 by Black Duck Software, Inc (2024), 96% of codebases analyzed contain
open-source components. While this practice accelerates development processes
and fosters innovation, it also introduces significant security risks. According to
the 2023 State of Open Source Security Report by Snyk Limited (2023), 87% of
organizations were impacted by one or more supply chain security issues in the
past year. Specifically, 53% had to patch one or more vulnerabilities, and 61%
implemented new tooling and practices to better handle supply chain vulnerab-
ilities. This highlights how frequently vulnerabilities in open-source software are
exploited and the significant risks they pose.

The complexity of modern software projects leads to extensive dependency graphs
that are difficult to oversee. A single project can utilize hundreds of open-source
libraries, each bringing its own dependencies. This complexity makes it challen-
ging to track and manage vulnerabilities across the entire software supply chain.

A notable example highlighting the limitations of single-dimensional vulnerability
scoring is the Heartbleed bug in the OpenSSL library.1 At the time of its discovery
in 2014, vulnerabilities were primarily assessed using CVSS version 2 (Balbix,
Inc., 2020). Heartbleed received a relatively moderate CVSS v2 base score of 5.0
(Medium) on a scale of 0 to 10, yet was rapidly and widely exploited, leading to
the leakage of sensitive information (e.g., private keys, passwords) from millions of
servers worldwide.2 This discrepancy between the moderate numerical rating and
its significant real-world impact clearly illustrates why incorporating additional
dimensions, such as real-world exploitability, is crucial for accurate prioritization
in vulnerability management frameworks.

SCA tools and Software Bill of Materials (SBOM)s have established themselves
as instruments for providing transparency about the components used and their
security status. While SBOMs allow developers to maintain a comprehensive

1https://heartbleed.com/
2https://levelblue.com/blogs/security-essentials/cvss-score-a-heartbleed-by-any-other-name
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1. Introduction

inventory of all software components, SCA tools actively check these components
for known vulnerabilities. However, existing solutions often reach their limits
when it comes to classifying newly discovered vulnerabilities and assessing their
impact on a specific software project.

The OSS at the FAU develops its own SCA Tool,3 which aims to facilitate the se-
cure, efficient, and regulatory-compliant use of open-source software within mod-
ern software engineering projects. Specifically, the tool addresses three critical
domains:

• Governance: Assurance that only approved open-source licenses are util-
ized, thereby aiding organizations in adhering to internal policies and mit-
igating potential legal risks.

• Compliance: Simplification of the generation of legal notices for license-
compliant distribution of software products, reducing the complexity and
overhead of adhering to license requirements.

• Vulnerability Management: Provision of continuous monitoring of open-
source code for newly discovered vulnerabilities, delivering actionable intel-
ligence to mitigate risks associated with software dependencies.

VulnAware (VA) serves as the precursor of the vulnerability management compon-
ent of the SCA Tool developed by the OSS at the FAU. It addresses the challenges
of maintaining transparency and control over vulnerabilities in complex software
dependency graphs by accepting SBOM files and continuously checking the con-
tained components for known vulnerabilities. Through a web interface, developers
are presented with the components they use, potential risks, and possible remedi-
ation measures. However, VA currently lacks an mechanism to generate tailored
remediation recommendations based on the specific software context. The scoring
system uses the CVSS to sort vulnerabilities by urgency (Nehrke, 2023). Despite
its structured approach, CVSS faces criticism for assigning numerical values to
qualitative data without sufficient empirical justification, leading to inconsistent
and sometimes misleading scores. Studies have shown high variability in CVSS
scoring among professionals, with discrepancies of 2–4 points on a scale from 0
to 10 being common (J. Spring et al., 2021).

To overcome these limitations, this master’s thesis extends the vulnerability man-
agement component of the SCA Tool by developing an extended model for the
multidimensional classification of vulnerabilities and providing tailored remedi-
ation recommendations. This includes:

• A model for multidimensional classification of vulnerabilities.

• An algorithm to compute a classification for a known vulnerability in the
3https://scatool.com/about/
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1. Introduction

context of a given software.

• An algorithm to make recommendations about how to remedy them.

• A model to rank-order all known classified vulnerabilities.

By extending the vulnerability management component of the SCA Tool, this
thesis aims to improve vulnerability classification by addressing the limitations
of CVSS’s numerical scoring, incorporating multidimensional assessment criteria,
and providing actionable remediation. These enhancements will improve usability
and prioritization accuracy.

3
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2. Literature review

2 Literature review

To enhance the functionality of vulnerability management in SCA Tool, it is
essential to conduct a thorough review of existing research in vulnerability clas-
sification and remediation. This chapter provides an overview of current models,
tools, and approaches in the field. The insights gained serve as the foundation
for the development of a multidimensional classification and remediation model,
as well as algorithms to assess, prioritize, and recommend remediation actions
for vulnerabilities in software projects. The findings from this literature review
directly inform the multidimensional model developed in chapter 4.

2.1 Existing Vulnerability Identification and Clas-
sification Models

Vulnerability classification models provide structured methods for assessing and
prioritizing security vulnerabilities based on factors such as severity, exploitabil-
ity, and potential impact.

Given that the vulnerability management system in SCA Tool retrieves vulner-
ability information from the OSV Database, which heavily relies on the Common
Vulnerabilities and Exposures (CVE) system for uniquely identifying vulnerabil-
ities, it is essential to include CVE in this discussion. CVE acts as the founda-
tional identification system that standardizes the naming of vulnerabilities, en-
abling consistent referencing across databases, tools, and classification models.
Although CVE itself does not classify vulnerabilities, it provides the standardized
identifiers necessary for databases and tools to organize and retrieve vulnerability
information consistently (MITRE Corporation, 2024).

Models such as CVSS and EPSS offer standardized approaches to vulnerability
classification. Classifications generated by these models are typically stored in
vulnerability databases, linked by their respective CVE identifiers. Tools and
systems implementing these classification models subsequently access these data-
bases to evaluate vulnerability severity and exploitability.

5



2. Literature review

CVSS has been selected for its structured scoring system that assesses vulnerab-
ilities according to their severity. However, recognizing the limitations of CVSS
(see section 2.1.2), EPSS is incorporated to enrich prioritization through dynamic
threat intelligence. Additionally, SSVC is integrated due to its consideration of
stakeholder-specific factors. Using tailored decision trees, SSVC guides context-
sensitive prioritization and remediation decisions, helping organizations choose
appropriate responses such as patching, monitoring, or deprioritizing vulnerabil-
ities, based on their operational contexts and resources.

Other models, such as Common Weakness Enumeration (CWE)1 and Common
Attack Pattern Enumeration and Classification (CAPEC)2, primarily focus on
categorizing software weaknesses and attack patterns rather than directly classify-
ing vulnerabilities. While these models are valuable in broader security contexts,
they are less directly applicable to the specific goals of vulnerability classification
and remediation within SCA tools.

In summary, the vulnerability management system in SCA Tool builds upon the
foundational identification provided by CVE, using it to retrieve comprehensive
vulnerability details from relevant databases, which are then leveraged by clas-
sification models to support effective vulnerability assessment and remediation.
The following sections present these classification models and their underlying
concepts in greater detail.

2.1.1 Common Vulnerabilities and Exposures

The CVE system provides a well-established and standardized framework for
uniquely identifying and referencing publicly disclosed cybersecurity vulnerabilit-
ies. It is maintained by the MITRE Corporation (MITRE) and funded by the U.S.
Cybersecurity and Infrastructure Security Agency (CISA). Each vulnerability in
the CVE system is assigned a unique identifier, such as CVE-2024-12345, which
acts as a universal reference point for tools, databases, and discussions related to
cybersecurity. The CVE entries contain basic metadata, such as the vulnerability
description, affected products, and references to further details. However, CVE
itself does not include technical details, exploit code, or remediation instructions.
Instead, it serves as a reference system that links to external sources for further
information.

The structure of a CVE identifier follows the format CVE-YYYY-NNNNN, where:

• YYYY (e.g., 2024): Indicates the year in which the CVE-ID was as-
signed or reserved. This helps provide a temporal context for when the
vulnerability became publicly known or cataloged.

1https://cwe.mitre.org/
2https://capec.mitre.org/
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2. Literature review

• NNNNN (e.g., 12345): Represents a unique, sequential number that
identifies the vulnerability within the specified year. This number is as-
signed by the CVE system to ensure uniqueness.

For example, in the identifier CVE-2024-12345:

• 2024 indicates that the CVE-ID was assigned or cataloged in the year 2024.

• 12345 is the specific, unique number that distinguishes this vulnerability
from others cataloged in the same year.

The primary objective of CVE is to improve the coordination and sharing of
vulnerability information across different organizations, tools, and platforms. By
providing a consistent and unique identifier for each vulnerability, CVE enables
organizations to align their vulnerability management processes, ensuring that
the same vulnerability is referenced accurately in security tools, advisories, and
incident response processes.

While CVE is not a classification or scoring system, it enables security tools and
vulnerability management systems to retrieve vulnerability data, such as CVSS
and EPSS, from databases by providing a standardized identification mechanism
(MITRE Corporation, 2024).
In the implementation (see section 6.1.1), the CVE system acts as the primary
identifier used to retrieve corresponding vulnerability details from external data-
bases such as National Vulnerability Database (NVD) and first.org’s EPSS, fa-
cilitating standardized data integration into the vulnerability management work-
flow.

2.1.2 Common Vulnerability Scoring System

The CVSS provides a method to capture the essential characteristics of a vul-
nerability, reflecting its severity to help organizations assess and prioritize their
vulnerability management processes. However, the scoring algorithm lacks formal
and empirical justification, and its creators caution against using CVSS as a risk
score, though some compliance bodies, such as the U.S. government and the
global payment card industry, explicitly recommend this misuse (J. Spring et al.,
2021).

The CVSS scoring framework (Version 3.1, currently the most widely adopted
version)3 is structured into three metric groups: Base, Temporal, and Environ-
mental. Each group contributes uniquely to the final score (FIRST, 2025):

• Base Metrics: Capture characteristics of a vulnerability that remain con-
stant over time and across environments, such as access complexity, au-

3https://vulncheck.com/blog/common-vulnerability-scoring-system
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2. Literature review

thentication requirements, and impacts on confidentiality, integrity, and
availability.

• Temporal Metrics: Reflect aspects that can change over time, like the
availability of exploit code or patches, which adjust the base score to rep-
resent the current level of exploitability.

• Environmental Metrics: Allow organizations to adjust the score based
on their specific context, incorporating factors like potential collateral dam-
age and the prevalence of affected systems, providing a customized risk
assessment more reflective of the organization’s environment.

Despite its structured approach, the CVSS scoring system faces criticism for sev-
eral significant limitations. The process of converting qualitative evaluations into
a numerical score between 0 and 10 has been critiqued for assigning numerical
values to ordinal data without sufficient empirical justification. This methodo-
logy can produce inconsistent and sometimes misleading scores, as it overlooks
important contextual factors. Additionally, studies have shown high variability in
CVSS scoring even among experienced security professionals, with score discrep-
ancies of 2–4 points being common. Such discrepancies are substantial, given that
four points span the entire "high" severity range, highlighting a lack of precision
in the system (J. Spring et al., 2021).

Evolution of CVSS Versions

According to Balbix, Inc. (2020), the CVSS has evolved over time to address
the limitations of earlier versions. Each new version introduces improvements to
enhance the accuracy and usability of vulnerability assessments.

CVSS Version 1 The first version of CVSS was the initial attempt to stand-
ardize vulnerability scoring but lacked the necessary granularity and flexibility. It
did not adequately represent factors like attack complexity or impacts on integrity
and availability, leading to limited adoption.

CVSS Version 2 The second version improved upon the first version by intro-
ducing more detailed metrics and a better framework for assessing vulnerabilities.
It considered aspects like access vectors, access complexity, and authentication
requirements. However, it still faced challenges in accurately representing mod-
ern vulnerabilities, particularly regarding the complexity of required privileges
and user interactions.

CVSS Version 3 The third generation further refined the scoring system by
adding new metrics and modifying existing ones for a more precise and context-
aware evaluation. It offers detailed considerations of the attack vector and in-

8
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cludes metrics for privileges required and user interaction. These improvements
help organizations better prioritize risks and develop effective security strategies.

CVSS Version 3.1 CVSS 3.1 builds on the enhancements introduced in Ver-
sion 3 by refining certain metrics and clarifying guidelines to achieve more ac-
curate and consistent vulnerability assessments. It also standardizes terminology
and scoring interpretations, which helps ensure comparability across various sys-
tems and tools (FIRST, 2024a). Additionally, as confirmed by current security
sources, Version 3.1 remains the officially recognized standard today, enabling
organizations to effectively prioritize and address risks.4

CVSS Version 4 The latest version, CVSS Version 4.0, has been proposed to
address ongoing criticisms but, at the time of writing, has not yet been widely
adopted or fully standardized. The most recent revision of its documentation
(V1.2, released June 18, 2024) reflects ongoing adjustments and clarifications.
Organizations often hesitate to transition to a new major version until it gains
broad industry acceptance. Consequently, CVSS Version 3.1 remains the domin-
ant standard for vulnerability assessment (FIRST, 2024b).

CVSS helps assess technical severity, but it does not fully account for security risk,
leaving room for improvement. Particularly notable is the documented scoring
inconsistency of 2–4 points observed among experienced security practitioners (J.
Spring et al., 2021).

This variability can lead to misaligned remediation efforts, emphasizing the need
for complementary metrics. To address these limitations, the multidimensional
classification model proposed in this thesis (see section 4.1) integrates exploitab-
ility indicators such as EPSS, thus achieving a more consistent and risk-oriented
prioritization.

2.1.3 Exploit Prediction Scoring System

The EPSS is an open, data-driven framework for assessing the threat posed by
software vulnerabilities. It aims to quantify the probability that a vulnerability
will be exploited in the wild within the first 12 months after its public disclos-
ure. Unlike traditional methods that often rely on subjective expert opinions or
severity scores like the CVSS, EPSS utilizes objective, publicly available data
and machine learning to make accurate predictions.

EPSS employs a logistic regression model that is simple to implement and in-
terpret. By reducing the number of required input variables and focusing on
publicly accessible data sources, it offers high predictive accuracy regarding the
likelihood of exploitation. Key factors in the model include:

4https://vulncheck.com/blog/common-vulnerability-scoring-system
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• Availability of Exploit Code: The presence of publicly available exploit
code or Proof-Of-Concept (POC) exploits increases the likelihood of real-
world exploitation.

• Affected Software Vendors: Vulnerabilities in software from widely used
vendors, such as Microsoft or Adobe, have a higher probability of being
exploited due to their prevalence.

• Vulnerability Age: The age of the vulnerability since its public disclosure,
as older vulnerabilities can show differing patterns of exploitation over time.

• Attack Complexity and User Interaction: Although not directly in-
putted into EPSS, historical data reflects the impact of these factors, with
simpler attack complexities and minimal required user interaction correlat-
ing with higher exploit probabilities.

• Popularity of Affected Software: Vulnerabilities in widely deployed
software are prioritized, as they tend to have a greater impact and higher
likelihood of exploitation.

• Empirical Threat Intelligence: Data from observed exploitations in
real-world scenarios provide a foundation for the EPSS model, enhancing
its accuracy by integrating active threat trends.

The system addresses the challenges of prioritization in vulnerability management
by enabling security professionals to allocate resources more efficiently and focus
on vulnerabilities that are more likely to be exploited.

Overall, EPSS significantly advances security risk assessment by offering an open,
data-driven method that directly predicts the likelihood of a vulnerability being
exploited. Unlike CVSS, which rates severity based solely on inherent technical
characteristics, EPSS employs empirical threat intelligence and a logistic regres-
sion model with elastic net regularization to predict real-world exploitability,
enabling more effective risk prioritization (Jacobs et al., 2021).

This thesis leverages EPSS to complement CVSS scores within the multidimen-
sional classification model (see section 4.1). Specifically, the proposed algorithm
integrates both metrics to generate a composite severity score, enhancing pri-
oritization accuracy by balancing technical severity with realistic exploitation
probability (see section 4.2).

2.1.4 Stakeholder-Specific Vulnerability Categorization

The Stakeholder-Specific Vulnerability Categorization (SSVC) is a decision-making
framework designed to enhance vulnerability management by focusing on the spe-
cific needs and contexts of different stakeholders. Unlike CVSS, which provides
a general severity score based on technical characteristics, SSVC uses tailored

10
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decision trees to guide organizations through prioritization actions relevant to
their unique situations.

SSVC emphasizes the importance of context and the specific roles of organiz-
ations in vulnerability management. It recognizes that different stakeholders -
such as software vendors, deployers, and coordinators - have diverse priorities and
resources. By framing decisions directly through qualitative criteria rather than
relying on numerical severity scores, SSVC aims to provide clear and actionable
guidance. The decision trees in SSVC lead users through a series of considera-
tions, such as exploitability, exposure, and mission impact, resulting in specific
recommended actions.

By incorporating stakeholder-specific factors, SSVC enables organizations to make
informed decisions that are better aligned with their operational realities.

Overall, SSVC enhances decision-making by providing stakeholders with a prac-
tical framework for determining appropriate remediation actions based on qual-
itative criteria and their specific organizational contexts, thus improving vulner-
ability management effectiveness (J. M. Spring et al., 2021).

Within this thesis, the SSVC approach serves as the foundation for the remedi-
ation recommendation model (see section 4.3). Specifically, tailored SSVC-based
decision trees are implemented to generate clear, stakeholder-specific remediation
guidance - such as immediate patching or regular monitoring - aligned explicitly
with the needs of developers and security coordinators.

2.2 Existing Multidimensional Approaches and
Tools for Vulnerability Detection,
Assessment, and Remediation

This section presents well-known tools for vulnerability detection, assessment,
and remediation, analyzing their use of multidimensional approaches. These
tools are evaluated based on how they integrate factors like severity, exploit-
ability, risk, and remediation strategies to effectively prioritize and address vul-
nerabilities. Insights into these multidimensional approaches inform the design
choices and development of the proposed framework in chapter 4, particularly
regarding the integration of real-world exploitability with technical severity and
context-sensitive remediation recommendations.

2.2.1 Tenable Vulnerability Management

Tenable Vulnerability Management (TVM) enhances traditional vulnerability as-
sessment by integrating CVSS with its proprietary Vulnerability Priority Rat-
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ing (VPR). While CVSS provides a standardized method for evaluating technical
severity, it lacks consideration of contextual factors and real-world exploitability
(J. Spring et al., 2021). Tenable’s VPR addresses these limitations by dynam-
ically adjusting scores based on exploit availability, threat intelligence and asset
criticality. The VPR provides a single score on a scale from 0.1 to 10.0, with
higher values representing a higher likelihood of exploit.

Leveraging its assessments from both CVSS and VPR, TVM offers actionable
remediation recommendations tailored to an organization’s specific risk profile.
Remediation strategies are drawn from different sources like the GitHub Ad-
visory Database (GAD)5 and the NVD6. By incorporating key drivers such as
vulnerability age, exploit code maturity, threat intelligence, and technical impact
(based on CVSS), TVM ensures vulnerabilities are prioritized based on both
technical severity and real-world exploitability. This multidimensional approach
allows organizations to address the most critical issues first, ensuring a focus on
vulnerabilities that pose the greatest immediate threat (Tenable, Inc., 2024a).

By utilizing proprietary insights and contextual data, the platform guides security
teams to mitigate vulnerabilities that are most likely to be exploited, enhancing
overall security posture (Tenable, Inc., 2024b).

Inspired by Tenable’s integration of contextual factors such as asset criticality and
exploit maturity into vulnerability assessments, the multidimensional classifica-
tion framework developed in this thesis combines technical severity (CVSS) with
empirical exploitability (EPSS), resulting in a more context-aware prioritization
approach (see section 4.1).

2.2.2 Rapid7 InsightVM

Like TVM, Rapid7 InsightVM (R7IVM) addresses the limitations of CVSS with
its proprietary solution, the Real Risk Score (RRS). The RRS augments CVSS by
introducing a multidimensional approach that incorporates real-time data from
various sources. These dimensions include among other things the CVSS, exploit-
ability, exposure, active threat intelligence, and business impact, which together
provide a more dynamic and comprehensive vulnerability assessment. The RRS
consolidates these factors into a single score ranging from 1 to 1000, with higher
scores indicating higher risk.

The dimension of exploitability is supported by data from the Heisenberg honey-
pot framework7, which simulates vulnerable systems and captures attack meth-
odologies. This framework allows the RRS to include real-time exploit data,

5https://github.com/advisories
6https://nvd.nist.gov/
7https://information.rapid7.com/project-heisenberg-cloud.html?CS=blog
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focusing on vulnerabilities actively targeted by attackers. In addition, incident
reports from Rapid7’s Managed Detection and Response team provide confirmed
exploitation activity, ensuring that vulnerabilities being targeted in live attacks
are prioritized.

The exposure dimension evaluates how accessible a vulnerability is, particularly
in terms of public exposure. The RRS considers whether assets are internet-
facing or otherwise accessible, as this increases the potential risk of exploitation.
This assessment is enhanced by intelligence partnerships, providing insights into
vulnerabilities actively exploited across various sectors.

Another key dimension is business impact, which is determined through a tagging
system within R7IVM. This allows organizations to adjust the prioritization of
vulnerabilities based on the criticality of the affected assets, such as systems that
host sensitive data (Rapid7, 2017).

Similar to Tenable (see section 2.2.1), R7IVM integrates technical severity with
factors like real-world exploitability and business impact, enhancing vulnerability
prioritization through a multidimensional approach. This aligns with the multi-
dimensional model proposed in this thesis, combining CVSS and EPSS to achieve
context-aware prioritization (see section 4.1).

2.2.3 Snyk

Snyk is a platform for vulnerability detection and remediation that employs a
multidimensional approach. In addition to traditional vulnerability detection,
Snyk monitors multiple vulnerability databases, such as CVEs from the NVD
and others, to ensure comprehensive coverage of known vulnerabilities. Snyk
also tracks user activity on GitHub, including issues, pull requests, and commit
messages that may indicate the presence of a security flaw. This is complemented
by tools that identify recurring security patterns across open-source packages, as
well as manual audits conducted by the Snyk Security team to scrutinize widely
used packages for vulnerabilities. To facilitate prioritization, Snyk provides two
types of scores: a Priority Score (1-1000) for all Snyk products, and a Risk
Score (1-1000) for Snyk Open Source8 and Snyk Container9 (Snyk Limited, 2024c,
2024d).

Furthermore, Snyk maintains a proprietary vulnerability database that extends
publicly available data by including vulnerabilities that may not yet be publicly
disclosed, thus allowing for early detection of security issues. This combination
of multiple data sources enhances the breadth and depth of Snyk’s detection
capabilities (Snyk Limited, 2024b).

8https://docs.snyk.io/scan-with-snyk/snyk-open-source
9https://docs.snyk.io/scan-with-snyk/snyk-container
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In its vulnerability assessment, Snyk does not rely solely on CVSS scores. It in-
corporates additional dimensions such as the availability of fixes, exploit maturity
(whether an exploit is available and how advanced it is), and the popularity of the
affected components. This multidimensional assessment allows for more accurate
prioritization of vulnerabilities based on their real-world impact (Snyk Limited,
2024a).

In addition to data from the NVD, Snyk utilizes its own proprietary vulnerability
database to deliver a comprehensive, multidimensional approach for vulnerability
detection, assessment, and remediation. Similar to Tenable (see section 2.2.1) and
Rapid7 (see section 2.2.2), Snyk incorporates additional factors such as exploit
maturity, availability of fixes, and the popularity of affected components, enabling
more effective vulnerability prioritization (Snyk Limited, 2024a).

This thesis follows a similar multidimensional approach by integrating standard-
ized technical severity scores (CVSS) with empirical exploit probabilities (EPSS)
to enhance vulnerability prioritization (see section 4.1). Furthermore, akin to
Snyk’s consideration of exploit maturity and patch availability, the proposed re-
mediation recommendation algorithm (see section 4.4) includes context-specific
factors such as asset criticality and patch availability, employing tailored SSVC-
based decision trees for generating actionable recommendations.

2.2.4 Other Multidimensional Approaches

In addition to the tools discussed, other platforms have adopted multidimen-
sional approaches to vulnerability assessment, incorporating similar metrics and
dimensions. For example, Microsoft Defender for Endpoint (MDE) and Qualys
Vulnerability Management, Detection, and Response (VMDR) each utilize mul-
tidimensional frameworks that address factors like exploitability, threat intel-
ligence, and asset criticality. These platforms, while varying in methodology,
fundamentally rely on the same core principles - prioritizing vulnerabilities based
on contextual risk factors and real-world impact. Consequently, the multidimen-
sional approaches presented here provide a representative overview of current
practices in comprehensive vulnerability assessment (Microsoft, 2024; Qualys,
2022).

2.3 Vulnerability Databases and Remediation Re-
sources

This section introduces well-known vulnerability databases that play a crucial role
in identifying, classifying, and guiding the remediation of software vulnerabilities.
These databases provide standardized information and recommended actions that
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help prioritize and address vulnerabilities across various software ecosystems.
The databases described here serve as key data sources for the multidimensional
classification model presented in chapter 4, particularly for obtaining CVSS and
EPSS scores necessary for calculating comprehensive severity scores and providing
informed remediation recommendations.

2.3.1 Open Source Vulnerabilities

The OSV project provides a platform for identifying known vulnerabilities in
third-party open-source dependencies, enabling developers to prioritize remedi-
ation efforts based on the impact of these vulnerabilities. The OSV infrastructure
aggregates data from multiple vulnerability databases that adhere to the Open
Source Vulnerability Format (OpenSSF)10, ensuring consistency and interoperab-
ility. By using bisection and version analysis, OSV represents affected versions for
each vulnerability, which aids in applying targeted remediation measures. The
project aggregates data from sources including the GAD, PyPI11, and the Go
Vulnerability Database12 (OSV, 2024).

Within this thesis, the OSV database serves as the primary source for retrieving
vulnerability information, enabling efficient access to standardized vulnerability
data and supporting the multidimensional classification and remediation models
implemented in section 6.1.1.

2.3.2 National Vulnerability Database

The NVD, operated by the National Institute of Standards and Technology
(NIST), is a comprehensive repository of known vulnerabilities, primarily util-
izing data from the CVE program. After each CVE entry is published, typically
within an hour, the NVD enriches it by assigning CVSS scores, which indicate
the ease of exploitation and potential impact, and categorizing vulnerabilities
with CWE identifiers. This enrichment helps users assess the severity, scope, and
potential impact of vulnerabilities on affected software and hardware configura-
tions.

While the NVD itself does not provide direct remediation recommendations, it
enhances CVE data with reference tags and links to additional resources that may
include vendor advisories or relevant patches, allowing organizations to determ-
ine potential mitigation steps. Through consistent updates, quality assurance,
and community feedback, the NVD provides an accessible and regularly updated
dataset that supports security professionals in identifying, classifying, and man-
aging vulnerabilities across a wide range of platforms (NIST, 2024).

10https://ossf.github.io/osv-schema/
11https://github.com/pypa/advisory-database
12https://github.com/golang/vulndb
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In this thesis, the NVD is utilized as a key external data source for obtaining
detailed CVSS vectors whenever local vulnerability data in the OSV database is
incomplete, directly supporting the multidimensional vulnerability scoring mech-
anism implemented in section 6.1.1.

2.3.3 GitHub Advisory Database

The GAD13 is an extensive resource for tracking security vulnerabilities in open-
source projects, compiled from multiple sources, including advisories - official
notifications about security vulnerabilities or malicious software, providing de-
tails on affected packages, versions, and potential mitigation measures - reported
directly on GitHub and contributions from external databases such as the NVD,
npm Security Advisories14, and language-specific sources like RustSec15. Each
advisory undergoes classification and may be grouped as GitHub-reviewed, unre-
viewed, or malware-related, thus providing users with clear distinctions regarding
the trustworthiness and origin of the data.

Each advisory in the GAD is uniquely identified by a GitHub Security Advisory
(GHSA), such as GHSA-xxxx-yyyy-zzzz. The GHSA ensures that advisories
are uniquely referenced within the GitHub ecosystem, providing a consistent
mechanism for identifying and addressing vulnerabilities reported by maintainers
or the GitHub community.16

Advisories within the database are standardized using the OSV format, which
includes key details such as the affected ecosystem, package, impacted versions,
severity, and in some cases, patched versions. GitHub enhances vulnerability
entries with CVSS metrics for severity and impact. For advisories with applicable
data, the database also includes EPSS scores, providing a probabilistic measure of
exploit likelihood, which aids organizations in prioritizing vulnerability response
efforts.

In addition to verified security advisories, GitHub includes unreviewed advisor-
ies imported directly from the NVD, allowing users to access a broader scope of
known vulnerabilities. Notably, malware advisories, exclusive to the npm ecosys-
tem, inform users about intentionally malicious code packages, typically linked
to substitution attacks. While GitHub doesn’t directly verify these malware re-
ports, their inclusion in the advisory database helps security teams identify and
remove such threats.

By integrating advisories from a range of ecosystems - including popular package
registries - the GitHub Advisory Database serves as a centralized, reliable source

13https://github.com/github/advisory-database
14https://www.npmjs.com/search?q=advisories
15https://rustsec.org/
16https://github.com/github/advisory-database
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for open-source vulnerability management (GitHub, Inc., 2024).

Within this thesis, the GAD is part of the aggregated data provided by the
local OSV database, used primarily to retrieve CVE identifiers and correspond-
ing CVSS vectors, essential for vulnerability classification and scoring (see sec-
tion 6.1.1).

2.3.4 FIRST.org EPSS Database and API

The Forum of Incident Response and Security Teams’ (FIRST) EPSS database
provides a comprehensive platform for accessing EPSS scores, which estimate the
likelihood of a vulnerability being exploited in real-world scenarios. This resource
is accessible via an Application Programming Interface (API), allowing users
to programmatically query and integrate EPSS scores into their vulnerability
management workflows.

The API supports queries by CVE identifiers, enabling organizations to retrieve
specific scores for vulnerabilities of interest. Additionally, the API provides
metadata such as the date of the score calculation and supplementary docu-
mentation to guide implementation. The database is regularly updated to reflect
the latest data and predictive models, ensuring accurate and actionable insights
FIRST, 2024c.

Unlike the theoretical foundation of EPSS discussed earlier (see section 2.1.3),
this section focuses on the practical implementation and the type of data collected
to support EPSS predictions. The following data points are integrated into the
EPSS database:

• Vendor Information: Extracted from the CPE (Common Platform Enu-
meration)17 via the NVD.

• Vulnerability Age: Measured in days since the CVE was published in the
MITRE CVE list18.

• References with Categorical Labels: Links to sources such as the
MITRE CVE List and NVD, which categorize the content of each refer-
ence.

• Normalized Multiword Expressions: Extracted from the vulnerability
descriptions in the MITRE CVE List to enhance semantic analysis.

• Weakness Information: Collected from CWE identifiers via the NVD.

• CVSS Metrics: Includes the base vector from CVSS 3.x, obtained via the
NVD.

17https://nvd.nist.gov/products/cpe
18https://cve.mitre.org/cve/search_cve_list.html
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• CVE Presence on Public Lists: Information about whether a CVE is
listed on notable platforms, such as CISA KEV19, Google Project Zero 20,
or Trend Micro’s Zero Day Initiative (ZDI)21, among others.

• Publicly Available Exploit Code: Sourced from platforms like Exploit-
DB22, GitHub23, and MetaSploit24.

• Offensive Security Tools and Scanners: Integration with tools such as
Intrigue25 and sn1per,26 to identify exploit capabilities.

Another aspect of EPSS is timing information; for example, tracking when a
Metasploit module for a CVE was added to correlate it with real-world exploit-
ation activity (FIRST, 2024c).

To better understand the distribution of EPSS probabilities across known CVEs,
figure 2.1 shows a histogram based on the EPSS data as of 2022-03-04. The
majority of CVEs have a very low exploitation probability, with most values
concentrated near 0%. This indicates that while a large number of vulnerabilities
exist, only a small fraction are likely to be exploited in real-world scenarios.

However, as shown in the tail of the distribution, a subset of vulnerabilities has a
significantly higher likelihood of exploitation. These higher-probability vulnerab-
ilities represent critical risks that organizations should prioritize for remediation.

Figure 2.1: Distribution of EPSS probabilities as of 2022-03-04 (FIRST, 2022).

19https://www.cisa.gov/known-exploited-vulnerabilities-catalog
20https://googleprojectzero.blogspot.com/
21https://www.zerodayinitiative.com/
22https://www.exploit-db.com/
23https://github.com/
24https://www.metasploit.com/
25https://core.intrigue.io/
26https://sn1persecurity.com/wordpress/
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The visualized distribution highlights the role of EPSS in guiding remediation
strategies. By focusing on high-probability vulnerabilities, organizations can effi-
ciently allocate their resources to address the most critical threats, reducing the
likelihood of exploitation while maintaining operational security.

Within this thesis, the first.org EPSS database is queried via the provided API
to retrieve exploit probability scores for each identified vulnerability. These scores
are integrated into the multidimensional classification model, combining them
with CVSS technical severity to enhance prioritization accuracy (see section 4.2).

2.3.5 Other Vulnerability Databases

While databases such as the Debian Security Tracker (DST)27 and the Red Hat
CVE Database (RHD)28 also offer valuable insights for vulnerability manage-
ment, they are not examined in detail in this thesis due to their limited scope
and specific focus on particular software ecosystems. These databases primarily
target vulnerabilities within their respective platforms - Debian-based and Red
Hat systems - which can limit their general applicability across a wider range of
software environments. The primary focus of this work is on vulnerability data-
bases that provide broader, cross-platform coverage and have higher adoption
rates across diverse development ecosystems. As such, databases like the NVD,
OSV, and GAD were selected for their comprehensive, ecosystem-agnostic data.

2.4 Scientific Foundations of the Expert Question-
naire

The expert evaluation conducted within this thesis can be understood as a form
of self-report methodology, as it depends on subjective judgments provided by
experts based on their professional knowledge and experience. According to Lu-
cas, Richard E. and Baird, Brendan M. (2006), self-report methodologies require
respondents to interpret questions, recall relevant information, form judgments,
and convert these judgments into responses. These cognitive processes underline
the importance of careful questionnaire design, as each step can be substantially
influenced by question wording, format, and context, thereby affecting the valid-
ity of responses (Lucas, Richard E. & Baird, Brendan M., 2006).

Further, as Schwarz (1999) notes, respondents infer the pragmatic meaning of
questions using contextual clues, including explicit framing provided by the ques-
tionnaire. Clearly specifying the context of the questionnaire as an expert evalu-
ation conducted within a master’s thesis on cybersecurity can thus guide respond-

27https://security-tracker.debian.org/tracker/
28https://access.redhat.com/security/security-updates/cve

19

https://security-tracker.debian.org/tracker/
https://access.redhat.com/security/security-updates/cve


2. Literature review

ents toward relevant and meaningful responses, enhancing the methodological
rigor and reliability of the results.

Therefore, careful attention to question wording, context specification, and clear
framing is essential for ensuring the validity of the expert evaluation, which this
work has explicitly considered in designing the structured questionnaire.

The structured questionnaire used for the evaluation is presented in Appendix A.

2.5 Lessons Learned from Existing Tools and
Their Impact on the Proposed Approach

The literature review of current vulnerability management tools (refer to sec-
tion 2.2) shows that leading solutions adopt a multidimensional approach to
vulnerability detection, assessment, and remediation. This approach is essen-
tial because vulnerabilities vary significantly in their characteristics and impacts,
necessitating a comprehensive framework to effectively manage them. The fol-
lowing summary consolidates the scoring factors employed by prominent tools
such as Tenable, Rapid7, and Snyk into a concise and comparative overview.
By highlighting their respective strengths and specific scoring dimensions, this
overview informs the development of a robust, hybrid vulnerability management
model.

Consolidated Scoring Factors

Scoring Factor Tenable Rapid7 Snyk
Technical Severity
(CVSS)

Yes Yes Yes

Exploit Availability
& Maturity

Yes (VPR) Yes (honeypot
data)

Yes

Threat Intelligence Yes Yes No
Business Context &
Asset Criticality

Yes Yes No

Exposure No Yes No
Fix Availability &
Vulnerability Age

Yes (vulnerability
age)

No Yes (patch avail-
ability)

Additional Data
Sources

Yes (internal DB) Yes (partner
data)

Yes (public/in-
ternal DB)

Table 2.1: Consolidated Scoring Factors used by Tenable, Rapid7, and Snyk
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Summary and Impact on the Proposed Approach

Insights from Tenable, Rapid7, and Snyk highlight the need for a multidimen-
sional approach to vulnerability management that integrates technical severity
with real-world exploit likelihood. A notable limitation of relying solely on CVSS
is scoring inconsistency, which can cause misaligned remediation priorities (J.
Spring et al., 2021).

Integrating the quantitative severity assessment provided by CVSS with the prob-
abilistic predictions from EPSS into a unified scoring system addresses this issue.
This hybrid model incorporates factors such as vendor intelligence, vulnerabil-
ity age, exploit availability, exploit maturity, and threat intelligence, which are
dimensions successfully utilized by Tenable, Rapid7, and Snyk (see section 2.5).
The studies conducted by Jacobs et al. (2021) and FIRST (2021) confirm that
incorporating threat-likelihood metrics alongside CVSS improves remediation effi-
ciency by reducing patch workloads while effectively mitigating actively exploited
vulnerabilities.

Using EPSS and CVSS together significantly enhances prioritization: CVSS
quantifies the impact of vulnerabilities, while EPSS estimates their likelihood
of exploitation based on empirical data.

Figure 2.2 illustrates this concept clearly, showing the relationship between EPSS
probabilities and CVSS scores for vulnerabilities as of 2021-05-16.

Figure 2.2: Illustration of how EPSS probabilities and CVSS severity scores
complement each other for better risk-based prioritization (FIRST, 2021).

21



2. Literature review

Most vulnerabilities cluster towards lower exploit probabilities. Only a small
fraction of vulnerabilities have EPSS scores above 0.5. Although there is some
correlation between EPSS and CVSS scores, this visualization clearly indicates
that attackers do not exclusively target vulnerabilities that produce the greatest
impact or are necessarily the easiest to exploit.

For prioritization, vulnerabilities in the lower-left quadrant (low probability, low
impact) can typically be deprioritized. Vulnerabilities in the upper-left quadrant
(high exploit probability, low impact) should be evaluated further, particularly
in chained attack scenarios. Those in the lower-right quadrant (low exploit prob-
ability, high impact) warrant monitoring due to potential future exploitability.
Vulnerabilities in the upper-right quadrant represent the highest risks (high prob-
ability, high impact) and must be addressed first (FIRST, 2021).

After establishing this combined severity score, the thesis applies a decision tree
for remediation planning, drawing on the SSVC framework (see section 2.1.4).
This tree incorporates Vulnerability Classification, Patch Availability, System Us-
age (public or internal), Asset Criticality, Fix Complexity, Personal Code Owner-
ship, Exploit Likelihood, Observed Exploits, Compliance Requirement, and Busi-
ness Impact. The required input data for these parameters is collected through a
user query in the frontend, ensuring that context-specific factors are considered
in the decision-making process.

By blending a robust quantitative metric with a well-defined remediation process,
the proposed framework addresses all of the key data considerations employed by
Tenable, Rapid7, and Snyk - ensuring precise prioritization and more informed
remediation strategies for critical vulnerabilities.
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3 Requirements

This chapter defines the requirements for the multidimensional vulnerability clas-
sification and remediation system developed in the context of this master’s thesis.
Requirements are clearly structured and categorized into functional and non-
functional requirements.

3.1 Functional Requirements

The functional requirements specify the necessary capabilities and behaviors the
system must deliver to users.

1. Multidimensional Vulnerability Classification Model: The system
shall provide a model capable of classifying vulnerabilities across multiple
relevant dimensions, considering technical and empirical factors.

2. Algorithm for Computing Vulnerability Classifications: The sys-
tem shall include an algorithm that computes a severity classification for
vulnerabilities based on relevant and available data sources.

3. Remediation Recommendation Algorithm: The system shall provide
an algorithm to generate tailored recommendations for vulnerability re-
mediation, taking into account factors such as stakeholder roles, asset im-
portance, and patch availability.

4. Rank-Ordering Model for Vulnerabilities: The system shall provide a
ranking model that prioritizes vulnerabilities according to their calculated
severity, ensuring critical vulnerabilities receive immediate attention.

5. Interactive Score Explanation Interface: The system’s user interface
shall offer an interactive component that clearly explains how each vulner-
ability’s overall severity was determined from underlying metrics.

6. Handling of Missing Vulnerability Data: When critical data required
for scoring is unavailable, the system shall assign a placeholder score and
clearly mark such vulnerabilities as having unknown severity.
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7. User Interface Warning for Missing Data: The system shall explicitly
inform users via the interface when necessary data is missing.

8. Role-Based Decision Trees for Remediation: The system shall incor-
porate structured decision trees to provide customized remediation recom-
mendations tailored to different stakeholder roles.

9. Role-Specific Recommendations: The system shall support various
stakeholder roles, such as developers and security coordinators, by provid-
ing recommendations relevant to their specific responsibilities.

10. Caching Mechanism for External Data: The system shall implement
caching for external vulnerability data to reduce unnecessary network re-
quests and ensure efficient data retrieval.

11. Regular Data Synchronization: The system shall perform regular syn-
chronization with external vulnerability databases, maintaining updated
and accurate vulnerability information.

3.2 Non-Functional Requirements

The non-functional requirements define quality criteria, constraints, and opera-
tional guidelines that the system must fulfill.

1. Modularity: The system architecture shall be modular, distinctly separ-
ating functions such as data management, scoring computation, caching,
and interface interaction to enhance maintainability.

2. Scalability: The system must be scalable to accommodate increased data
volumes and user interactions without performance degradation.

3. Usability: The user interface shall be intuitive, user-friendly, and provide
clear guidance to ensure efficient and effective user interaction.

4. Compliance with External API Rate Limits: The system must man-
age external API requests responsibly, using strategies such as batching and
caching to comply with rate limits and handle errors gracefully.

5. Reliability and Error Handling: Robust error handling mechanisms
shall be implemented to maintain reliable system operation and clearly
communicate any issues or missing information to users.

6. Maintainability: The system design shall follow clear separation of con-
cerns, facilitating straightforward modifications, updates, or integration of
additional functionalities.
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The functional and non-functional requirements presented in this chapter collect-
ively define the essential attributes and capabilities necessary to build a robust
and effective system for vulnerability management, emphasizing key aspects such
as modularity, scalability, usability, and transparency.

25



3. Requirements

26



4. Multidimensional Vulnerability
Classification and Remediation Framework

4 Multidimensional Vulnerability
Classification and Remediation
Framework

This chapter introduces a multi-dimensional framework for classifying and re-
mediating vulnerabilities by integrating factors such as exploit predictability,
vulnerability age, and attack complexity. Drawing directly from the conclusions
of the literature review (chapter 2) and the summarized insights in section 2.5,
the proposed approach addresses current limitations of the SCA Tool developed
by the FAU Professorship for Open Source Software (OSS), which classifies vul-
nerabilities exclusively based on CVSS scores (Nehrke, 2023). Known limitations
of this approach include inconsistent scoring among security professionals and
its lack of empirical data on exploitability (Jacobs et al., 2021; J. Spring et al.,
2021). To enhance vulnerability classification, the proposed framework combines
CVSS severity scores with empirical exploit probability data provided by EPSS.
For remediation prioritization, the stakeholder-specific SSVC decision framework
is employed, leveraging context-sensitive factors including asset criticality, fix
complexity, and personal code ownership.

The chapter covers:

• A model for multi-dimensional classification that evaluates vulnerabilities
across multiple factors.

• An algorithm for computing classifications in specific software contexts.

• An algorithm for remediation recommendations tailored to stakeholders and
asset criticality.

• A ranking model to prioritize vulnerabilities efficiently.

This framework aligns vulnerability management with both immediate and stra-
tegic security goals, addressing the complexities of modern software environments.
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4.1 A Model for Multi-Dimensional Classification
of Vulnerabilities

The following multi-dimensional classification model integrates several key di-
mensions to address both technical severity and real-world implications. Each
dimension contributes to a holistic severity assessment; the dimensions used are:

• CVSS Score: Assesses technical severity using Version 3.1, which refines
metrics and standardizes guidelines for comparability across systems (see
section 2.1.2). It considers factors like the attack vector, complexity, and
the potential impacts on confidentiality, integrity, and availability.

• EPSS Score: Represents the likelihood of real-world exploitation, based
on empirical threat intelligence, such as publicly available exploits and ob-
served attack trends.

As outlined in section 2.5, CVSS alone has been criticized for overlooking con-
textual factors and exhibiting scoring inconsistencies of 2–4 points among prac-
titioners (J. Spring et al., 2021). To address these gaps, EPSS is incorporated
as a complementary metric, leveraging real-world exploitation data to provide a
more dynamic, threat-focused perspective. By combining CVSS’s standardized
impact assessment with EPSS’s empirical likelihood estimations, this approach
facilitates more context-aware remediation prioritization and aligns with industry
best practices (see section 2.2). This synergy ensures that vulnerabilities with
both high severity and a proven likelihood of exploitation receive immediate at-
tention, while those posing lower real-world risk can be deprioritized, leading to
more efficient allocation of remediation resources.

These dimensions form the foundation of the classification model used to evalu-
ate vulnerabilities. By integrating standardized technical scoring with real-world
exploitability data, this approach balances static severity metrics with dynamic
threat intelligence and ensures that both long-term structural risks and immedi-
ate threats are considered. However, some organizations may need to factor in
additional internal criteria - such as extended liability or compliance requirements
- that lie beyond the scope of CVSS and EPSS.

4.2 Algorithm for Computing Classifications

The classification algorithm prioritizes vulnerabilities by combining these dimen-
sions, resulting in a tailored severity score that reflects both technical severity
and real-world implications:

1. Input Retrieval: Gather data for each vulnerability, including CVSS and
EPSS scores.

28



4. Multidimensional Vulnerability
Classification and Remediation Framework

2. Score Calculation: Combine standardized technical scores CVSS with real-
world exploitability data EPSS by multiplying the EPSS probability value
by 10.0 to align it with the 0–10 CVSS range. The overall severity score is
then obtained using the following weighted formula:

Severity Score = round

(
wcvss × CVSS + wepss ×

(
10.0× EPSS

)
2.0

)

where each weight w is configured to reflect organizational priorities or
estimations by domain experts.

3. Classification and Output: Each vulnerability is assigned a classification
(e.g., Critical, High, Medium, or Low) based on the calculated score. This
final output serves as guidance for prioritizing vulnerabilities and improving
the overall security posture.

This work adopts a weighting factor of 2 for EPSS, deliberately emphasizing
empirical exploit probability. Because the calculation of EPSS scores inherently
incorporates certain elements from CVSS base metrics - such as exploitability
characteristics - assigning a higher weight to EPSS emphasizes real-world exploit-
ation likelihood while still effectively capturing the underlying technical severity.
This approach ensures that vulnerabilities most likely to be actively exploited
are prioritized, aligning vulnerability management closely with empirical evid-
ence rather than purely theoretical severity assessments.

4.2.1 Data Sources for the Classification Model

The model integrates data from multiple sources to comprehensively evaluate
vulnerabilities. Each vulnerability is referenced through a standardized CVE
identifier, enabling consistent data retrieval. Additional metrics, such as tech-
nical severity from CVSS and empirical exploitation likelihood from EPSS, are
obtained through this identifier. The primary data sources include the NVD,
OSV, GAD, and the first.org EPSS database.

4.2.2 Handling Of Missing Data

If the data required for calculating the severity score (see section 4.2) is miss-
ing, the algorithm assigns a default value of 10.1. This placeholder score is
not displayed to the user. Instead, the frontend labels the severity in pink as
“UNKNOWN”, indicating that the severity could not be calculated. Since the
maximum severity score is 10.0, a placeholder value of 10.1 ensures that the
vulnerability is listed first on the dashboard.
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4.2.3 User Interface for Explaining Score Calculation and
Guidance in Case Of Missing Data

To enhance the user’s understanding of the vulnerability scoring and prioritiz-
ation, the system includes an interactive explanation feature and a method for
handling incomplete data:

Score Details Button: The "Show Score-Details" button in the user inter-
face provides detailed information about the calculated score. When clicked, it
displays the following details:

• CVE ID: Shows the Common Vulnerabilities and Exposures ID, a unique
identifier for the vulnerability. It helps security professionals track and
reference the issue across different platforms and databases.

• CVSS Score (v3.1): Displays the Common Vulnerability Scoring System
score, representing the severity of the vulnerability on a scale from 0.0 to
10.0. Higher scores indicate more critical vulnerabilities.

• CVSS Vector: Provides the CVSS vector string, which describes the char-
acteristics of the vulnerability, such as attack vector, attack complexity, and
privileges required for exploitation.

• EPSS Score: Shows the Exploit Prediction Scoring System score, which
estimates the likelihood of the vulnerability being exploited in the wild.

• Severity Score: Displays the overall severity score, calculated based on
the combination of the CVSS Score and EPSS Score. This score helps
prioritize remediation efforts effectively.

• Hover Tooltips for Vectors: Displays hover-based tooltips for each
CVSS vector attribute. When the user places the cursor over a specific
field (e.g., “Attack Vector” or “Attack Complexity”), a concise explanation
appears to clarify its impact on the vulnerability assessment.

• Direct Link to the CVSS Calculator: A direct link to a prefilled CVSS
calculator, ensuring that users can quickly review the existing CVSS met-
rics. This link is automatically populated with the relevant vector data,
allowing rapid exploration of different scoring scenarios.

Guidance in Case Of Missing Data: For cases where specific scores or recom-
mendations are unavailable, the system transparently indicates missing compon-
ents to the user. If critical data, such as the severity score, cannot be computed
due to missing EPSS or CVSS scores, the user interface displays a clear red
warning message stating: "Cannot compute: missing EPSS or CVSS Score! Re-
mediation Strategy: Please run the SSVC Assignment for further instructions!"
Additionally, the score details section may show placeholders like “CVSS: N/A”
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to inform users that certain information was not included in the score calculation,
thus ensuring transparency.

This approach ensures that users are fully informed about how each vulnerability
score is calculated, providing transparency and clarity. Additionally, handling
missing data with fallback messages maintains consistency in user experience
and supports informed decision-making, even when data is incomplete.

4.3 A Model for Remediation Recommendation

This section presents the SSVC vulnerability prioritization methodology, which
leverages the SSVC framework to generate tailored remediation recommenda-
tions through structured decision trees. These decision trees guide stakeholders,
such as developers and security advisors, in determining the most appropriate
remediation actions for each vulnerability.

The SSVC framework, as discussed in section 2.1.4, does not directly affect the
vulnerability score but guides remediation by aligning recommendations with
organizational priorities. As outlined in section 2.5, it mirrors industry solutions
(e.g., Tenable, Rapid7, Snyk) by factoring in elements such as Exploit Status,
Exposure, Asset Criticality, and Patch Availability. The SSVC-based decision
tree incorporates these parameters, gathered via a frontend user query, to ensure
context-informed remediation.

Using the decision trees, vulnerabilities are categorized and prioritized for imme-
diate patching, monitoring, or deprioritization. An example of such a decision
tree tailored specifically to developers is illustrated in figure 4.1. For instance, if
the exploit likelihood is high and a patch is available, developers should apply the
patch immediately. If no patch is available, regular monitoring is recommended.
Conversely, vulnerabilities with low exploit likelihood affecting non-critical assets
can be deprioritized.

Exploit
Likelihood
(High/Low)

High Patch
Available?

Yes:
Apply Patch

No:
Monitor

Regularly

Low
Asset

Criticality
High:

Document &
Prepare Patch

Low:
Deprioritize

Figure 4.1: Example of an SSVC Decision Tree for Remediation Recommend-
ations for the Developer Role
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By applying this structured approach, the SSVC methodology ensures that re-
mediation decisions align closely with stakeholder priorities and operational con-
text, improving resource allocation and enabling more effective management of
vulnerabilities.

4.4 Algorithm for Remediation Recommendation

This algorithm provides remediation recommendations based on the SSVC model.
By considering factors such as stakeholder roles (e.g., developers, security co-
ordinators), Patch Availability, and Asset Criticality, the algorithm generates
tailored actions to address vulnerabilities efficiently. The following steps outline
the decision-making process for each vulnerability:

1. Input Retrieval and Initial Assessment: The algorithm collects essential
information about each vulnerability (e.g., the data points listed below),
though in practice additional parameters may also be gathered to capture
further contextual details:

• Stakeholder Role to identify the responsibilities and potential impact
for each user type, e.g., developers, operators, or security coordinators.

• Asset Criticality to determine the priority based on the business im-
portance of the affected asset.

• Patch Availability to inform the urgency and feasibility of the remedi-
ation.

2. SSVC-Based Decision Tree for Remediation Action: The algorithm uses
SSVC-inspired decision trees tailored to the roles of different stakeholders.
In this example, the stakeholders include developers and security coordin-
ators, each of whom receives specific recommendations based on their roles
and responsibilities. This ensures that each role receives appropriate re-
mediation guidance based on the specific characteristics of the vulnerability.
Example actions for each stakeholder include:

• Developers:

– High Exploit Likelihood and Patch Available: Apply patch
immediately to prevent exploitation.

– High Exploit Likelihood and No Patch Available: Docu-
ment the vulnerability, monitor regularly, and prepare for a future
patch.

– Low Exploit Likelihood and Critical Asset: Prepare patch
documentation; consider patching in the next scheduled mainten-
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ance.

• Security Coordinators:

– High Exploit Likelihood and Critical Asset: Initiate imme-
diate response, notify relevant teams, and enforce monitoring.

– Low Exploit Likelihood and Non-Critical Asset: Document
vulnerability details and set a reminder for review in future secur-
ity audits.

– Significant Stakeholder Impact: Prepare backup and docu-
mentation for affected systems, even if exploit likelihood is low, to
ensure preparedness.

3. Classification of Recommended Actions: Based on the outputs of the SSVC-
based decision tree, each vulnerability is assigned a recommended action
classification, such as:

• Immediate Patch: High-priority vulnerabilities with available patches
are recommended for immediate remediation.

• Monitor and Prepare Patch: Vulnerabilities with no immediate fix,
but high exploit likelihood, are recommended for regular monitoring
and preparation for a patch.

• Deprioritize: Low-priority vulnerabilities affecting non-critical assets
and posing minimal exploit risk are deprioritized but documented for
future reference.

4. Output of Recommendations: The algorithm generates the recommended
remediation actions for each vulnerability, taking into account the specific
roles and priorities of each stakeholder. The recommendation provides a
comprehensive view of immediate actions, monitoring tasks, and deprior-
itized items, ensuring that resources are allocated effectively to mitigate
high-risk vulnerabilities.

This algorithm enables context-sensitive and efficient vulnerability management
by aligning recommended actions with the needs of different stakeholders, such
as developers and security coordinators, as well as the operational importance
of each asset. This ensures that the most critical vulnerabilities are addressed
promptly, while lower-risk issues are monitored or deprioritized.
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4.5 A Model to Rank-Order All Classified Vulner-
abilities

This model provides a structured approach for ranking all known vulnerabilities
based on their calculated scores, prioritizing those with the highest severity to
ensure efficient allocation of resources. By leveraging the composite scores gener-
ated through the multi-dimensional classification model, this ranking mechanism
enables organizations to address the most critical vulnerabilities first. The steps
for implementing this ranking model are outlined as follows:

1. Score Aggregation: The total score for each vulnerability is calculated
from the weighted dimensions EPSS and CVSS (see section 4.2). This score
provides a unified measure of severity.

2. Handling Missing Data (Default Score 10.1): When essential data
for scoring is unavailable, the algorithm assigns a placeholder score of 10.1
- exceeding the maximum valid severity of 10.0 (see section 4.2.2). In the
user interface, this appears as a pink “UNKNOWN” label rather than the
numeric score, ensuring it is displayed first in the dashboard and prompting
immediate attention to gather the missing information.

3. Sorting and Rank-Order Calculation: All classified vulnerabilities are
sorted in descending order of their total (or placeholder) score, with the
highest scores - whether valid or placeholder - representing the most urgent
cases.

4. Resource Allocation Guidance: Based on the ranked list, organizations
can allocate resources toward the vulnerabilities that pose the highest risk.
This enables a focused remediation effort, ensuring that the most severe or
unknown-risk vulnerabilities are addressed first.

5. Dynamic Re-Ranking Based on Score Changes: If there are updates
to any of the vulnerability scores - such as new threat intelligence or changes
in asset criticality - the model recalculates and reorders the list to reflect
the latest context, keeping the priority list up-to-date.

This ranking model complements the multi-dimensional classification and remedi-
ation framework by establishing a clear, actionable prioritization order. It ensures
that both high-risk and data-incomplete vulnerabilities are addressed promptly,
aligning with strategic security objectives and operational capacity.
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5 Design

This chapter describes the current and proposed designs for managing vulnerab-
ility data, emphasizing scalability and efficient interaction between system com-
ponents. Building on the multidimensional classification and remediation model
outlined in chapter 4, the proposed extension translates these concepts into a
scalable and practical system design.

5.1 Current Design

The current solution integrates data from the OSV database into the internal
system for vulnerability management. This process ensures efficient synchroniza-
tion, processing, and storage of vulnerability advisories, aligning these advisories
with components specified in the SBOM to identify packages and components
affected by vulnerabilities.

• Data Synchronization: The system initiates synchronization by checking
for the availability of the vulnerability data archive (OSV) in a cloud-based
storage system. This includes mechanisms to verify the freshness of the
data (e.g., through metadata such as ETags) to avoid redundant processing.
Only updated or newly added archives are retrieved and temporarily stored
for processing. This process happens once a day.

• Data Extraction and Processing: Retrieved archives are decompressed,
and individual advisories are parsed and processed. Each advisory is evalu-
ated for updates since the last synchronization and is enriched with relevant
details, such as identifiers, severity metrics, and associated packages.

– Change Detection: Only advisories that have been modified since
the previous synchronization are processed further.

– Mapping and Enrichment: Relevant details, including affected
components, vulnerability types, and risk metrics (e.g., CVSS), are
extracted and structured for database integration.

• Component Alignment: Processed advisories are matched against the
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components listed in the SBOM. This step identifies specific packages and
software elements within the SBOM that are directly affected by vulnerab-
ilities, enabling precise vulnerability reporting at the component level.

• Database Update: The structured advisories, enriched with mappings to
specific components, are stored in the internal database. Synchronization
metadata, such as timestamps and version identifiers, is updated to reflect
the latest state of external data sources. When an API request is triggered,
the relevant data is sent to the frontend, ensuring the user interface always
reflects the most recent vulnerability information.

5.2 Extended Design

The extended design centers on a streamlined approach to vulnerability inform-
ation management. It integrates multiple data sources (e.g., vulnerability data-
bases, scoring providers) and applies caching to reduce unnecessary network re-
quests. Its purpose is to unify critical metrics (such as CVSS, EPSS) into a
consolidated view, as described in the multi-dimensional classification model (see
section 4.1), while also supporting role-specific actions based on the remediation
model outlined in section 4.3.

5.2.1 Backend Responsibilities

The backend is responsible for data retrieval, caching, and score computation,
following the scoring algorithm described in section 4.2:

• Multi-Source Lookup: For each vulnerability, the system first queries
the OSV database to retrieve both the CVE identifier and (if available)
the CVSS vector, leveraging OSV’s integration of the entire GAD.1 If no
CVSS vector is found there, the system sends a request to external sources
(e.g., the NVD), thereby minimizing the number of lookups. Similarly, the
system always retrieves EPSS data from the first.org database to ensure
it remains up to date, as it is not included in the internal OSV cache.

• Caching and Time-Based Retrieval: The system initiates a daily up-
date cycle by first attempting to retrieve CVSS vectors from its local OSV
database. If unavailable, it sends individual requests to the NVD for the
missing CVSS details, as batch queries for CVE IDs are not supported.2
Simultaneously, batch requests are sent to the first.org database for
EPSS scores. After retrieving the new information, the cache is refreshed
and any derived metrics (e.g., severity) are recalculated.

1https://osv.dev/
2https://nvd.nist.gov/developers/vulnerabilities
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• Role-Specific Recommendations: Based on user input (e.g., developer
or security advisor), the system determines a recommended course of action
(see section 4.3). The backend solely stores the SSVC recommendation,
which might include immediate patching, hotfixes, or a scheduled approach,
for later retrieval or review.

5.2.2 Frontend Responsibilities

The frontend is responsible for fetching data from the backend, displaying it to
the user, and forwarding user inputs for storage. Key functionalities include:

• View Scores and Vectors: A dedicated interface fetches data from the
backend and displays CVE identifiers, CVSS vectors, CVSS base scores,
EPSS values, overall severity, and missing data, as described in section
4.2.3. Additionally, it is responsible for showing vulnerabilities ranked as
described in section 4.5.

• Perform Structured Assignments: An interactive decision flow guides
users (depending on their role) through a series of questions, ultimately
generating a recommendation, as seen in the concept of section 4.3.

• Send Updates to the Backend: Once the recommendation is finalized,
it is transmitted to the backend for persistence.

5.2.3 System Interaction Workflow

This section outlines the mechanisms for updating, fetching, and caching vulner-
ability data. Figure 5.1 shows how the process begins with a scheduled update
(e.g., at midnight) or an API request from the frontend. In the latter case, if the
vulnerability entity exists, the system returns it immediately; otherwise, a new
record is created, and the creation or update process continues.

The backend checks if a CVE is in the cache. If not, the workflow transitions to
an Error state, returning a severity score of 10.1 (see section 4.2.2), highlighted
in pink on the frontend. Users can consult the Score Explanation feature (see
section 4.2.3) for guidance. If the CVE exists, the system checks whether CVSS
data is cached. If unavailable, an external fetch is performed. The EPSS metric
is always retrieved externally to ensure it remains up to date, as it is not included
in the cache.

Failure in either fetch leads to the Error state, while successful retrieval allows
the system to compute an overall severity score (see section 4.2) and store the
final data. The process concludes by returning a fully updated record to the
caller.
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Figure 5.1: The internal data-fetching, caching, and updating workflow for
vulnerability data.
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5.2.4 Rate Limits and Caching Benefits

In this design, CVE data is exclusively retrieved from the local OSV database,
while CVSS data is primarily obtained from the local OSV database as well,
querying the NVD only if the required information is unavailable locally. Addi-
tionally, EPSS data is fetched directly from first.org. External data sources
impose rate limits to prevent misuse; for instance, the NVD restricts queries to
five requests per 30-second window without an API key, and fifty with one.3 The
first.org database enforces a threshold of 1,000 requests per hour without a
token.4 Since CVE and most CVSS data are retrieved locally from the OSV
database, no rate limits apply to these queries.

To cope with these constraints, the backend employs caching and batching to
reduce repetitive lookups. Data retrieval occurs only when a record is missing or
considered outdated, significantly minimizing external calls and reducing the risk
of exceeding rate limits. During nightly updates, requests for EPSS scores are
processed in batches to further optimize efficiency. However, since the NVD does
not support batch queries for CVE IDs,5 CVSS data retrieval requires individual
requests, making caching even more essential. Consequently, the system operates
more reliably and gracefully handles errors by returning a severity score of 10.1
(see section 4.2.2) whenever fetch errors occur. This condition is visually high-
lighted in pink on the frontend, prompting users to consult the score explanation
interface (see section 4.2.3) to identify appropriate next steps for issue resolution.

5.2.5 SSVC Process and Role-Specific Assignments

The SSVC process involves tailoring vulnerability handling to each user’s or
team’s specific context, following the stakeholder-specific prioritization frame-
work described in section 4.4. This process is supported by the controller layer,
which manages endpoints like the SSVC recommendation endpoint. These end-
points facilitate the submission of role-specific decisions, which are then persisted
and integrated with other metrics (e.g., CVSS, EPSS). Figure 5.2 illustrates this
interaction.

User Interface Controller Layer Data Storage
& Calculation

Finalize Role-Based Decision Persist and Merge Data

Return Updated MetricsUpdated Values (CVSS, EPSS, etc.)

Figure 5.2: High-level interaction in the SSVC process.

3https://nvd.nist.gov/developers/start-here
4https://api.first.org/#Rate-Limit
5https://nvd.nist.gov/developers/vulnerabilities
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5.3 Conclusion

The outlined design consolidates key vulnerability metrics and merges them with
role-based inputs to yield tailored recommendations. By systematically checking
internal data first and fetching new information only when required, it minimizes
redundant requests while maintaining data accuracy. Frontend interactions are
kept straightforward through specialized dialogs and status views, ensuring users
can easily view or update vulnerability details. This approach offers a strong
foundation for integrating further data sources and scaling to large application
ecosystems.
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6 Implementation

This chapter focuses on the implementation of the components proposed in sec-
tion 5.2. It describes how the backend functionalities, such as caching mechan-
isms, data acquisition workflows, and the SSVC recommendation process, were
realized to ensure efficient data handling and seamless integration with external
systems. Additionally, the chapter explains how the frontend was implemented to
support user interactions, including role-specific remediation-strategies and data
visualization. This implementation bridges the gap between architectural design
and a functional, scalable system.

6.1 Backend Components

This section explains the main backend building blocks, focusing on data storage,
retrieval logic, and the mechanisms used to ensure up-to-date information.

6.1.1 Caching Mechanism and Repository Layer

A central piece of functionality is the storage of previously retrieved data. Two
core strategies are employed to manage data retrieval: Pre-Check and Sched-
uled Refresh.

The Pre-Check strategy involves querying the internal repository whenever a
vulnerability request arises. The system first checks whether a corresponding
Vulnerability Data Entity already exists. If it does, the existing record is returned.
If no such entry is found, the system creates a new entity while simultaneously
checking the local OSV database for the associated CVSS vector. If the vector
is not available locally, an external API call to the NVD is performed to retrieve
the missing details. In parallel, the EPSS score is fetched from the external
first.org API, as it is not stored locally (see section 5.2.1).

The Scheduled Refresh strategy ensures data freshness through a nightly up-
date cycle. This process starts 30 minutes after the OSV database update (see
section 5.1), ensuring that the most recent vulnerability information is available.
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During this cycle, the system updates the entire dataset by performing batch
requests for EPSS scores via the first.org API and individual requests to the
NVD for missing CVSS details not available in the local OSV database, as the
NVD does not support batch queries for CVE IDs.1

If either the CVSS or EPSS data cannot be retrieved, the system transitions to
an Error state, returning a severity score of 10.1. This value is highlighted in
pink on the frontend to prompt user action (see section 4.2.2).

Example of a Caching Strategy (Pseudocode)

// Caching Strategy Pseudocode

// Check if vulnerability exists
if (existsInRepository(cveId)) {

return getFromRepository(cveId);
}

// Create new entity and fetch data
entity = createNewEntity(cveId);
entity.cvssVector = getFromOsv(cveId) ?? fetchFromNvd(cveId);
entity.epssScore = fetchFromFirstOrg(cveId);

// Save and return entity
saveToRepository(entity);
return entity;

If any data retrieval fails, the process is aborted, and the system proceeds as
described in section 4.2.2.

6.1.2 Scheduled Refresh Mechanism

The Scheduled Refresh strategy ensures data freshness through a nightly up-
date cycle. This process starts 30 minutes after the OSV database update, en-
suring that the most recent vulnerability information is available.

During this cycle, the system iterates through all existing Vulnerability Data
Entities and updates each entry as follows:

• The local OSV database is queried for the latest CVSS vector.

• If the vector is not found locally, an external API call is made to the NVD.
1https://nvd.nist.gov/developers/vulnerabilities
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• In parallel, the EPSS scores are fetched in a batch from the external first.org
API, as it is not cached locally.

If any data retrieval fails, the system aborts the update for the affected entry and
proceeds as described in section 4.2.2. Successfully updated entities are saved
back to the repository, ensuring the dataset remains accurate and current.

Daily Vulnerability-Data Update (Pseudocode)

// Scheduled job: runs daily at 00:30
scheduleRecurringTask("vulnerability-data-update", "0 30 0 * * *") {

updateVulnerabilityData();
}

function updateVulnerabilityData() {
// Fetch all vulnerabilities
entities = vulnerabilityDataRepository.findAll();

// Batch-fetch EPSS scores
epssScores = fetchBatchEpssScores(collectCveIds(entities));

// Update each entity
for each entity in entities {

entity.epssScore = epssScores.get(entity.cveId);
[entity.cvssScore, entity.cvssVector] =
fetchCvssScoreAndVector(

entity.cveId,
entity.vulnId

);
entity.severityScore = calculateSeverityScore(entity);
entity.severityScoreLastUpdated = now();

// Save updated entity
vulnerabilityDataRepository.save(entity);

}
}

SSVC Recommendation Endpoint The SSVC recommendation endpoint,
part of the controller layer, allows the frontend to submit tailored remediation
plans. As described in section 5.2.5, this endpoint integrates role-specific de-
cisions into the backend’s controller layer. These recommendations are stored
in the backend for integration with other vulnerability metrics. The pseudo-
implementation is as follows:
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Updating SSVC Recommendation (Pseudocode)

// For a POST request to "/api/.../vulnerabilities/{vulnId}/ssvc"
function updateSsvc(vulnId, ssvcRecommendation):

// Retrieve the vulnerability record by its ID
data = repository.findById(vulnId)

// If found, update recommendation and save
if data:

data.ssvcRecommendation = ssvcRecommendation
repository.save(data)

// Return success response
return HTTP_200_OK

This process ensures that:

• SSVC recommendations are properly stored for each vulnerability.

• The data is integrated with other metrics such as CVSS and EPSS.

• The recommendations are available for retrieval and analysis in future re-
quests.

6.1.3 Severity Score Calculation

After confirming the presence of CVSS, EPSS, and any other relevant metrics,
the system generates a composite severity score. This calculation is based on the
multi-dimensional classification model introduced in section 4.1, which integrates
technical severity and real-world exploitability.

The algorithm follows the methodology described in section 4.2, prioritizing vul-
nerabilities by combining these metrics into a unified severity score. The specific
steps are outlined as follows:

1. Validate Required Fields: If either the CVSS base score or EPSS value
is missing, log an error and default them to 10.1.

2. Combine Weighted Values: Multiply the EPSS probability by 10.0 to
make it numerically compatible with the CVSS score (0–10).

3. Compute Weighted Severity Score: Calculate the severity score using
the following pseudocode:

double epssScaled = epss * 10.0;
double severity = ((w_cvss * cvss) + (w_epss * epssScaled)) / 2.0;
severity = round(severity);
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Here, the weights wcvss and wepss follow the definitions provided in section
4.2, reflecting their relative importance in the overall severity assessment.

4. Store the Result: Update the database record with the newly calculated
severity score.

Example of Combining CVSS and EPSS The following example demon-
strates how CVSS and EPSS scores are combined to compute the severity score,
aligning with the weighted scoring formula presented in section 4.2:

Severity Score Calculation (Pseudocode)

// Calculate severity score based on CVSS and EPSS
function calculateSeverityScore(data):

cvss = data.getCvssScore() // 0.0 to 10.0
epss = data.getEpssScore() // 0.0 to 1.0
w_cvss = 1.0 // CVSS weight
w_epss = 2.0 // EPSS weight

if cvss is null or epss is null:
return 10.1 // Error score if data is missing

// Scale EPSS and calculate weighted average
epssScaled = epss * 10.0
finalScore = ((w_cvss * cvss) + (w_epss * epssScaled)) / 2.0

return round(finalScore)

6.2 Frontend Components

This section highlights the primary elements of the frontend implementation, em-
phasizing user interface design, interaction logic, and the methods implemented
to deliver a seamless user experience.

6.2.1 Role-Specific Logic and SSVC Integration

This section explains how the application adapts to different user roles, focus-
ing on an SSVC-based approach as described in section 4.4 to provide tailored
recommendations for remediation measures based on the user’s specific role.

Interactive Decision Tree A component on the frontend prompts developers
or security advisors through a sequence of questions (see figure 6.1). For instance,
a developer might be asked:
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• Is a vendor patch already available?

• What is the level of criticality for your asset?

• Is this part of your personal codebase or third-party code?

Figure 6.1: Interactive Decision Tree Interface: Initial role selection.

Each response is processed to build a comprehensive recommended action plan,
consisting of advisories such as ‘Apply patch immediately’ when a vendor patch is
available. Below is a code snippet demonstrating the logic for handling decisions
within the tree structure and compiling the responses into a final recommend-
ation. For example, one decision involves checking whether a vendor patch is
available. Based on this, subsequent steps, such as applying the patch or explor-
ing alternative mitigations, are determined.

Pseudocode for Decision Handling The following pseudocode demonstrates
how decisions are processed to generate a recommendation:

// Generate recommendation based on patch availability
function generateRecommendation(data):

recParts = [] // Collect recommendation parts

if data.getPatchAvailableDev() == "yes":
recParts.push("Vendor patch is available. Apply immediately.")

else:
recParts.push("No vendor patch found. Develop a custom fix.")

return "Developer: " + recParts.join(" ")

46



6. Implementation

Final Recommendation After collecting all partial recommendations, the fi-
nal message is composed and delivered (see example figure 6.2):

// Compile and deliver final recommendation
finalMessage = "Developer: " + recParts.join(" ")
setSuccessMessage(finalMessage)
onComplete(finalMessage)

Figure 6.2: Example of a final recommendation message delivered to a de-
veloper.

6.2.2 Score Details Button

A Show Score Details popup (as described in section 4.2.3) allows users to see
the CVE-ID, the CVSS score and vector, the EPSS score, the computed severity,
and a textual explanation as described in section 4.2.3. This is done through:

• Button Trigger: A button in the ‘Vulnerability Details’ view opens a
modal dialog.

• Dialog Contents: The modal includes fields for the CVE ID, CVSS V3.1
base score, vector string, EPSS metric, and the final severity. If any fields
are missing, placeholders (e.g., N/A) or a note about further actions that
can be taken are shown.

• Hover Tooltips for Vectors: Displays hover-based tooltips for each
CVSS vector attribute. When the user places the cursor over a specific
field (e.g., ‘Attack Vector’ or ‘Attack Complexity’), a concise explanation
appears to clarify its impact on the vulnerability assessment.

• Direct Link to the CVSS Calculator: Provides a direct link to the
official CVSS calculator.2 This link is automatically populated with the
relevant vector data, allowing users to quickly review the existing metrics
and explore different scoring scenarios.

This functionality is illustrated in figure 6.3, which shows an example of the Score
Details popup.

2https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
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6. Implementation

Figure 6.3: Example of the Show Score Details popup showing diverse data
their explanation, and recommendations.

6.3 Ranking and Prioritization Of All Vulnerab-
ilities

This section describes the implementation of the model introduced in section 4.5,
focusing on how vulnerabilities are ranked and prioritized based on their severity.

6.3.1 Descending Sort of Precalculated Severity Scores and
Handling Missing Data

The implementation takes the precalculated severity scores, which include contri-
butions from CVSS and EPSS, and sorts them in descending order. This ensures
that vulnerabilities with the highest severity scores are prioritized, while those
with missing data are given placeholder scores for immediate attention.
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For vulnerabilities with missing essential data, a placeholder score of 10.1 is
assigned. This score exceeds the maximum valid severity of 10.0, ensuring these
entries are sorted to the top of the list. In the user interface, such entries are
highlighted with a pink “UNKNOWN” label, prompting users to investigate
and resolve the missing information.

An example of the sorted list, as displayed in the user interface, is shown in
figure 6.4, where placeholder scores for missing data are indicated by a pink
‘UNKNOWN’ label.

Figure 6.4: Example of a sorted list of vulnerabilities in descending order of
severity.

6.4 Conclusion

The implementation details presented in this chapter show how the multi-dimensional
vulnerability classification and remediation framework (see chapter 4) and the
proposed system design (see chapter 5) have been realized in a fully functional
solution that integrates both backend and frontend components. Critical ele-
ments, such as caching and scheduled refresh (see section 6.1.1), ensure that vul-
nerability data remains reliable, and continuously up-to-date, while minimizing
external lookups.

The system interaction workflow (see section 5.2.3) highlights how local OSV data
is leveraged, triggering external lookups for CVSS and EPSS only when strictly
necessary. Building on these processes, the SSVC endpoint (see section 6.1.2)
and role-specific frontend logic (see section 6.2) enable targeted remediation re-
commendations for different user roles.

Moreover, combining CVSS and EPSS metrics captures both technical severity
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and exploitability factors in accordance with the multi-dimensional model. Fi-
nally, the ranking and visualization (see section 6.3) allow for effective prioritiza-
tion of vulnerabilities, with any missing data explicitly flagged via a placeholder
severity score (e.g., 10.1). Taken together, these components form a cohesive,
user-focused system that significantly streamlines vulnerability management and
remediation activities, fulfilling the objectives outlined in earlier chapters.
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7 Evaluation

This chapter evaluates the implemented system described in chapter 6 against
the functional and non-functional requirements defined in chapter 3, followed by
an expert evaluation conducted through structured questionnaires to verify the
system’s applicability and effectiveness.

7.1 Evaluation of Functional Requirements

This section reviews each functional requirement, detailing how the implemented
solution meets each criterion with specific examples.

1. Multidimensional Vulnerability Classification Model (1)

The implementation provides a multidimensional vulnerability classification
by combining multiple vulnerability metrics into a unified severity score.
For example, as described in section 6.1.3, CVSS and EPSS metrics are
combined to produce an actionable severity rating. This requirement is
fulfilled.

2. Algorithm for Computing Vulnerability Classifications (2)

The implemented classification algorithm calculates severity scores using
available metrics (section 6.1.3). This includes combining a weighted CVSS
score with a weighted EPSS score to provide a clear and precise classifica-
tion. This requirement is fulfilled.

3. Remediation Recommendation Algorithm (3)

The system generates tailored remediation recommendations using struc-
tured decision trees based on stakeholder roles, asset criticality, and patch
availability (section 6.2.1). For instance, a developer is provided recom-
mendations like ‘Apply vendor patch immediately’ if available or ‘Develop
a custom mitigation’ otherwise. This requirement is fulfilled.
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4. Rank-Ordering Model for Vulnerabilities (4)

Vulnerabilities are ranked by their calculated severity, prioritizing the most
critical vulnerabilities at the top (section 6.3). For example, vulnerabilities
with higher computed severity scores appear prominently. This require-
ment is fulfilled.

5. Interactive Score Explanation Interface (5)

The ‘Show Score Details’ interface displays comprehensive vulnerability in-
formation, including CVE identifiers, metrics, and an interactive, pre-filled
link to the official CVSS calculator. Interactive tooltips offer detailed ex-
planations for terms like ‘Attack Vector’ (section 6.2). This requirement
is fulfilled.

6. Handling of Missing Vulnerability Data (6)

When critical data is missing, the system assigns a placeholder severity score
of 10.1, prioritizing the vulnerability at the top and visually highlighting
it in pink with the label ‘UNKNOWN’. This prompts users to address
incomplete data entries (section 6.3). This requirement is fulfilled.

7. User Interface Warning for Missing Data (7)

The user interface explicitly alerts users to missing data by highlighting
vulnerabilities with a pink ‘UNKNOWN’ label, communicating the need for
immediate corrective actions (section 6.3). This requirement is fulfilled.

8. Role-Based Decision Trees for Remediation (8)

Interactive decision trees guide stakeholders through remediation options
tailored to context. For instance, developers answering questions about
patch availability and asset criticality receive actionable steps like immedi-
ate patching or monitoring (section 6.2.1). This requirement is fulfilled.

9. Role-Specific Recommendations (9)

The system provides explicit role-specific recommendations. Developers
receive instructions such as ‘Apply patch immediately’ (section 6.2.1). This
requirement is fulfilled.

10. Caching Mechanism for External Data (10)

Robust caching mechanisms significantly reduce external data retrieval. For
instance, the system caches CVSS vectors locally and performs efficient
batch retrieval of EPSS data (section 6.1.1). This requirement is ful-
filled.
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11. Regular Data Synchronization (11)

A nightly synchronization cycle updates vulnerability data. Batch retrieval
of EPSS data and individual queries to external databases (NVD) ensure
data freshness, clearly illustrated by the scheduled refresh mechanism (sec-
tion 6.1.2). This requirement is fulfilled.

7.2 Evaluation of Non-Functional Requirements

This section evaluates the non-functional requirements, emphasizing system qual-
ity, performance, and usability, and details how the implementation meets each
requirement.

1. Modularity (1)

The system distinctly separates backend functionalities (such as data cach-
ing, scheduled tasks, and repositories) from frontend interactions, facil-
itating maintainability. For instance, the repository layer manages data
storage independently from the scoring algorithm and user interface logic
(section 6.1). This requirement is fulfilled.

2. Scalability (2)

Scalability is achieved through efficient batch-processing of external data
(e.g., EPSS batch requests) and a scheduled refresh mechanism to handle
growing data volumes and simultaneous user interactions without perform-
ance degradation (section 6.1.2). This requirement is fulfilled.

3. Usability (3)

The system provides a user-friendly interface featuring clear navigation, in-
teractive decision trees, and comprehensive score explanations. Interactive
components, such as tooltips and pre-filled links to external calculators, sig-
nificantly enhance usability (section 6.2). This requirement is fulfilled.

4. Compliance with External API Rate Limits (4)

The implementation responsibly manages external API requests using cach-
ing and batching strategies, significantly reducing API calls and thus redu-
cing rate-limit violations. (section 6.1.1). This requirement is fulfilled.

5. Reliability and Error Handling (5)

Robust error handling mechanisms are implemented. For instance, when
critical data (CVSS or EPSS) is missing, the system assigns a placeholder
severity score of 10.1, prioritizing the vulnerability at the top and visually
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marking it as ‘UNKNOWN’ to clearly communicate the issue (section 6.1.1).
This requirement is fulfilled.

6. Maintainability (6)

The modular architecture and clear separation of backend layers (controller,
service, data layers) enable straightforward maintenance and integration of
future enhancements, such as additional data sources or scoring mechanisms
(section 6.1 and section 6.2). This requirement is fulfilled.

7.3 Evaluation of Models by Domain Experts

To further validate the practical relevance of the implemented framework, an
expert evaluation was performed. Three domain experts from the field of cy-
bersecurity assessed the applicability, clarity, and effectiveness of the models and
algorithms presented in chapter 4. The evaluation was conducted using structured
questionnaires provided in Appendix A and builds on the scientific foundations
outlined in section 2.4. Note: Expert statements have been partially paraphrased
for clarity and brevity, while ensuring the original meaning was preserved.

7.3.1 Multi-Dimensional Classification Model

Experts provided valuable feedback regarding the integration of CVSS and EPSS
scores into a single unified severity score (see section 4.1). Expert feedback var-
ied, with one expert explicitly stating: ‘I do not like merging CVSS and EPSS,
as CVSS is already considered in EPSS according to page 2’. Another expert,
however, emphasized the usefulness, stating: ‘The motivation to combine scores
is clear and useful, although the selection of these two models specifically could
be more clearly justified’.

Regarding weighting, suggestions included ‘a 50:50 ratio, initially not favoring
one over the other,’ while another expert preferred a heavier weighting towards
EPSS (70%) due to its empirical nature.

Overall expert ratings (1 = very good, 6 = insufficient):

Expert Rating
Expert 1 3
Expert 2 1
Expert 3 2
Average 2.0

Table 7.1: Expert ratings for the Multi-Dimensional Classification Model
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7.3.2 Algorithm to Compute Classification

The algorithm’s (see section 4.2) handling of missing data through placeholder
scores was generally perceived positively, although concerns were raised. One
expert noted: ‘The chosen placeholder could be confusing due to its proximity
to valid score ranges; using infinity or NaN might be clearer’. Another expert
commented positively: ‘As long as it is clearly indicated, it should not confuse
users’.

Experts also identified instances where the computed severity might differ from
organizational practices, such as vulnerabilities in unused library components
without valid threat vectors.

Overall expert ratings (1 = very good, 6 = insufficient):

Expert Rating
Expert 1 2
Expert 2 1
Expert 3 2
Average 1.67

Table 7.2: Expert ratings for the Algorithm to Compute Classification

7.3.3 Remediation Mechanism

Experts confirmed that the SSVC-inspired remediation model and algorithm (see
sections 4.3, 4.4) generally aligns with real-world practices but highlighted some
deviations. One expert stated: ‘Criticality of the asset is always considered,
regardless of exploit likelihood’. Another emphasized: ‘Even if the criticality is
low, vulnerabilities must be monitored and patched, as a single flaw can become
critical in an attack chain’.

Decision factors identified as most critical by experts were ‘Exploit Likelihood
and Asset Criticality, followed by Patch Availability’.

Overall expert ratings (1 = very good, 6 = insufficient):

Expert Rating
Expert 1 2
Expert 2 1
Expert 3 2
Average 1.67

Table 7.3: Expert ratings for the Remediation Model (SSVC-inspired)
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7.3.4 Rank-Ordering Mechanism

All experts agreed prioritizing vulnerabilities based on the highest scores or in-
complete data (see section 4.5) matches standard practice. One expert suggested
improvements: ‘Grouping vulnerabilities by technology stack or business unit
might offer better practical usability’. Another proposed: ‘A second queue for
unknown-data vulnerabilities could avoid blocking immediate mitigation tasks’.

Experts also suggested further grouping based on the type of vulnerability: ‘Soft-
ware flaws need to be sorted and categorized by cyber hygiene (e.g., miscon-
figurations), compliance (driven by regulations), quality (software ’convenience’
patches), and security (software patches that fix vulnerabilities). All flaws need
to be entered in a ticketing system and traced until solved’.

Overall expert ratings (1 = very good, 6 = insufficient):

Expert Rating
Expert 1 3
Expert 2 1
Expert 3 2
Average 2.0

Table 7.4: Expert ratings for the Rank-Ordering Mechanism

7.3.5 Overall Expert Feedback and Recommendations

Overall, the expert evaluation indicated that the integrated models effectively re-
flect common vulnerability management practices, providing useful mechanisms
for classification, remediation, and prioritization. Experts highlighted the prac-
ticality and clear alignment with current industry approaches, with one expert
noting explicitly: ‘These integrated models reflect well how we manage open-
source vulnerabilities in practice.’

Nevertheless, the evaluation identified areas for further improvement, particu-
larly regarding clearer communication of placeholder scores, and the inclusion
of compliance as a key cybersecurity driver: ‘Compliance is one of the drivers
for cybersecurity and must always be considered.’ Additionally, experts sugges-
ted more granular grouping or filtering by technology stack or business units
to enhance the usability of the rank-ordering mechanism. These considerations
represent potential avenues for future enhancements of the framework.
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7.4 Summary

This evaluation has demonstrated that the implemented system effectively meets
all defined functional and non-functional requirements. The expert evaluation
further validated the practical relevance and applicability of the multidimen-
sional classification and remediation models, highlighting their alignment with
common industry practices. Additionally, constructive feedback from domain ex-
perts identified opportunities for future enhancements, particularly concerning
clearer communication of placeholder scores, improved grouping capabilities, and
the integration of compliance considerations. Overall, the results confirm that
the proposed solution provides a robust, scalable, and user-centric approach to
vulnerability management.
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8 Conclusion and Outlook

This chapter summarizes the contributions and findings of the thesis, highlight-
ing its significance and limitations. Additionally, it outlines potential avenues
for future research that could further enhance the proposed multidimensional
vulnerability management framework.

8.1 Conclusion

This thesis proposed a multidimensional framework for the classification and re-
mediation of vulnerabilities, aimed at addressing identified shortcomings within
the existing vulnerability management component of SCA Tool developed by
the OSS group at FAU. The existing approach, which relies exclusively on the
CVSS, exhibits notable limitations, particularly inconsistencies among security
practitioners’ scoring and a lack of empirical exploitation data (J. Spring et al.,
2021). To overcome these limitations, the proposed framework integrates tech-
nical severity metrics from CVSS with empirical exploit probability data provided
by EPSS, thus offering a more holistic and context-aware method for vulnerability
prioritization.

An evaluation against functional and non-functional requirements demonstrated
that the proposed framework conceptually addresses all stated criteria, show-
ing strong potential in enhancing vulnerability prioritization and remediation
processes. Moreover, an expert evaluation confirmed the framework’s practical
relevance and its alignment with current industry standards and best practices.
Experts highlighted particularly the advantage of integrating empirical exploit-
ability measures alongside structured, stakeholder-specific remediation decision
processes based on the SSVC framework.

However, the evaluation also revealed areas for further refinement. The method
of combining CVSS and EPSS metrics elicited differing perspectives, with some
experts noting conceptual overlaps that could potentially complicate interpreta-
tion. Additionally, the explicit integration of compliance aspects was recommen-
ded as a crucial extension to ensure alignment with organizational cybersecurity
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strategies.

In summary, the thesis conceptually advanced vulnerability management meth-
odologies by proposing a comprehensive multidimensional classification and re-
mediation framework. Its validation by domain experts underscores its potential
effectiveness and practical applicability, while also highlighting avenues for fur-
ther improvement.

8.2 Outlook

Several avenues for future research emerge from the presented framework and its
evaluation:

Evaluation Against Ground Truth Data An important next step would be
the empirical validation of the proposed classification framework against ground
truth data. Evaluating the proposed model against datasets containing histor-
ically verified cases of exploited vulnerabilities would provide a robust empirical
foundation for assessing the predictive accuracy and reliability of the integrated
CVSS and EPSS classification approach.

Explicit Incorporation of Compliance Considerations Integrating
compliance-driven factors, such as adherence to standards like General Data Pro-
tection Regulation (GDPR) or ISO 27001, into the vulnerability assessment and
prioritization model would ensure a more holistic and strategically aligned ap-
proach. GDPR imposes strict regulatory obligations on organizations within the
European Union (EU) to protect personal data (Chassang, 2017). Therefore,
future research could explore explicitly identifying and prioritizing vulnerabilit-
ies affecting systems that process sensitive personal data, aligning vulnerability
management more closely with these regulatory requirements. Similarly, the
ISO 27001 standard provides a systematic framework for assessing and man-
aging information security risks, including regular evaluation and prioritization
of business-critical assets (International Organization for Standardization (ISO),
2018). Integrating ISO 27001 risk assessments into the proposed vulnerability
classification framework would ensure that vulnerabilities affecting high-risk as-
sets, as defined by organizational security policies, receive higher prioritization.
Consequently, this explicit incorporation of compliance considerations would en-
hance the alignment between technical vulnerability management and broader
organizational information security and regulatory strategies.

Advanced Grouping and Filtering Capabilities Lastly, introducing more
granular grouping and filtering functionalities - such as by business units, tech-
nology stacks, or organizational responsibilities - could significantly enhance the
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practical usability of the framework. This would allow organizations to tailor
vulnerability management more precisely to their specific operational contexts
and strategic priorities.

These suggested research directions would contribute to refining the concep-
tual framework, ultimately fostering more effective and strategically aligned ap-
proaches to vulnerability classification and remediation.
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Appendix A: Questionnaire: Evaluation of Models by Domain Experts

A Questionnaire: Evaluation of Models by Do-
main Experts

To ensure the practical relevance and effectiveness of the proposed models for
vulnerability classification and remediation, an expert evaluation was conducted.
The aim was to gather insights regarding the clarity, usability, and alignment of
the models with real-world practices. Domain experts were invited to assess the
following components:

• Multi-Dimensional Classification Model: This model integrates CVSS
and EPSS scores to provide a comprehensive severity rating for software
vulnerabilities. Experts evaluated the clarity and practicality of merging
these scores and the appropriateness of the weighting approach.

• Remediation Model (SSVC-inspired): A decision-making framework
providing tailored remediation recommendations based on exploit likeli-
hood, patch availability, and asset criticality. The experts assessed whether
the proposed decision flows align with current industry practices.

• Rank-Ordering Mechanism: A prioritization approach that highlights
critical and data-incomplete vulnerabilities to streamline remediation ef-
forts. Experts provided feedback on whether this prioritization reflects
typical approaches used in practice.

The valuable feedback obtained from this evaluation directly influenced the re-
finement of the models, ensuring their applicability in real-world environments.
It will also guide upcoming research in this area.

Note: The appendix contains the original questionnaire as an embedded PDF with
separate pagination. The main thesis continues after the embedded document.
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Master’s Thesis: Evaluation of Proposed
Models by Domain Experts

Felix Berger

March 7, 2025

Introduction and Purpose
This questionnaire is part of my master’s thesis, in which I have developed four models
for classifying and remediating software vulnerabilities. The following pages provide a
concise overview of these models and invite feedback from domain experts. Your insights
will directly influence how these models are refined, ensuring they are both theoretically
sound and well-suited for real-world implementation. You can fill out the questionnaire
digitally (if supported by your PDF reader) or print it and complete it manually.

The four models described here are:

• A multi-dimensional classification approach of vulnerabilities that integrates:

– The Common Vulnerability Scoring System (CVSS) v. 3.1, which rates
technical severity on a 0.0–10.0 scale.

– The Exploit Prediction Scoring System (EPSS), which estimates the
probability (0.0–1.0) of a vulnerability being exploited in the wild.

• An algorithm to compute a classification for a known vulnerability in the context
of a given software (a single numeric score, the Combined Severity).

• A remediation model offering different recommendations for roles (e.g., developers,
security advisors).

• A rank-ordering mechanism that highlights critical or data-incomplete vulnerabili-
ties first.

What CVSS Considers
CVSS provides a structured way to measure the severity of software vulnerabilities. Pri-
mary metrics include:

• Attack Vector: Network, adjacent, local, or physical.

• Attack Complexity: The conditions beyond the attacker’s control that must exist
to exploit a vulnerability.

• Privileges Required: The level of privileges an attacker needs.
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• User Interaction: Whether user action is required for successful exploitation.

• Scope: Whether a vulnerability in one component impacts resources in another
component.

• Confidentiality, Integrity, Availability Impacts: The potential effects on data
or system.

What EPSS Considers
EPSS is an empirical model predicting how likely a vulnerability is to be exploited in
practice. It draws upon:

• Vendor Information: Derived from CPE via NVD.

• Age of the Vulnerability: Days since the CVE was published by MITRE.

• References: With categorical labels, e.g., MITRE CVE List, NVD.

• Normalized Multiword Expressions: Extracted from vulnerability descriptions
(MITRE CVE List).

• Weakness Details: CWE identifiers from NVD.

• CVSS Metrics: Base vectors from CVSS 3.x (via NVD).

• Listings on Well-Known Sites: CISA KEV, Google Project Zero, Trend Micro’s
ZDI.

• Publicly Available Exploit Code: Exploit-DB, GitHub, Metasploit.

• Offensive Security Tools/Scanners: Intrigue, sn1per, jaeles, nuclei.

1) Multi-Dimensional Classification Model
Objective. This model seeks to determine the most suitable approach for assigning
a single severity score to software vulnerabilities. Instead of relying exclusively on a
predefined metric (e.g., CVSS v. 3.1) or a single data source (e.g., EPSS), the model
aims to integrate and balance multiple factors to produce a more nuanced assessment of
vulnerability severity. By systematically refining these inputs and their relative weights,
the model aspires to offer a flexible and context-aware classification method that can
outperform any single, static metric.

Formula Example.

Severity Score = round



wcvss × CVSS + wepss ×
(
10.0 × EPSS

)

2.0


,

where each w represents the relative importance assigned to its respective factor, and
round is a typical rounding function. Multiplying EPSS by 10 aligns it with CVSS’s
0.0–10.0 scale.
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Illustrative Calculation. If CVSS = 7.5, EPSS = 0.4, and both weights = 1.0:

Combined Severity = round
(7.5 + (10 × 0.4)

2

)
= round(5.75) = 6.

Depending on internal thresholds, that might be classified as “Medium” or “High.”

2) Algorithm to Compute Classification
1. Data Retrieval: Gather CVSS and EPSS from sources (NVD, GitHub Advisory

Database, OSV, etc.).

2. Scaling: Multiply EPSS by 10.

3. Combination: Apply the chosen formula to produce a single score.

4. Fallback: If key data is missing, assign a placeholder score. This placeholder score
is not displayed to the user. Instead, the frontend labels the severity in pink as
“UNKNOWN”, indicating that the severity could not be calculated. Since the max-
imum severity score is 10, a placeholder value of 10.1 ensures that the vulnerability
is listed first on the dashboard.

3) Remediation Model (SSVC-inspired)
This model generates actions such as “apply patch immediately,” “monitor regularly,” or
“deprioritize,” guided by role-based decision flows. Below is a short example of such a
flow for a developer:

Exploit
Likelihood

(High/Low)

High Patch
Available?

Yes:
Apply Patch

No:
Monitor

Regularly

Low Asset
Criticality

High:
Document &

Prepare Patch

Low:
Deprioritize

Figure 1: Abbreviated SSVC decision tree example (developer role).
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Combined Outcomes (Sample Code Snippets).

• Developer: Apply fix ASAP. Use vendor patch. High-critical system.

• Developer: Investigate further. No vendor patch. Coordinate with QA/team.

• Security-Advisor: Immediate patch. Active exploits detected. Ensure regulatory com-
pliance.

4) Rank-Ordering Mechanism
All vulnerabilities receive the final score (from Section 1 or 2). They are then sorted
in descending order. If data is missing (CVSS, EPSS), a placeholder score (e.g., 10.1)
elevates that entry to the top, prompting resolution of data gaps or running the SSVC
assignment.
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Questionnaire
Instructions: You can type into the text fields below (if supported by your PDF reader)
or print and fill them by hand.

A) Multi-Dimensional Classification Model

1. How clear or useful is it to merge CVSS and EPSS into a single severity
score?

2. What approximate weightings (for general applications) would you choose
for CVSS vs. EPSS, and why?

3. How would you rate the Multi-Dimensional Classification Model (1 = very
good, 6 = insufficient)?

B) Algorithm to Compute Classification

1. Is the fallback (placeholder score) for missing data beneficial, or could it
lead to confusion?

2. Please provide an instance where the computed severity might differ from
your organization’s internal approach or policy.

3. How would you rate the Algorithm to Compute Classification (1 = very
good, 6 = insufficient)?

C) Remediation Model (SSVC-inspired)

1. Do the (radically simplified) example SSVC decision flows generally align
with how you handle vulnerabilities (e.g., developer vs. security advisor)?

2. In the SSVC approach, which decision factors (e.g., Exploit Likelihood,
Patch Availability, Asset Criticality) do you consider most critical for accurate

5



remediation (for developers and security advisors)?

3. How would you rate the Remediation Model (SSVC-inspired) (1 = very
good, 6 = insufficient)?

D) Rank-Ordering Mechanism

1. Does placing highest-scored or unknown-data items on top match your
typical prioritization approach?

2. Would grouping vulnerabilities by technology stack, business unit, or other
factors be more practical?

3. How would you rate the Rank-Ordering Mechanism (1 = very good, 6 =
insufficient)?

E) Overall Perspective

1. Do these integrated models (classification, remediation, rank-ordering) re-
flect how you would generally manage open-source vulnerabilities?

2. Are there any technical or organizational considerations missing that should
be included?

3. Additional remarks or suggestions:
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Name, Role, and Signature
Organization: Capgemini Outsourcing Services GmbH
Name:

Role in Organization:

Date: Signature:
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