
A
G
a

b

A

D
0

K
M
I
T
T

1

r
m
s
s
m
b
d
p
a
s

c
u
c
c
p

h
R

Information and Software Technology 183 (2025) 107723

A
0

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

 taxonomy of microservice integration techniques
eorg-Daniel Schwarz a ,∗, Andreas Bauer b , Dirk Riehle a , Nikolay Harutyunyan a
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Blekinge Institute of Technology, Karlskrona, Sweden

 R T I C L E I N F O

ataset link: https://zenodo.org/records/1274
383

eywords:
icroservices
ntegration
echniques
axonomy

 A B S T R A C T

Context: Microservices have become an important architectural style for building robust and scalable software
systems. A system’s functionality is split into independent units, the microservices, that communicate over a
network and can be deployed independently. The shift of complexity into the integration layer necessitates
enhanced collaboration among stakeholders, stressing the importance of effective communication.
Objective: We aim to streamline communication between stakeholders in microservice-based projects by
constructing a framework for enhanced clarity, a taxonomy, by answering our research question: ‘‘How can
microservice integration techniques be classified?’’
Method: We conducted a thematic analysis of literature and six expert interviews to identify microservice
integration techniques and construct a taxonomy.
Results: The results of this study are (i) a taxonomy for microservice integration techniques consisting of five
main and ten refined categories, (ii) the classification of 121 found integration techniques, (iii) an illustration of
the taxonomy usage based on three selected techniques to demonstrate the procedure in case of classification
ambiguity, (iv) a comparison of data gathered from literature with the interviews, and (v) comprehensive
supplementary materials.
Conclusion: The taxonomy offers a structured framework to classify microservice integration techniques
and enhances the understanding of the diverse landscape of microservice integration techniques, including
organizational ones that are often overlooked. Practitioners can discover integration techniques through the
taxonomy and apply them with guidance provided in the supplementary materials.
. Introduction

Microservices have become an essential architectural style to build
obust and scalable software systems optimized to run in cloud environ-
ents [1]. Lewis and Fowler [2] define the microservice architectural
tyle as ‘‘an approach to developing a single application as a suite of small
ervices, each running in its own process and communicating with lightweight
echanisms, often an HTTP resource API. These services are built around
usiness capabilities and [are] independently deployable’’. If done right,
evelopment teams can work and deploy their microservice(s) inde-
endently of each other. The focused responsibility of microservices
nd the loose technological and organizational coupling enable large
oftware projects with multiple teams to work in parallel [3].
However, microservice-based systems are distributed systems that

ome with their unique challenges. For instance, microservices cannot
se in-process communication to integrate the deployed instances but
ommunicate over the system’s unreliable network layer. By shifting
omplexity into the integration layer, integration becomes a more
redominant and explicit challenge [4]. This increased complexity

∗ Corresponding author.
E-mail address: georg.schwarz@fau.de (G.-D. Schwarz).

necessitates enhanced collaboration among developers, architects, and
stakeholders, making effective communication crucial. However, com-
munication is challenging when the terms and concepts are not stan-
dardized.

To address this issue, we present a taxonomy for microservice inte-
gration techniques. A taxonomy’s main purpose is to classify existing
knowledge and promote a shared terminology and language [5]. This
enhanced clarity improves decision-making, allowing teams to system-
atically evaluate and select the most appropriate integration techniques
tailored to their specific needs. A well-structured taxonomy guides prac-
titioners toward proven approaches and helps to avoid common pitfalls.
Further, it serves as a powerful learning tool, providing a structured
pathway for newcomers to swiftly grasp fundamental concepts and
understand the relationships between different techniques. Collectively,
these benefits support a more efficient, consistent, and high-quality
microservice integration in the industry.

We employ a thematic analysis of two types of primary materials
to construct our taxonomy: literature we collected in a systematic
ttps://doi.org/10.1016/j.infsof.2025.107723
eceived 12 April 2024; Received in revised form 10 March 2025; Accepted 11 Ma
vailable online 24 March 2025
950-5849/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
rch 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://orcid.org/0000-0001-9060-7938
https://orcid.org/0000-0002-2916-4020
https://orcid.org/0000-0002-8139-5600
https://orcid.org/0000-0002-1745-6528
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
https://zenodo.org/records/12740383
mailto:georg.schwarz@fau.de
https://doi.org/10.1016/j.infsof.2025.107723
https://doi.org/10.1016/j.infsof.2025.107723
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2025.107723&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
literature search, and six expert interviews we conducted in a quali-
tative survey. Thematic analysis is a suitable method for progressively
introducing structure into a field. The method and its application are
thoroughly documented, and the supplementary materials transpar-
ently present the traceability of results to their evidence. Thematic
analysis allows us to meticulously ground our theory in empirical evi-
dence. We implemented a full cycle of theory building by incorporating
literature and expert interviews to gain diverse viewpoints on the topic.
The interviews, centered around microservice techniques as a means to
overcome integration challenges, enhance the practical relevance of the
findings.

We grouped integration techniques into categories based on com-
mon characteristics. Categories are arranged into higher-level cate-
gories, resulting in a hierarchy of categories that classify microservice
integration techniques.

Based on our results, we claim the following contributions:
• a novel taxonomy of microservice integration techniques with five
main and ten refined categories as a structured framework for
understanding the diverse landscape of microservice integration
techniques;

• the incorporation of different viewpoints going beyond technical
solutions by encompassing organizational aspects of integration,
which are often overlooked;

• the classification of 121 found integration techniques;
• an illustration of the taxonomy usage, classifying two example
techniques for demonstration;

• a synthesis of data in the literature with practitioner interviews,
highlighting areas that require further research;

• comprehensive supplementary materials [6] that allow brows-
ing the 121 integration techniques to support practitioners in
applying our findings.

Researchers can use this taxonomy to review existing techniques
and propose new ones. It allows identifying related techniques to
evaluate against them, compare them, and delimit from them. The
taxonomy offers practitioners a comprehensive overview of the mul-
tifaceted challenges inherent in microservice-based projects. This pro-
posed structure guides practitioners in navigating their learning pro-
cess, including architectural, technical, organizational, and operational
aspects of microservice-based architectures.

The study focuses purely on theory building, presenting the findings
in an actionable and extensive way. An empirical evaluation of the tax-
onomy and its 121 techniques with practitioners or within an industrial
context is beyond the scope of this study.

First, Section 2 describes our holistic and broad perspective on mi-
croservice integration. Section 3 reviews the related work and situates
this article within the research field. Section 4 outlines the applied
research design. Section 5 introduces the taxonomy as the main result
of this article. Section 6 demonstrates the utility of the taxonomy by
classifying two example integration techniques. Section 7 compares
the findings in the literature with practitioner interviews and outlines
future work. Section 8 reflects on the limitations of the applied research
methods, and Section 9 concludes the article.

2. Microservice integration

One of our interviews highlights the high knowledge barrier for
adopting microservices, not only for the developers but also for opera-
tions, management, and the business level:

 ‘‘[...] What I would like to impart is the awareness of the consequences
[of doing microservices] and of the people’s required education with
regard to the challenges of distributed systems on management, business,
and also IT level. In my opinion, this happens far too rarely’’.

[Interviewee D, translated from German]
2
The supposedly pure architectural decision of adopting the mi-
croservices architectural style may come with more challenges than one
might expect, especially on the organizational level. Thus, we aim to
give a more holistic perspective on the topic of microservices and their
integration.

Integration in software systems is not a new phenomenon that affects
software engineering in various forms. Nierstrasz and Dami [7] trace
back the idea of component-oriented development back to the first de-
velopments of structured programming and modularity. They define a
component as a ‘‘static abstraction with plugs’’ encapsulating a piece of
software. Components can be interconnected and integrated to compose
an application.

In software engineering, components can be composed during the
different phases, such as design, deployment, and runtime [8]. While
monolithic applications foster integration during design and deploy-
ment, distributed architectures like service-oriented architecture (SOA)
and microservices rely on the composition at runtime.

In SOA, a predecessor of microservices, integration is a common
theme throughout the whole architecture, reaching from the technical
interconnection of services to integrating business workflow processes
within the architecture. A central part enabling the integration within
those systems is a pattern called the enterprise service bus (ESB) [9].
The ESB is responsible for message routing and message transforma-
tions for interoperability and, thus, becomes the central place for inte-
gration in SOA [10]. Microservices, in comparison, facilitate integration
through lightweight messaging approaches.

Aside from these architectural perspectives, integration itself is a
term that has manifold meanings. In the area of information systems,
different perspectives on integration are considered. Barki and Pinson-
neault [11] describe the technical interconnection between information
systems talking to each other, the coupling of business processes of
independent organizations by IT, and coordination and cooperation
among project teams.

In this article, for the sake of clarification, we base our definition of
integration on Mohamed et al. [12]: ‘‘integration per se has been found to
be a socio-technical phenomenon beyond a mere technological aspect such
that it includes an assortment of economical, organizational, and even social
facets of the phenomenon’’. In the context of microservices, we define
integration as an enabling factor for interactions among software
components. We chose this wide definition of integration to emphasize
the openness that drove our research to incorporate various viewpoints
on the topic. Even though our definition targets the interaction of
software components, the enabling factors can go beyond the software
component scope. For example, the use of specific types of software,
design policies, and methodologies can be factors that enable and
simplify component interaction. Further, the development of software
is a social activity, and so is the integration of software components.
Thus, we view organizational structure, coordination processes, and
management activities between organizational entities within the scope
of our research if they transitively enable the interaction of soft-
ware components. This definition encompasses horizontal integration
across various organizational units at different levels, aligning with
the viewpoint proposed by Hasselbring [13] while also accommodating
considerations of integration within a single organizational unit or with
external entities. We deliberately chose such a broad viewpoint on the
integration topic to draw a holistic picture of the field.

3. Related work

Taxonomies have been proposed in many software engineering
areas to structure and better understand the body of knowledge. Us-
man et al. [5] provides a comprehensive overview of the current
taxonomy literature in software engineering, analyzing 270 articles.
The examined taxonomies can be categorized into knowledge areas
(based on SWEBOK [14]), such as construction, design, requirements,
and maintenance. Microservice integration falls under the software

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
design category. While software engineering taxonomies like Keshav
and Gamble [15] or Hofmeister and Wirtz [16] cover general ar-
chitecture and integration patterns, there is no dedicated taxonomy
covering the multi-dimensional facets of microservice integration. In
contrast, our taxonomy provides an orthogonal angle to the proposed
dimensions in the context of microservice-based projects, as our holistic
understanding of integration covers multiple areas, such as design,
maintenance, processes, and configuration management. Further, most
studies construct taxonomies in an ad-hoc manner [5], whereas we
employ thematic analysis [17], an iterative method to uncover patterns
of meaning.

Based on the broad definition of microservice integration used in
this article, numerous studies have addressed the topic to some extent.
For example, Bogner and Zimmermann [18] investigates mechanisms
to integrate microservice-based architectures by using meta-models
derived from enterprise architecture reference models. Petrasch [19]
explore a UML-based approach to the use of enterprise integration pat-
terns for inter-service communication. Shafabakhsh et al. [20] compare
synchronous and asynchronous communication among microservices
and their implementations with respect to efficiency and availability.
In contrast, our study aims to synthesize different angles of integration
aspects and construct a taxonomy of integration techniques instead of
focusing on a specific approach.

In this regard, all microservice literature that presents patterns from
different viewpoints is relevant to our research. In our understanding,
patterns are often used in combination with pattern languages or relate
to the many other things that the patterns community, separately
from the scientific community, performs. Thus, we call the actionable
parts of our theory techniques to avoid implying we created a pat-
tern language or performed the pattern-community-specific procedures.
Nevertheless, patterns aim to overcome challenges as we do as well and,
thus, are related to our work.

Balalaie et al. [21], for example, present migration patterns, Harms
et al. [22] present patterns related to front-ends. Osses et al. [23]
present further architectural patterns and tactics. While this list goes
on, many of these papers propose and evaluate concrete microservice
techniques for a subset of the problems inherent to microservice ar-
chitectures. In contrast, this article offers a broader perspective by
presenting a structure that takes a larger context into account.

Previous research has explored the topic of introducing a certain
structure, but most studies have focused on narrow or technical aspects.
For example, Fritzsch et al. [24] proposed a classification of tech-
niques to decompose a monolith. However, our study takes a broader
approach by examining both operational and organizational aspects
of introducing such a structure. Weerasinghe and Perera [25] catego-
rize patterns into service decomposition patterns, data management
patterns, deployment patterns, API-based patterns, service discovery
patterns, and resilience patterns. Márquez and Astudillo [26] present
categories for communication, orchestration, deployment, and backend
patterns while evaluating their use in open source projects. Taibi et al.
[27] presents a pattern catalog with the major categories of deployment
patterns, data storage patterns, and patterns for orchestration and
coordination. Söylemez et al. [28] propose a structure for the chal-
lenges facing microservice-based architectures. This structure covers
important aspects such as service discovery, testing, communication,
integration, performance prediction, measurement, optimization, ser-
vice orchestration, monitoring, tracing, and logging. While integration
is one of their categories, we provide a broader perspective on this topic
by not focusing only on technical and architectural aspects but also
viewing the integration among microservice teams as organizational
aspects as a success factor for microservice-based projects.

Building on these efforts to structure the field of microservice
techniques, several articles have incorporated operational and organi-
zational aspects. Taibi et al. [29] present a taxonomy of anti-patterns
that includes technical and organizational issues, which can be inter-
preted as techniques for addressing those issues. For example, the anti-
pattern ‘‘No API Gateway’’ can be reframed to a technique ‘‘Use API
3
Gateway’’. They distinguish technical and organizational anti-patterns.
Technical anti-patterns can either focus on a single microservice, the
communication among them, or fall into the bucket ‘‘others’’. Organi-
zational anti-patterns are either categorized as team-oriented ones or as
technology and tool-oriented ones. We extend their work by providing
a broader and deeper structure that reflects their categories as well.
While the anti-pattern format points out the pitfalls to avoid, we present
techniques on how to approach challenges in a context.

Brown and Woolf [30] present patterns and order them by their
origin into categories modern web architecture patterns, microservices
architecture patterns, scalable store patterns, microservices DevOps
patterns. Looking at the origins of a pattern reveals valuable insights,
which we aim to further by offering a comprehensive structure for
applying these patterns in practice.

Osses et al. [31] presents in a poster a taxonomy of microservice
patterns. Their major categories, DevOps, migration, design, mitigation,
IoT, frontend, deployment, backend, communication, behavior, and
orchestration, cover a broad field of integration aspects. We provide
a deeper and stricter structure from a different viewpoint.

Alshuqayran et al. [32] present challenges in microservice architec-
tures in a structured way and connect them to solutions they found in
the literature. Their distinction of requirements, design, implementa-
tion, testing, deployment, monitoring, organizational problems, and re-
source management problems provides a suitable structure to organize
the field. While they take the DevOps perspective in microservice-based
projects, we take the integration perspective, leading to a different
structure. In our opinion, both perspectives are very valuable and
actionable when it comes to finding a solution to a certain problem.

From a research design perspective, we position this article as
an analysis of literature and expert interviews, while most presented
related work focuses on academic literature and case studies. We
implemented a full cycle of theory building by incorporating literature
and expert interviews to gain a diverse sample of viewpoints on the
topic. We performed a thematic analysis of the data, a method suited
to iteratively introduce structure into a field.

4. Research design

The objective of this work is to organize the field of microser-
vice integration by constructing a taxonomy for microservice integra-
tion techniques. From this objective, we derive the following research
question:

RQ1: How can microservice integration techniques be classified?

To address the research question, we conducted a systematic lit-
erature search [33], conducted expert interviews in a qualitative sur-
vey [34], and analyzed both types of primary materials with a thematic
analysis described by Clarke et al. [17].

In thematic analysis, the researcher annotates excerpts of the pri-
mary materials with codes to capture patterns of meaning within qual-
itative data. These codes are then arranged in a hierarchical structure.
The method does not lead to taxonomies per se. To build a taxonomy,
we deliberately built categories by employing clear heuristics per hi-
erarchy level to assess to which category lower-order elements belong.
Due to this procedure, a taxonomy with distinctive categories emerged
that allows the classification of the found patterns of meaning, the
microservice integration techniques.

Due to the study’s objective of providing an academic and an indus-
trial contribution, we applied thematic analysis in multiple iterations
on primary materials from literature and interviews with industrial
practitioners. Fig. 1 gives an overview of the overall research design.
In the continuation of this section, Section 4.1 describes the literature
selection procedure, Section 4.2 elaborates on the design and execution
of the interviews, and Section 4.3 details the thematic analysis we
applied to construct the taxonomy.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Fig. 1. Summary of the research approach.
4.1. Literature selection

We selected white literature as the primary material for the thematic
analysis. We partially followed the guidelines of Kitchenham [33]
to systematically select the literature. As our goal is to construct a
taxonomy of microservice integration techniques and not to give an
overview of the research area, we deviated from the selection process of
a systematic literature review where it made sense. We will rigorously
lay out these deviations in the following paragraphs.

We planned the literature selection before executing the data col-
lection and created a research protocol for the data collection. The
following paragraphs summarize the contents of this research protocol
with the main points of the search strategy and the study selection
process. On the path to the final procedure, we conducted an ad-hoc
pilot search, allowing us to learn how the search terms and search
engines influence the literature selection and simplify the process.

Search strategy
In an ad-hoc pilot search, we used Google Scholar, ACM Digital

Library, and IEEE Xplore as academic search engines to evaluate the
search term, the inclusion, and the exclusion criteria before starting
the actual literature selection. Google Scholar covered the results of the
other search engines together with additional published venues. Thus,
we decided to simplify our final search process to solely use Google
Scholar.1 As Google Scholar includes articles in academic magazines
and practitioner books, we applied additional filter steps to stick to
academic peer-reviewed articles (see study selection).

We defined our search term as a combination of ‘‘microservice’’
and ‘‘integration’’ in different writing styles. Further, we considered
using similar terms like ‘‘interoperability’’ but decided against it. While
integration is a broader concept, interoperability has a technical conno-
tation that could bias the results favoring technical-focused topics. To

1 We used the tool Publish or Perish to automate the search on Google
Scholar.
4
include relevant articles, we chose the title to match our search query.
The logical search query is as follows:

(‘‘microservice’’ OR ‘‘microservices’’ OR ‘‘micro-service’’ OR ‘‘micro-
services’’ OR ‘‘micro service’’ OR ‘‘micro services’’)[title] AND (‘‘in-
tegration’’ OR ‘‘integrate’’)

Selection strategy
Due to the expected number of articles, we ordered them by citation

quantity. This order criteria favors well-established and adopted litera-
ture capturing the common sense of the broader population of interest
in the domain.

To ensure that each analyzed article was relevant, we only consid-
ered articles that met all the inclusion criteria (IC) and none of the
exclusion criteria (EC):

• IC1: The article must have been published between 2014, when
the term ‘‘microservices’’ first emerged [35], and March 2023,
when we conducted the literature selection.

• IC2: The article must be peer-reviewed academic literature pub-
lished at a journal, conference, or workshop.

• IC3: The article must address microservice integration challenges
or present microservice integration techniques (implicitly or ex-
plicitly).

• IC4: The article must be accessible in full-text.
• IC5: The article must be available in English.
• EC1: The article is a talk abstract.
Defining a stopping criterion rather than exhaustively analyzing

all articles is suggested by Garousi et al. [36] when the relevant
pool of literature is too large. This method is appropriate in our case
as well because the amount of considered literature due to Google
Scholar was too large, similar to their use-case on multi-vocal literature
reviews where the amount of gray literature is overwhelming. Thus,
we combined an effort-bounded stopping criterion (starting with 45
articles) with theoretical saturation (measure changes in sets of five
articles).

While this approach might not reveal all existing microservice
integration techniques, it allows us to address the research question

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
by constructing a taxonomy of integration techniques with an ade-
quate trade-off between effort and accuracy. Using only peer-reviewed
literature ordered by citation count ensures that only literature ap-
proved by the microservice research community is included, favoring
well-established literature. This metric ensures an adequate trade-off
between relevance and rigor.

Literature selection execution
We iteratively added articles to our literature pool and started

analyzing the data in parallel. In the first iteration, we started with 45
articles that met the inclusion and exclusion criteria. Then, we added
sets of five articles that passed the inclusion and exclusion criteria. We
tracked the changes in the code system of the set and used it to measure
saturation.

The portrayed literature selection was conducted in January 2021
(literature ids prefixed with ‘‘L’’). In order to ensure that the analysis
is based on the most recent literature, the literature was repeated
in March 2023 (literature ids prefixed with ‘‘LN’’) and in July 2024
(literature ids prefixed with ‘‘LM’’). We considered the first 50 articles,
ordered by citation count, leading to 10 newly considered articles,
where 7 passed the inclusion and exclusion criteria. Since we analyzed
these articles after analyzing the interviews, we used this opportunity
to evaluate the code system by tracking all changes. We found two new
techniques, refactored four techniques, and tracked six further changes
related to loose collections of codings, e.g., where evidence was missing
to turn them into a full-blown technique. In the process of writing
this paper, we renamed two refined categories to clarify their intent.
The overall structure of the taxonomy did not change, confirming the
theoretical saturation measured in previous iterations.

See the supplementary materials for details on the selected litera-
ture.

Data analysis
To construct a preliminary taxonomy based on the existing litera-

ture, we employed thematic analysis as defined by Clarke et al. [17].
We then complemented our findings from the literature with expert
interviews. A detailed description of the analysis process using thematic
analysis of both literature and interviews can be found in Section 4.3.

Microservices have emerged in the industry and are still a fast-
moving topic. The interviews allow us to capture the state-of-the-
practice challenges and latest techniques of microservice integration.
Performing thematic analysis on these additional primary materials led
to an extension: the final taxonomy. We use this separation of the
preliminary and final taxonomy in Section 7 to compare the findings
in literature with the interview data to identify gaps in research and
deviating emphases in practice.

4.2. Expert interviews

In addition to the literature review, we conducted six expert in-
terviews to triangulate our findings from the literature. With data
triangulation, different sources of information are used to increase the
validity of the study’s results [37]. This triangulation allows us to
improve our taxonomy’s quality and emphasize the latest insights from
the industry. For these interviews, we followed the qualitative survey
approach defined by Jansen [34].

Interview preparation and guide
We followed the five phases presented by Kallio et al. [38] to

prepare for the interviews, leading to our interview guide as an artifact.
Phase 1 Identifying prerequisites. We first evaluated the appropriate-
ness of semi-structured interviews according to our research questions.
Semi-structured interviews allow us to study different organizational
contexts and different angles on the topic for a diverse perception and
to discover topics that are especially relevant to practitioners.
5
Phase 2 Previous knowledge. The preceding systematic literature re-
view resulting in a preliminary taxonomy led us to a comprehensive
understanding of the domain to prepare and conduct semi-structured
interviews. We utilized our insights to construct the interview guide.
Phase 3 Preliminary interview guide. We used previous knowledge to
structure the interview into multiple phases. Each phase consists of
questions that allow steering the interview in the direction of our area
of interest but are flexible and loose enough to allow open conversation.
We adopted questions for main themes and follow-up questions in the
different phases of the interview. We started with the main themes as a
warm-up to break the ice. Afterward, we used a mix of generic follow-
up questions adapted to the interviewee’s answers, prepared questions,
and spontaneous ones to go into depth. We applied verbal and non-
verbal probing techniques during the interviews but did not make them
an explicit part of the interview guide.
Phase 4 Pilot testing. The interview guide was reviewed internally by
members of our research group to avoid ambiguous or leading ques-
tions. We applied live field testing by reviewing the interview guide
after the first interview, allowing for incremental improvements.
Phase 5 Presenting the interview guide. The supplementary materials
contain the complete interview guide. The rough structure was as
follows:

1. Preamble: Before starting the interview, we alleviate the tension
the interviewee is potentially experiencing with some small talk.
We agree on the language used during the interview according to
their preference to provide the interviewee with a comfortable
and natural environment. We explain the interview procedure
and how we will handle the recording of the interview and all
its information. If the interview partners consent, we begin the
interview.

2. Warm-up questions: In order to warm up and overcome the
last potential tension of the interviewee, we let them present
themselves. We ask about when they started using microservices
and what a microservice is from their perspective.

3. Definition microservice integration: We use open questions to ex-
plore what microservice integration means to the interviewees,
why it is important to them, and what aspects of microservice
integration are relevant for them in their projects. The goal is to
reveal the main categories of integration techniques by speaking
about integration in general.

4. Microservice integration techniques: We detail each aspect they
mentioned in the previous part in an ad-hoc manner. We added
semi-open and closed questions on integration aspects we had
already discovered in literature and previous interviews to eval-
uate their relevance and further insights. The goal is to reveal
integration techniques, to fill in the details for the ones we
already discovered, and to resolve conflicts in the gathered data.

5. Cool-down: The interviewee can freely point to interesting topics
in the microservice field we did not cover during the inter-
view but should get more attention in research. Finally, we ask
for recommendations for future potential interview partners for
snowballing.

We sent the interview guide with additional notes to our intervie-
wees before the interview. Understanding the context and scope of
the interview allowed them to prepare thematically and mentally. We
included the following information:

• The context of our research.
• The process of an interview (time frame, the way we ask ques-
tions).

• The data assessment process (audio recording, interview tran-
scription).

• The approval process: we send out each interview transcription
to the interviewee to correct errors and misunderstandings. Only
after approval we use the interview transcription for further
analysis.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
• Data confidentiality and privacy (data pseudonymization for data
analysis and anonymization for publications).

Sampling model
To select suitable interviewees, we first created a sampling model.

It contains fine-grained categories towards factors we believe might
have an influence on how microservice integration is facilitated: the
interviewee’s company, project, role, and experience.

As a quality measure, we asked an established expert in the field
to provide feedback on our sampling model and find uncovered cate-
gories. We employed generic roles for the expert’s role as each company
might define its specific roles with more fine-grained responsibilities
that would be hard to match against each other. On a higher level, we
distinguish between in-house employees and consultants, as the latter
tend to experience many different project contexts.

We translated our sampling model into a form to be sent out to
potential interviewees. Using such a form allows efficient classification
of each potential interviewee within the sampling model.

For interviewee selection, we aimed to cover each category within
the sampling model adequately to achieve a diverse sample. The goal
is to create a diverse selection of participants with multiple points
of view, strengthening the breadth of the taxonomy. Additionally, we
followed Taibi et al. [29] to only consider interviewees with at least
two years of experience with microservices.

We followed the guidelines of Francis et al. [39] for an adequate
sampling size:

1. Specify initial sampling size a priori: six interviews to cover each
of the six expert roles at least once.

2. Specify stopping criteria a priori: add one interview until we
did not discover new themes and did not make changes to the
taxonomy.

3. Multiple researchers for analysis: Section 4.3, inter-coder relia-
bility, peer debriefings.

4. Report data saturation methods: theoretical saturation by adding
interviews until no changes to the structure of the taxonomy
were made.

Interviewee sampling
We utilized our group’s network, the mailing list of the working

group for microservices and DevOps by the German Informatics Society.
We contacted over 50 speakers at practitioner conferences like microx-
chg2 or Microservice Summit.3 We received 20 answers from willing
interviewees, arranging them into our sampling model by filling out
the form.

Table 1 presents the sampled population arranged in the major
categories of the sampling model, showing the diversity of our sample.
Please note that we did not receive answers from all participants for
the project-related questions since one consultant felt uncomfortable
limiting the focus of the interview to one specific project but instead
elaborated on their experience regarding multiple project contexts.

Interview execution
We found the interview guide especially useful in the first phases to

streamline our interviews. It supported us to stick to the semi-structured
frame and avoid deviations from the topic of interest. While detailing
microservice integration techniques, we used the guide as a checklist
rather than sticking to it strictly, as interviewees tended to be very
active and speak freely. In the cool-down phase, we experienced the
open question on further interesting topics as especially valuable. Some
answers led us back to phase 4 to investigate further integration topics.

2 https://microxchg.io/2020/index.html
3 https://microservices-summit.de/
6
After the interview, we transcribed the audio recording. The tran-
script was sent to the interviewee for review to detect misunderstand-
ings and consider second thoughts on some of the insights they gave
us. After their final approval, we added the interview transcripts as
primary materials for analysis. As the code system had already been
populated by the preceding literature analysis, we reached saturation
after six interviews.

Data analysis
We extended the preliminary taxonomy based on the literature

(Section 4.1) for data analysis. We added the interview transcripts to
the primary materials for the thematic analysis (Section 4.3).

Although we did uncover new discussions and techniques, we did
not make any changes to the overall structure of the code system. This
confirms the findings from the preceding literature.

4.3. Thematic analysis for taxonomy construction

We applied thematic analysis, as described by Clarke et al. [17],
to construct the taxonomy. Thematic analysis is an accessible and
systematic research method and procedure to discover, analyze, and
interpret patterns of meaning within qualitative data. The researcher
takes an active role in generating codes from the qualitative data guided
by the research question. Codes capture interesting features of the
data that are relevant to the research question. Codes are aggregated
into themes, representing patterns of meaning. Underlying is a central
organizing concept for analytic observations.

In this study, codes are specific integration techniques, and themes
are categories of integration techniques. Codes and themes together in
a hierarchy build the code system.

Method choice
Our qualitative data analysis builds on a diverse set of data, like

academic literature and expert interview transcripts. We considered
grounded theory and thematic analysis as competing methodologies.

Grounded theory approaches, as described by Strauss and Corbin
[40], act as a framework for generating theories from qualitative data.
The approach is predominantly inductive with the goal of creating
a theory purely from the data; prior in-depth familiarization with
the topic is discouraged to avoid the researchers’ prior knowledge
influencing the results. Grounded theory follows a structured coding
process. First, the researchers break down data into the initial codes in
the open coding phase. Afterwards, they identify relationships among
codes in the axial coding phase. Eventually, structured codes are refined
into a central category that becomes the foundation of the theory in the
selective coding phase.

In contrast, thematic analysis, as described by Clarke et al. [17],
is a flexible data analysis method that focuses on identifying patterns
of meaning within data rather than on generating a hierarchical the-
ory. Thematic analysis also employs a more adaptable coding process.
First, researchers generate initial codes, then search for themes, and
then finally review and refine the themes; the full process is detailed
below. This method supports both inductive and deductive approaches,
either deriving themes directly from the data in a bottom-up fashion,
similar to grounded theory, or in a top-down fashion, guided by re-
search questions and prior knowledge. The output of thematic analysis
is not necessarily a hierarchical, structured theory as in grounded
theory; rather, it is a collection of themes that can nonetheless sup-
port theory building, offering the researcher considerable flexibility in
interpretation and presentation.

The tradeoff described makes thematic analysis a more flexible
option; however, it offers less guidance on other aspects of the research
process, such as data collection and the development or presentation of
a theory. We chose thematic analysis because it aligns better with our
research question. Building on our previous research in the field of mi-
croservices allowed us to effectively combine deductive and inductive
approaches rather than relying solely on grounded theory, which would
require all theoretical constructs to emerge inductively from the data.

https://microxchg.io/2020/index.html
https://microservices-summit.de/

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Table 1
Interview sampling.
 Category Feature Interviewee

 A B C D E F

Expert role

High-level consultant x x
 Detail-oriented consult x
 Architect x
 Project manager x
 Developer x
 Operator/DevOps x
 Other x

Project phase

Research & innovation x
 New software x
 Rewrite x
 Evolution x x

Project size

1 team
 2-10 teams x x x
 10+ teams x x

Microservices

1-10 services x x
 11-50 services x x
 50+ services x

Deployment

Customer-managed x x x
 In-house x
 Cloud x x
Analysis procedure
For the thematic analysis, we followed the six-step process defined

by Braun and Clarke [41]:
Phase 1: Familiarize with the data. We read the primary material ac-
tively and noted the first coding ideas. We used the transcription
process for the interviews as an excellent way to familiarize ourselves
with the interview data.
Phase 2: Generate initial codes. We worked through the primary mate-
rials and annotated data segments with preliminary names. We coded
as detailed as possible as time permitted and included the context
in the coded text segments. For example, we used the codes ‘‘Data
replication’’ and ‘‘Decentralize conceptual models’’ to annotate the
following text snippet in Cerny et al. [42]: ‘‘μServices usually do share
the same database schema as it would predetermine a bottleneck as well as
coupling. Each μService is in charge of its own data model, which possibly
leads to replication’’.
Phase 3: Search for themes. We took the long list of codes and con-
sidered how differently the codes may be combined. We created the
potential themes by aggregating codes that seemed cohesive to us.
We thought of relationships between codes and themes and arranged
them in a hierarchy. For example, we categorized the code ‘‘Data
replication’’ together with the code ‘‘Avoid transactions over multiple
microservices’’ under a newly created theme ‘‘Dataflows’’ based on
their commonality of describing data flow-related techniques among
microservices. The theme ‘‘Dataflows’’ itself is further categorized in
the hierarchy under the theme ‘‘Conceptual integration‘‘ because its
techniques describe architectural and conceptual aspects.
Phase 4: Review the themes. We revisited the created themes and codes
to reflect on how the individual themes represent the data set. We
paid attention to clear distinction criteria of themes and discussed
ambiguous ones. For example, we renamed the code ‘‘Orchestration
vs. choreography’’ to ‘‘Choreography over orchestration’’ after coding it
in multiple primary materials. Although the code first captured discus-
sions about the topic, the code later represented a clear choice of one
over the other. We were able to refine this code by bringing together
multiple voices and narrowing the context in which this technique can
be applied.
Phase 5: Define and name themes. Until now, themes had a working
title. We went over each theme individually and identified what is of
interest about them concerning the research question and why. We
7
Table 2
Iterations of analysis.
 # Analyzed materials
 IA1 45 articles from literature selection 2021
 IA2 5 articles from literature selection 2021
 IA3 6 interview transcripts
 IA4 7 articles from literature selection 2023
 IA5 4 articles from literature selection 2024

ensured that the themes were not too complex and too broad by uti-
lizing sub-themes. Additionally, we explicitly put down the definition
of each theme and criteria on when and when not to apply them. For
example, we renamed the final theme ‘‘Among services’’ from a prior
version ‘‘Between Services/Teams / Bounded Contexts (horizontal)’’
while transferring the results into this article. Further, we added a
memo to the theme to document when it is used and when not. Here,
we coded text segments expressing the general need to bridge the gap
between bounded contexts and the need of microservices to cooperate
(not necessarily communicate) to form the whole system behavior. We
did not apply the code to where the text was related to integration
within one bounded context or microservice or when specific sub-codes
fit better or more precisely.

Moving back and forth between the phases may be necessary as
researchers gain new insights during coding and building themes [41].

Execution of analysis
As primary material for thematic analysis, we used white literature

and interviewed practitioners. Table 2 gives an overview of the con-
ducted iterations. First, we conducted two iterations of analysis (IA)
using selected literature as primary materials. The first iteration (IA1)
reflects the analysis of the effort-bounded stopping criterion of the
literature selection by starting with 45 articles. The second iteration
(IA2) added a set of five articles. There were no major changes to
the structure of the code system within this iteration, so we reached
theoretical saturation and decided not to add further literature-based
iterations. Instead, we analyzed the interview transcripts in the third
iteration (IA3) to triangulate our findings by using a different type of
primary materials. The last two iterations (IA4, IA5) were conducted
to update the literature selection over the course of two years. They
did not yield new insights but were necessary to incorporate the latest
relevant literature.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Fig. 2. MaxQDA example: Text segment coded as ‘‘Data replication’’.

Table 3
Inter-coder reliability feedback sessions with the number of requested changes
for each session.
 Feedback Session

 #1 #2 #3
 Missing themes 3 4 0
 Themes to refine 3 3 0
 Themes to re-categorize 5 0 0
 Other comments 13 5 3
 Sum 24 12 3

To ensure the traceability of emerging codes and themes to their
sources, we used the software MaxQDA4 to support our coding and
theme-building process. A screenshot demonstrating our use of MaxQDA
is shown in Fig. 2. We created a hierarchy with over 199 themes and
codes and over 2400 coded segments. The high-level themes of this
hierarchy represent a taxonomy that addresses RQ1, while low-level
themes represent the integration techniques we found. We attached
a memo to each code summarizing its theme in prose and specifying
when the code is not applied. The codes, together with these memos,
are called the codebook.

Inter-coder reliability
We conducted three inter-coder reliability sessions to improve the

quality and validity of our emerging codebook. Depending on the
session, one or two fellow researchers applied the existing themes and
codes to parts of the uncoded primary materials supported by the code-
book entries. The themes, codes, and codebook quality were evaluated
qualitatively by comparing the result with the original coding. The
inter-coders took notes of missing themes, themes that need refine-
ment (renaming, redefinition), re-categorization within the themes, and
other comments. We discussed the notes jointly afterward to define
improvements to the themes and the codebook. Table 3 summarizes the
inter-coder reliability sessions. We see a reduction of change proposals
indicating the maturity of the results. The same trend manifested in
the qualitative comparison of the coding with the original. On the one
hand, we chose inter-coders experienced in the software architecture
field to perform investigator triangulation. On the other hand, we chose
inter-coders from outside the field to perform theory triangulation by
having multiple perspectives from different disciplines interpret the
data [37].
8
5. Results

We present a hierarchical taxonomy that expresses the diversity of
integration aspects covered by microservices and their interrelations.
Following our definition of integration, we define an integration tech-
nique as an abstract and reusable solution to a recurring integration
problem in the microservice domain. These techniques may involve ar-
chitectural, technical, operational, organizational, cultural, economic,
procedural, or cross-contextual implementation. We have categorized
these techniques into different categories for easier comprehension.

A taxonomy systematically assigns subject matter instances to cat-
egories [5]. Categories can further be grouped into higher-level cate-
gories, resulting in a hierarchy of categories.

Fig. 3 presents the taxonomy of microservice integration techniques.
The left part of the figure shows the main categories as a tree with
relations between higher-level parent nodes and lower-level child nodes
expressing a specialization relationship. Child categories of a parent
are mutually exclusive (ME), meaning an integration technique can
only be categorized as one of the child categories. Child categories
are collectively exhaustive (CE), meaning every technique is assignable
to at least one of the child categories. Combining both characteristics
(MECE) implies that each integration technique is classifiable by ex-
actly one leaf main category (a category without child categories). We
can apply a top-down process for taxonomy usage to classify a concrete
integration technique.

Inside each main category, we further present refined categories
of techniques. We cannot claim collective exhaustiveness and mutual
exclusiveness for those refined categories as undiscovered or new tech-
niques could exist that do not fit in one of these categories. Still, the
refined categories introduce a particular structure for the integration
techniques that we do not want to withhold from the reader. Each
technique is classifiable as none, one, or more refined categories within
its main category.

In the remainder of this section, we will discuss the taxonomy
categories in detail, beginning with the main categories and their
criteria of separation, followed by the refined categories. As an example
of using the taxonomy, we mention the identified techniques in each
refined category. A detailed discussion of each identified technique
does not fit the scope of this study and could be the subject of further
studies.

4 https://www.maxqda.com/

https://www.maxqda.com/

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Fig. 3. The taxonomy of current microservice integration techniques. (MECE = mutually exclusive and collectively exhaustive).
5.1. Main categories

The main categories of the taxonomy are C0 to C4. The level of
control over the integration counterpart emerged as the distinguish-
ing factor of the main categories in the taxonomy during the coding
procedure. The level of control over the integration counterpart is
transitively linked with the innovation speed of a project, which is
one of the main motivations for using the microservice architectural
style [43,44].

Certain types of interactions between computer systems bear a
resemblance to interactions and coordination among people [13]. The
higher the control over the integration counterpart, the lower the effort
to coordinate, facilitate, and maintain integration. The lower these
efforts, the more time can be spent on feature development, leading
to a higher innovation speed and agility of the overall project. Orga-
nizing techniques into categories by the control over the integration
counterpart as the distinguishing factor allows one to quickly navigate
in the taxonomy since this criterion is assessable at first glance.
9
In this subsection, we present all main categories with a description
of the category and a rationale outlining the distinction from other
categories by the rating of the control over the integration counterpart
(low, medium, high). The subsections after will detail the refined
categories of the leaf main categories (C1, C3, C4).
(C0) Microservice Integration Techniques
Description: Integration techniques offer practical solutions to recurring
problems in specific contexts. They encompass not only architectural
and technical issues but also operational and organizational challenges
since integration is a socio-technical phenomenon that extends beyond
technicalities [12].
Rationale: This is the root category of the taxonomy. The level of control
over the integration counterpart is inherited (low to high) from the
child categories C1 and C2.
(C1) Integration with External Systems
Description: These techniques target integration with external systems
outside of the microservice-based system. Examples are third-party

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
systems or their APIs used by the application or clients that use the
API of the microservice-based system.
Rationale: The control over the integration counterpart is low since
external systems are not under the control of the project teams. Changes
in external systems come with a significant communication overhead,
if possible at all. ‘‘[Many third-party systems] are quite closed off. At best,
I may be able to gain access to some sort of data schema. If I am fortunate,
there may be a rudimentary input–output table or some mechanism through
which I can manipulate the data. However, what is the level of availability
of these mechanisms? Most are not available 24/7 or any sort of guarantee’’
[Interview D, translated from German]. Special measures might be
required to ensure successful integration between the microservice-
based system and the external systems since they do not necessarily
keep up with the level of fault tolerance, scaling, and knowledge about
the internal structure of the components within the system.
(C2) Integration Within a Microservice-based System
Description: These techniques are applied for integration within the
system. Concerned software components within a microservice-based
system are usually maintained by the teams of the project.
Rationale: The control over the integration counterpart is inherited
(medium to high) from the child categories C3 and C4. We logically
infer that the coordination effort within a project is significantly lower
than with an external system.
(C3) Integration Among Microservices
Description: These techniques apply to the integration among microser-
vices within the system and their responsible teams. Each microser-
vice is owned by its responsible team [45]. Thus, integration among
microservices requires coordination among their responsible teams.
Rationale: The control over the integration counterpart is medium
since it depends on another team that owns the microservice. Coor-
dination and negotiation are required to change or implement some
functionality [1,46].

There is a potential difference in the amount of coordination over-
head among teams depending on whether the microservice is under the
control of an in-house team or a supplier. Working with subcontractors
might pose an additional coordination overhead because ‘‘[...] you need
to adhere to certain communication protocols [...]. This means that it is not
always possible to take the most direct route in communication’’ [Interview
F, translated from German].
(C4) Integration Within a Microservice
Description: These techniques apply to the integration within a mi-
croservice and its responsible team. Each microservice is a silo from
top to bottom, potentially internally integrating with database(s), user
interface(s), and further components [47].

Scaling is facilitated horizontally by deploying multiple instances,
introducing the challenge to coordinate these instances [48].
Rationale: The control over the integration counterpart is high since
the microservice’s team is fully responsible for all its components.
Integration within a microservice benefits from the considerably lower
communication effort within a single team than coordinating with
other microservices teams [1,45,49]. Communication channels within
a team can be more informal and adhoc, and are well exercised:
‘‘[...] I can’t imagine how we’d organize ourselves without a chat system.
The cross-functionality and the inherently fast, efficient, and constructive
communication is key. Email distribution would have slowed us down during
implementation; it’s an outdated method of communication’’ [Interview A,
translated from German].

5.2. (C1.1–C1.3) Refined categories of integration techniques with external
systems

It is common in practice that microservice-based systems integrate
with external systems that are not under the project team’s control.
Some might offer configuration options or even plugin systems. Others,
10
however, might not be extensible. Changes in external systems are
usually very costly if bought in, if possible in the first place.

In this main category of integration, we present refined categories
of integration techniques distinguished by the usage types of or by the
integration counterpart.
(C1.1) Integration With Clients
Description: These techniques foster integration with clients running
outside of the system.

We distinguish clients developed by a third party and in-house
ones. By definition, third-party clients are not under the control of the
project’s teams at design and run time. In-house clients might be under
control at design time but run on machines outside of the control of
the project’s teams, e.g., in the browser of a user. Thus, the control at
runtime is limited.
Rationale: The distinguishing usage type is service provision to the ex-
ternal system. The client application consumes the APIs of microservice-
based applications to provide its service.
Techniques (5): (T1.1.1) API facade, (T1.1.2) Edge server facade,
(T1.1.3) API gateway facade, (T1.1.4) API facade per client type,
(T1.1.5) Independent choice of communication technology
(C1.2) Integration of 3rd-party Systems Into the Application
Description: These techniques foster integration with third-party systems
running outside of the system, e.g., by using their API (see [50,51] for
two example systems).

We also classify the legacy system in a migration scenario as such a
third-party system as we noticed that the techniques for both highly
correlate. The reason might be the reduced disposition to introduce
significant changes for integration to a system that will vanish over the
course of the migration.
Rationale: The distinguishing usage type is the service consumption of
the external system. The microservice-based application majorly uses
the third-party or legacy system to provide its service.
Techniques (6): (T1.2.1) Proxy microservice, (T1.2.2) Data replication
proxy, (T1.2.3) CQRS proxy, (T1.2.4) Gradually replace the legacy
system, (T1.2.5) Treat legacy system like a microservice, (T1.2.6) ESB
to decouple from legacy system
(C1.3) Integration Into an Application Landscape
Description: These techniques concern integrating the whole micros-
ervice-based system or parts of it into a wider organizational context.

The surrounding application landscape might, for example, reuse
and combine certain microservices in other projects [52].
Rationale: The distinguishing usage type is service reuse within an
organization. Other applications might use parts of the microservice-
based system in different projects. Lu et al. [53], for example, describe
their vision of a ‘‘supermarket’’ of microservice in their IoT context
allowing to simplify this reuse.
Techniques (4): (T1.3.1) Service/API registry, (T1.3.2) Document mi-
croservice metadata, (T1.3.3) Enterprise-wide standardization,
(T1.3.4) Enterprise service wrapper

While the refined categories may sound like they are related to
architecture and technical aspects, they also encompass operational
and organizational aspects. For example, we need to make services
discoverable for the rest of the organization with a service or API
registry to allow the reuse of existing microservices in other projects, a
mainly organizational challenge [53,54].

5.3. (C3.1–C3.4) Refined categories of integration techniques among mi-
croservices

Within a microservice-based system, collaboration is needed on the
overall project level. Since each microservice is usually managed by
one dedicated team, collaboration on an overall project level means
collaboration between different teams. Integration with microservices
managed by other teams leads to additional coordination efforts.

G.-D. Schwarz et al.

Information and Software Technology 183 (2025) 107723
In this main category, we present refined categories of integration
techniques distinguished by the stakeholder roles covering technical,
architectural, operational, and organizational integration aspects. For
better readability, we use sub-categories that organize the techniques
by the rough topic they address.
(C3.1) Conceptual Integration
Description: These techniques cover the conceptual and architectural
integration design among microservices.

Soldani et al. [48] describes the service cut, splitting the overall
application into the microservices, as the primary pain of microservices
at design time. Inferring from our experience, the service cut shapes the
whole architectural landscape that needs to cope with the trade-offs
made by the service cut.
Rationale: The distinguishing stakeholder role of this category is the
software architect. The main focus is planning from a macro-level
perspective and incorporating cross-cutting concerns like user authen-
tication.
Techniques (30):
Service cut: (T3.1.1) Evaluate cut with proof of concepts,
(T3.1.2) Avoid LoC metric for evaluation, (T3.1.3) Decentralize the
service cut, (T3.1.4) Cut by non-functional characteristics, (T3.1.5) Cut
by functional proximity, (T3.1.6) Cut by Domain-Driven Design,
(T3.1.7) Cut by data entities and consistency needs, (T3.1.8) Cut by
use-case, (T3.1.9) Cut by data-flow;
Dataflows: (T3.1.10) Question transactions on domain level,
(T3.1.11) Avoid transactions over multiple microservices,
(T3.1.12) Data replication;
Workflows: (T3.1.13) Choreography over orchestration,
(T3.1.14) Align synchronicity to business flow;
Storage management: (T3.1.15) Decentralize conceptual models,
(T3.1.16) Clear responsibilities for parts of the data;
Location of business logic: (T3.1.17) No domain logic into infrastruc-
ture, (T3.1.18) No sharing of domain-specific code;
User auth: (T3.1.19) Centralized SSO, (T3.1.20) Token-based authenti-
cation, (T3.1.21) Propagate security context via headers,
(T3.1.22) Propagate security context via tokens;
UI integration: (T3.1.23) Only share context information between
UIs, (T3.1.24) UI as part of each microservice, (T3.1.25) UI suites,
(T3.1.26) Micro-frontends;
Conceptual error handling: (T3.1.27) Design for failure,
(T3.1.28) Compensations in workflows, (T3.1.29) Degradation of func-
tionality, (T3.1.30) Domain-motivated alternatives;
(C3.2) Communication Integration
Description: These techniques cover integration among microservices on
the technical level.

Microservices interact with each other solely through their pub-
lished APIs [55]. In general, integration counterparts need to share an
understanding of the syntax and semantics of the exchanged messages
to avoid data representation and schema mismatches [35].
Rationale: The distinguishing stakeholder role of this category is the
software developer. The main focus is successfully and securely facili-
tating communication using APIs.
Techniques (15):
General: (T3.2.1) Align technical communication style to the nature
of the business process
Communication security: (T3.2.2) Service-to-service authentication,
(T3.2.3) Encrypt service-to-service communication;
API contracts: (T3.2.4) Use APIs to decouple from implementation
details, (T3.2.5) Resilient consumers, (T3.2.6) Backward-compatible
APIs, (T3.2.7) Hypermedia to reduce coupling, (T3.2.8) API version-
ing, (T3.2.9) Consumer-driven contract testing;
Communication error handling: (T3.2.10) Circuit breaker and fail fast,
(T3.2.11) Dead letter queue, (T3.2.12) Bulkheads, (T3.2.13) Timeouts,
(T3.2.14) Bounded retries, (T3.2.15) Domain-motivated implementa-
tion details;
11
(C3.3) Deployment Integration
Description: These techniques address the integration of deployed mi-
croservice instances into their runtime environment on the operational
level.

Deployment automation is the driving key success factor to achieve
innovation agility and reliability of the overall system in the face of the
multitude of microservices and their instances at runtime [56].
Rationale: The distinguishing stakeholder role of this category is the
software operator. The main focus is automating and optimizing the
deployment.
Techniques (24):
General: (T3.3.1) CI/CD for automated deployment, (T3.3.2) Im-
mutable deployments, (T3.3.3) Reduce deployment coordination,
(T3.3.4) Sidecars/service meshes;
Service configuration: (T3.3.5) Avoid hardcoded configurations,
(T3.3.6) Avoid default values, (T3.3.7) Environment variables for con-
figuration, (T3.3.8) Configuration server for configuration,
(T3.3.9) Configuration/deployment as code, (T3.3.10) Internal inte-
gration proxy to reduce coupling, (T3.3.11) DNS for routing,
(T3.3.12) Service instance discovery, (T3.3.13) Service instance dis-
covery by message broker;
Deployment environments: (T3.3.14) Virtualize the network,
(T3.3.15) Offer single-node deployment, (T3.3.16) Provide resources
as a service (Cloud), (T3.3.17) FaaS/serverless platform to abstract in-
frastructure, (T3.3.18) Cluster management by container orchestrator;
Zero-downtime deployment: (T3.3.19) Rollbacks, (T3.3.20) Rolling
updates, (T3.3.21) Canary releases, (T3.3.22) Blue–green deployments,
Deployment artifacts: (T3.3.23) Containers as portable deployment
artifacts, (T3.3.24) Artifact registry;
(C3.4) Global Knowledge Integration
Description: These techniques address integrating information between
all roles and teams of the microservice-based project to foster global
decision-making.

Di Francesco et al. [57] present sharing knowledge and effective
communication as one of the core challenges during the phase of
finalizing, implementing, and deploying the microservice design in a
migration scenario.
Rationale: The distinguishing stakeholder role of this category is the
project manager. The main focus is adopting tools and processes to
efficiently communicate and make decisions.
Techniques (23):
Understanding the system: (T3.4.1) Standardize location of microser-
vice documentation, (T3.4.2) Responsibility documentation,
(T3.4.3) Standardize API documentation;
Organizational structure: (T3.4.4) Microservice managed by one team,
(T3.4.5) Align architecture with org structure, (T3.4.6) Overarching
organizational framework, (T3.4.7) Push more responsibility to teams,
(T3.4.8) Group services based on domain proximity;
Coordination between teams: (T3.4.9) Establish a common vocabu-
lary, (T3.4.10) Establish common cultural values, (T3.4.11) Standard-
ization, (T3.4.12) Adhoc over formal communication, (T3.4.13) Reg-
ular cross-team discussions, (T3.4.14) Thematic boards for decision
making, (T3.4.15) Service templates, (T3.4.16) Collaborate on li-
braries, (T3.4.17) Communicate API changes;
Understanding the system’s behavior: (T3.4.18) Standardize logging/
monitoring / tracing, (T3.4.19) Aggregate logging/monitoring infor-
mation in a central place, (T3.4.20) Monitor metrics at different levels,
(T3.4.21) Use dashboards and visualizations, (T3.4.22) Use a tracing
mechanism, (T3.4.23) Automate anomaly detection and alerting;
By separating refined categories by role, the architectural, technical,

operational, and organizational topics are easy to spot. The MECE crite-
ria do not apply here as challenges often cross-cut the boundaries of the
roles. We recommend assigning a major refined category representing
the most prominent perspective taken in the technique.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
5.4. (C4.1–C4.3) refined categories of integration techniques within a mi-
croservice

There is a need for integration within a microservice and its team.
Integrating on this level is required to ensure the quality attributes of
the specific microservice, such as scalability or service autonomy. The
integration counterpart is usually under the team’s direct control, so
the integration effort in terms of coordination is the lowest.

In this main integration category, we identified refined categories
of integration techniques by the characteristics of a microservice as a
distinguishing factor.
(C4.1) Scaling Microservice Instances
Description: These techniques address scaling a single microservice and
integrating its instances.

Microservices allow deploying instances in a replicated way in order
to scale horizontally to individually cope with varying levels of load on
each microservice [48,52,55].
Rationale: The distinguishing microservice characteristic is the (hor-
izontal) scalability. The main focus is designing a microservice for
scalability and integrating the instances at runtime.
Techniques (5): (T4.1.1) Stateless design, (T4.1.2) Auto-scale instances
based on metrics, (T4.1.3) Load balancing between instances,
(T4.1.4) Load balancing by message broker, (T4.1.5) Database cluster-
ing and sharding
(C4.2) Service Autonomy
Description: These techniques contribute to the autonomy of the mi-
croservice as a technical artifact.

A microservice is a self-contained silo from top to bottom, including
its database tables and message queue topics. This self-containment
allows autonomous development by the microservice’s team, including
independent deployment [50,54].
Rationale: The distinguishing microservice characteristic is the auton-
omy of the microservice. The main focus is supporting the microser-
vice’s autonomous life cycle and independence of other microservices.
Techniques (2): (T4.2.1) Self-contained design, (T4.2.2) Storage area
isolation per microservice
(C4.3) Team Autonomy
Description: These techniques contribute to the autonomy of the mi-
croservice team.

A microservice team is responsible for the whole life cycle of a
microservice, including deployment and (parts of the) operation [1].
Compared to classical monoliths, this requires more knowledge within
a microservice team [58,59].
Rationale: The distinguishing microservice characteristic is the auton-
omy of the microservice team. The main focus is fostering the autonomy
of the microservice team by aggregating the knowledge in the team to
foster an autonomous life cycle of the microservice.
Techniques (7): (T4.3.1) Cross-functional teams, (T4.3.2) Experiments,
(T4.3.3) Education programs, (T4.3.4) Support by a task force team,
(T4.3.5) Use of established patterns, (T4.3.6) Proximity to domain-
knowledge holders, (T4.3.7) Local proximity of team members

We find technical, architectural, and operational techniques mainly
in the refined categories C4.1 and C4.2. Category 4.3 deals with the
overarching organizational challenge to overcome the knowledge hur-
dle to build microservices within each team.

6. Illustration of the taxonomy usage

In this section, we present an illustration of how our taxonomy can
be utilized to categorize a given microservice integration technique.
Illustrations are a common approach to showcase the usefulness of a
taxonomy [5].
12
The following examples of integration techniques are structured as
a set of context, problem, and solution. We choose the context-problem-
solution presentation format to effectively link a specific problem sit-
uation to our theory and provide an explanation on how to solve the
given problem [60].

For the taxonomy illustration, we select two complex techniques
that are difficult to classify due to multiple valid implementation
approaches. These challenging integration scenarios provide better in-
sights into how the taxonomy addresses decision support when classi-
fying them.

The illustrating examples will be the techniques (T3.3.12) Service
instance discovery and (T4.1.3) Load balancing between instances.

Ambiguities from literature. Service discovery is a concept that is not
tied to microservice-based architectures. The term is also used to
search, find, and reuse existing software services within an enterprise
context [54]. To avoid ambiguities, we use the terminology service
instance discovery in this article to express its purpose of discovering
and tracking the locations of instances of a microservice.

Implementations of this technique are distinguished in literature
as server-side and client-side discovery mechanisms [27]. Client-side
discovery requires the users of the discovery mechanism (clients) to
be aware of multiple instances of the same microservice. In return,
this added complexity on the client side allows the client to select
the microservice instance based on client-specific metrics, such as
geographical proximity. Server-side discovery is transparent to the
client and does not require any knowledge about available instances.
Its implementation utilizes a load balancing mechanism that handles
the selection of the instance by returning the address of the instance
or by acting as a proxy. In our understanding, the service instance
discovery technique intends to cope with the dynamic deployment
environment by moving configuration from build- to run-time. Instead
of communicating with a microservice instance directly, a client has to
resolve the network location of an instance first.

The load balancing technique aims to evenly distribute the load
among the instances of a microservice. The literature distinguishes
client-side (or internal) and server-side (or external) load balancing
mechanisms [21] in the same style as for service instance discovery.

What makes classifying both integration techniques challenging is
that there are no clear boundaries regarding the differences between
client-side service instance discovery and load balancing. Additionally,
they are ambiguous to classify as they act in integration scenarios
among microservices and deal with microservice instances. Thus, be-
fore making a classification, we examine different technical imple-
mentations of both techniques and how they are interconnected (Fig.
4).

Introspection of technical implementations. A service instance discovery
mechanism can have different types of clients: (i) a ‘‘real’’ client in the
form of a microservice or a client application, or (ii) a load balancing
mechanism. In the case of a real client, the client receives a list of avail-
able instances and chooses based on custom metrics. This may or may
not incorporate considerations about load balancing. Thus, we do not
categorize it as a load balancing technique but rather as an instance dis-
covery one with potential load balancing effects caused by emergence
(Fig. 4(a)). The second type of clients are load balancing components.
They use the service instance discovery to choose the communication
partner for their clients. The load balancing mechanism can either
propagate the network location of the chosen service instance to the
client (Fig. 4(b)) or serve as a proxy (Fig. 4(c)). These considerations
allow us to conclusively define and classify both techniques.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Fig. 4. Load balancing and service instance discovery.
(T3.3.12) Service Instance Discovery

Context:
Microservice instances are deployed to a dynamic environment where
fixed network addresses and ports are not guaranteed.
Problem:
Changing network addresses and ports of microservice instances break
communication with clients.
Solution:
Introduce a service instance discovery mechanism to keep track of all
running microservice instances and their network location.

Main Category: (C3) Technique for Integration among Microservices
Refined Categories: Deployment Integration, Communication Integra-
tion, Conceptual Integration
Literature: L3, L5, L6, L7, L8, L9, L12, L18, L19, L20, L21, L24, L25,
L31, L34, L37, L40, L42, L45, L52, L53, L54, L55, L59, L61, L63, LN21,
LN43, LN44, LN48, LM43, LM47, LM48
Interviews: B
13
Classification example: service instance discovery. We go top-down to
classify the service instance discovery technique: [Integration tech-
nique] → [in a microservice-based system] → [among microservices]

A specific implementation might serve external systems, as well.
That implementation would additionally satisfy a second different tech-
nique.

Within its main category, we assign [deployment integration] ,
[communication integration] , and [conceptual integration] as refined
categories. This is grounded on the solution mainly coping with mi-
croservice configuration, an operational topic. The technique impacts
the communication behavior of a microservice. It requires the usage of
a service instance discovery to determine the network location of its
communication partners. Additionally, the service instance discovery
technique includes architectural aspects, but it belongs more on the
deployment side.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
(T4.1.3) Load Balancing Between Instances

Context:
Microservices are deployed with multiple instances each. There is a
mechanism to locate service instances in the dynamic deployment
environment.
Problem:
There is an uneven load distribution among the instances of a microser-
vice. Relocation and tear-downs of microservice instances due to the
dynamic deployment environment lead to communication errors.
Solution:
Introduce a (server-side) load balancing mechanism to automatically
distribute the load among (healthy) microservice instances.

Main Category: (C4) Technique for Integration within a Microservice
Refined Categories: Scaling and Integrating Microservice Instances
Literature: L3, L5, L8, L9, L12, L13, L15, L16, L21, L23, L25, L30, L31,
L34, L43, L44, L45, L49, L52, L53, L55, L58, L59, L61, L63, LN21, LN43,
LN48, LM43, LM47, LM48
Interviews: A, B

Classification example: load balancing between instances. We go top-
down to classify the load balancer technique: [Integration technique]
→ [in a microservice-based system] → [within a microservice]

This technique targets an integration challenge among the instances
of a microservice, so integration within a microservice. The load bal-
ancing mechanism becomes a facade to the microservice encapsulating
all its running instances.
Summary. To summarize, we were able to classify both techniques
with the taxonomy. To do so, we used an in-depth examination of
the existing technical implementations of both techniques to identify
their similarities, differences, and interconnections. Tools often com-
bine different abstract techniques into one single implementation. On
the one hand, combining integration techniques into one implemen-
tation solution reduces the complexity of the many moving parts in
a microservice architecture and supports developers who do not need
to think about the specifics of the techniques. On the other hand, it
makes reasoning about the underlying techniques considerably harder
by disguising them but not removing the complexity of the distributed
system.

Our taxonomy of integration techniques enforces being more spe-
cific on the abstract principles used in tools and implementations. Using
the taxonomy will raise awareness of the complexity of the distributed
systems that are built with microservices while supporting practitioners
to build new tools based on the combinations of techniques.

7. Discussion

In this section, we contextualize the constructed taxonomy. Sec-
tion 7.1 introduces an alternative categorization of techniques by their
‘‘type’’, demonstrating the taxonomy’s adaptability to various perspec-
tives. Section 7.2 examines the differences between findings from litera-
ture and interviews, highlighting trends and gaps in academic research.

To enrich our discussion, we refer to categorized techniques as il-
lustrative examples. A comprehensive list of techniques, including their
context-problem-solution descriptions and sources from both literature
and interviews, is available in the supplementary materials [6].

7.1. A holistic view on integration

In the previous sections, we presented a taxonomy categorizing
microservice integration techniques by the level of control over the
integration counterpart. This criterion was selected for its intuitive
and practical relevance, as practitioners can readily assess the level of
14
control, making it a useful primary metric for organizing integration
techniques.

As we describe in Section 2, microservice integration is a multi-
faceted topic that extends beyond purely technical aspects. To illustrate
our taxonomy’s comprehensiveness, we also classified the techniques
into other categories based on their ‘‘type’’, such as architectural,
implementation, operational, organizational, and process-oriented fo-
cuses. While we consider this classification to be more of an aca-
demic exercise, especially with the blending of responsibilities in cross-
functional teams and the influence of the DevOps movement, it effec-
tively demonstrates our taxonomy’s capacity to address a holistic view
of integration.
Architecture-related techniques. They describe the high-level system de-
sign, including components and their relationships with each other.
These techniques directly design the interaction between software com-
ponents, either by introducing architectural elements or by using design
policies that represent general design primitives. Examples of archi-
tectural elements are the API facade (T1.1.1), the proxy microservice
to wrap a third-party system (T1.2.1), and the internal integration
proxy as a central point of integration within the system (T3.3.10),
among many others. Examples of design policies are to gradually
replace the legacy system (T1.2.4), question transactions on the domain
level (T3.1.10), or use APIs to decouple from implementation details
(T3.2.4).

The listing of service-cutting techniques (T3.1.1–T3.1.9) might be
surprising since decomposition is the opposite of integration. However,
the service decomposition has a significant impact on the later inte-
gration. An appropriate alignment of functionalities within and across
microservices should always be viewed in combination with their re-
sulting need for interaction. Rather than seeing decomposition and in-
tegration as two separate activities, integration design should consider
evolving the decomposition as one, making it one joint architectural
design activity and an enabling factor for component interaction.
Implementation-related techniques. They describe low-level implemen-
tation decisions that are closer to the technology than to an abstract
design. These techniques implement the details of the interaction be-
tween software components. Examples are resilient consumers that can
deal with minor API changes (T3.2.5), bounded retries on communica-
tion failure (T3.2.14), or using environment variables for microservice
configuration (T3.3.5).
Operation-related techniques. They describe strategies for deploying,
maintaining, and monitoring systems in a deployment environment.
These techniques support the interaction of components in a deploy-
ment environment and contribute to the maintenance of successful
component interactions. Examples of these techniques are deploying to
a cluster manager like Kubernetes (T3.3.18) or collecting monitoring
metrics at different levels (T3.4.20).
Organization-related techniques. They describe the structure, manage-
ment, and responsibilities of teams in a project. These techniques
facilitate organizational structures that enable efficient coordination
between the responsible parties of software components, transitively
contributing to the interaction of software components. Examples are
cross-functional teams (T4.3.1), introducing a task force team to sup-
port microservice teams catching up with new technology (T4.3.4), or
assigning each microservice to one team (T3.4.4).
Process-related techniques. They describe the coordination between or-
ganizational units in terms of single activities, whole methodologies, or
tooling support. These techniques implement coordination and manage-
ment processes within the organizational structure. Similar to organi-
zation-related techniques, they contribute to the interaction of software
components transitively. Examples are conducting experiments to over-
come knowledge hurdles (T4.3.2), introducing standardization across
microservices (T3.4.11), or conducting regular cross-team discussions
(T3.4.13).

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
Table 4
Most discussed techniques in literature (more than 20 literature sources);
#L = number of coded literature, #I = number of coded interviews.
 ID Category Technique #L #I
 T3.3.23 C3.3 Containers as portable deployment artifacts 47 2
 T3.3.1 C3.3 CI/CD for automated deployment 35 4
 T4.1.3 C4.1 Load balancing between instances 31 2
 T3.3.12 C3.3 Service instance discovery 33 1
 T3.3.18 C3.3 Cluster management by container orchestrator 28 2
 T4.2.2 C4.2 Storage area isolation per microservice 24 4
Table 5
Most discussed techniques in interviews (covered by at least four interviews);
#L = number of coded literature, #I = number of coded interviews.
 ID Category Technique #L #I
 T3.4.10 C3.4 Establish common cultural values 16 5
 T3.2.8 C3.2 API versioning 13 5
 T3.1.30 C3.1 Domain-motivated alternatives 3 5
 T3.4.14 C3.4 Thematic boards for decision making 3 5
 T3.4.11 C3.4 Standardization 11 5
 T4.3.1 C4.3 Cross-functional teams 15 5
Summary. All presented types of techniques contribute to a well-
integrated system in the end by enabling a successful interaction of
software components. These types do not map directly to the cat-
egories of the taxonomy presented in Section 5 but rather to the
individual techniques. For example, the category deployment integra-
tion (C3.3) consists of 16 operation-related, four architecture-related,
three implementation-related, and one process-related technique; for
many techniques, the classification is not fully distinct. However, this
showcases the holistic viewpoint on integration the found techniques
reflect.

7.2. Focus of literature and interviews

In this section, we will discuss the distinctions between the findings
of literature and interviews in terms of most discussed techniques.

We retrospectively analyzed our code system and filtered the tech-
niques most discussed in the literature (Table 4) and in the interviews
(Table 5). The sources for a technique resemble simple references,
implicit and explicit usage, and detailed discussion of the technique.

Four of the six most discussed techniques in literature (Table 4)
are categorized as (C3.3) deployment integration techniques among
microservices. The remaining two are categorized as integration tech-
niques (C4.1) for scaling microservice instances and (C4.2) for service
autonomy within a microservice. We pin these techniques down as
the basics that most microservice-based systems share. They enable
automation and cope with the runtime complexity of microservices.

The most discussed techniques in the interviews (Table 5) reveal
a different focus of the efforts taken in microservice-based projects.
Three of the six techniques are categorized as (C3.4) global knowl-
edge integration techniques. The remaining three techniques are of
categories (C3.1) conceptual integration and (C3.2) communication
integration among microservices, and (C4.3) team autonomy within
a microservice. In general, we see a shift to organizational topics for
coordination among teams (T3.4.10, T3.4.14, T3.4.11) and building up
knowledge within the teams (T4.3.1).

Although we cannot draw general conclusions solely based on
the collected data, the findings suggest that all the essential tools
to achieve success in microservice-based architectures are present to
tackle the core problems. This highlights the importance of address-
ing related challenges, such as service cutting, building competencies
within teams, and optimizing communication and coordination among
teams. In one of our interviews, the interviewee emphasized that
tooling is not an obstacle to successful microservice adoption by saying:

 ‘‘Today, not two to three years ago, not a single microservice project
has to fail because of technology. Technology is available, it’s good, it’s
15
established, and it has been tested in large projects to maturity. Usually,
the projects fail because of a wrong [service] cut. That is because you look
at your monolith and analyze how it is cut, i.e., in the Java environment,
the package structure. The whole thing is often entity-based, and you end
up with a wrong cut’’. [Interview B, translated from German].

The non-organizational techniques T3.2.8 and T3.1.30 go beyond
the classic skill set of developers coming from monolithic backend
development. APIs of monoliths are not versioned at all or not in
the same high frequency as in microservices-based systems. Due to
the communication among microservices over a network, failures are
much more likely to happen, and coping with them by using domain
knowledge needs to become a first-class citizen. These two techniques
are representatives of the knowledge required to implement microser-
vices successfully. Even though the emerging tools simplify building
microservice architectures, they do not solve the underlying issue:
‘‘Many people don’t realize that a microservice application [...] is a highly
complex distributed application with all the problems that distributions and
automatic scaling entail; both of which are very complex issues. And people
often pretend that frameworks, libraries, or platforms can abstract the
problem away. But that is not the case, the problem remains. I have to
understand the problem well and have a good grip on it. Platforms can
provide support, but I have to understand what they do’’. [Interview C,
translated from German]

Companies starting with microservices often struggle with these
high knowledge barriers to successfully build a distributed system. The
learning process to overcome these challenges is often driven by pain
rather than a plan. It is very experience-based. While literature ac-
knowledges this challenge, it presents only a few superficial solutions,
such as establishing cross-functional teams (T4.3.1) or using established
patterns in general (T4.3.5). There is a need to even out the steep
learning curve with microservice projects and give more direction to
the learning process.

In future work, we aim to research and discover further techniques
in literature and interviews that are less known. Particularly, we aim
to address the needs of the industry elaborated in this section. We will
expand on organizational techniques to build a more holistic view of
the field of microservices following our insights from the interviews.

8. Limitations

As our research design targets qualitative findings and not quan-
titative ones, we use the trustworthiness criteria proposed by Lin-
coln and Guba [61] to discuss the limitations of qualitative studies.
The following subsections will discuss the credibility, transferability,
dependability, and confirmability of this study.

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
8.1. Credibility

We acknowledge several inherent limitations to collecting the pri-
mary materials regarding credibility, the extent to which the findings
accurately reflect the reality being studied and are believable.

First, we reviewed only the literature with the search terms specified
above. This selection might exclude suitable articles, e.g., originally
not within the microservice area but applicable to it. Furthermore,
we cannot claim an exhaustive search due to our iterative approach
to a select literature, and thus sources with additional integration
techniques may have been overlooked. Although this could affect the
resulting taxonomy, it is unlikely due to the level of abstraction in
which categories of techniques are constructed. We used theoretical
saturation as a stopping criterion to keep effort at an adequate level.
By refraining from an exhaustive literature sampling, we might have
excluded suitable articles. Second, the acquisition and sampling of
interviewees might have excluded suitable interview partners by the
limitation to English and German speakers. We believe that choosing
English as the lingua franca of software engineering lessens the impact
of this limitation.

To mitigate the limitations to credibility, we conducted member
checking with the interviewees. We sent them the findings for review
before publishing to curate misunderstandings, conflicting opinions,
and capture valuable additions. To gain a holistic picture of the field,
we used a sampling model to select the interviewees. We considered
different roles reflecting different viewpoints on the topic to capture
the diversity of the phenomenon. We refined the sampling model with
feedback from an expert in the field to capture hidden categories. We
spent sufficient time with the data (prolonged engagement) to avoid
misinterpretations caused by a superficial immersion into the data. We
transcribed the interviews by hand, read the primary materials several
times, and immersed ourselves deeply in the thematic analysis over a
period of two years.

Finally, it is important to note that this study does not encompass
the evaluation of the taxonomy’s practical application. It is common
in software engineering that studies demonstrate the taxonomy’s utility
by an illustration [5]. However, we see merit in future work for further
empirical evaluation and usage observations involving practitioners to
validate the effectiveness of the taxonomy.

8.2. Transferability

We acknowledge several inherent limitations to the collection of
the primary materials in terms of transferability, and the extent of
generalizability of the findings.

First, we did not conduct an exhaustive sampling of the litera-
ture and interviewees. To mitigate this shortcoming, we measured
theoretical saturation as changes to the structure of the code system
before stopping adding primary materials. Additionally, we applied
data triangulation by using white literature and interview transcripts
as different types of data.

Second, the selection of literature and interviewees might not be
representative of the broader population of interest. We addressed this
concern by favoring established and well-adopted literature by ordering
by citation count. For the interview selection, we applied purposive
sampling. We used a sampling model to include different views on
the topic but also included consultants that represent the knowledge
aggregated over multiple project contexts instead of narrowly focusing
on one specific context.

8.3. Dependability

We acknowledge several inherent limitations to the dependability of
the study, the extent to how comprehensible and replicable the research
design and execution is.
16
Table 6
Peer debriefing sessions.
 # Focus
 1 Coding ideas (familiarizing with literature)
 2 Sampling of literature
 3 Research process overview, thematic analysis (results)
 4 Thematic analysis (results + process), interviews
 5 Presentation of research process

First, the search for literature on Google Scholar might make the
study less replicable due to geospatial differences in the search engine.
We ordered the results by citation count to mitigate different prioriti-
zation of results in different regions. The supplementary materials of
the study document the search results to enable reproducibility of later
steps.

Second, coding involves identifying and categorizing data into
themes, which is a subjective process involving the knowledge and
perspective of the researcher. We conducted three inter-coder reliability
sessions with fellow researchers using the code system. Their feedback
and the indicated maturity by decreasing change proposals over time
increase the dependability of the analysis.

Third, the transparency of the data analysis process can affect the
dependability of the findings. We mitigate this potential limitation by
devoting this whole article to explaining the criteria used to identify
different themes, e.g., the level of control over the integration counter-
part. Further, we rigorously describe the data selection procedures to
select the primary materials, increasing the reproducibility of the data
gathering process.

8.4. Confirmability

We acknowledge several inherent limitations to the confirmability
of the study, the extent to which the biases and perspectives of the
researcher shaped the results.

Due to the subjective nature of the thematic analysis, the find-
ings are at risk of researcher bias. To mitigate introducing biases,
we complemented the continuous professional exchange among all co-
authors and further members of our research group with regular peer
debriefings to ‘‘[...] confirming that the findings and the interpretations
are worthy, honest, and believable’’ [62]. We chose debriefers who
either had a good understanding of the studied domain, a similar
background in the qualitative methodology, or both. They continuously
questioned the overall methodology and the analyzed and interpreted
data, checking for potential bias. Table 6 gives an overview of the
peer debriefing sessions we conducted and their focus. Additionally,
the inter-coder reliability sessions required the maintenance of a code
book, a supplemental material explaining the rationale of each theme
and code, when they are applied, and when they are not applied.
Formulating these criteria, as well as the qualitative feedback further
improves the confirmability of the findings. Data triangulation by using
literature and interviews as different types of primary materials, as
well as discussing our thoughts with the interviewees in the interviews
directly, but also in the member checking procedure, supported us in
minimizing biases.

9. Conclusion

In this article, we have presented a comprehensive hierarchical
taxonomy for microservice integration techniques consisting of five
main categories. The clear separation of the main categories is guided
by the criteria of the degree of control over the integration coun-
terpart. Further, we present ten refined categories categorizing 121
techniques. Section 6 presents two of these techniques in detail to il-
lustrate the taxonomy usage with an exemplary classification rationale.
The comprehensive supplementary materials [6] present the taxonomy

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
populated with 121 integration techniques. Presenting and discussing
all those techniques in detail is subject to future work as the scope of
this article cannot do them justice.

In the broader context of software taxonomies, the proposed tax-
onomy follows the most prevalent taxonomy features [5]: A solution-
focused research type, a combination of graphical and textual taxon-
omy notation, a hierarchical taxonomy structure, a clear descriptive
basis of categories, a qualitative classification procedure that is explic-
itly described, and an illustration for utility demonstration. In contrast
to most other studies, we did not construct the taxonomy in an ad-hoc
manner but employed a structured research design for theory building.

The taxonomy provides common terminology to ease sharing knowl-
edge among researchers, but also among participants and stakehold-
ers in projects using microservices. The enhanced clarity improves
decision-making by enabling teams to systematically select the most ap-
propriate integration techniques in their current situation. Further, the
structure can serve as a guided learning path for newcomers, also high-
lighting the socio-technical challenges of microservice architectures.
The amount of organizational challenges and techniques we found in
our study emphasizes the need to investigate microservice techniques
not in a silo-style way but from a topic-centered viewpoint, includ-
ing socio-technical and organizational aspects next to architectural,
operational, and technical ones.

However, it is important to mention that the listed techniques
cannot be considered complete or comprehensive for the practice of
microservice integration. We emphasize the importance of conducting
future research to empirically evaluate the proposed taxonomy and its
associated integration techniques. The taxonomy’s usefulness in finding
solutions to integration problems and its effectiveness in saving time
and resources through a guided process should be empirically evaluated
in industrial contexts. Future work will conduct such an evaluation
study across multiple projects.

In conclusion, our taxonomy represents a significant step towards
a more comprehensive and holistic understanding of microservice in-
tegration techniques. By providing a structure for future research and
practice, we hope to inspire further investigation and facilitate the
successful adoption of microservices.

CRediT authorship contribution statement

Georg-Daniel Schwarz: Writing – original draft, Software,
Project administration, Methodology, Investigation, Funding acqui-
sition, Data curation, Conceptualization. Andreas Bauer: Writing
– review & editing, Visualization, Validation, Software, Conceptu-
alization. Dirk Riehle: Writing – review & editing, Methodology,
Conceptualization. Nikolay Harutyunyan: Writing – review &
editing, Validation, Methodology.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT in
order to improve and rephrase written paragraphs. After using this
tool/service, the authors reviewed and edited the content as needed
and take full responsibility for the content of the publication.

Funding

This work was supported by BMBFs (Federal Ministry of Education
and Research) Software Campus 2.0 project (BePra-MSI, 01IS17045),
and by DFGs (German Research Foundation) Research Grants Pro-
gramme (Industry Best Practices for Microservice Integration, RI 2147/
9-1).
17
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Dirk Riehle reports financial support was provided by German Research
Foundation. Georg-Daniel Schwarz reports financial support was pro-
vided by German Federal Ministry of Education and Research. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

The research presented in this paper was conducted in partial
fulfillment of the requirements for a cumulative dissertation. We extend
our sincere thanks to our colleagues for their constructive feedback
and careful proofreading. We are deeply grateful to the industry, and
especially to the interviewees, whose generous contribution of time was
invaluable to this study.

Data availability

The datasets generated during the current study are available at the
following URL: https://zenodo.org/records/12740383 [6].

References

[1] P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, S. Tilkov, Microservices: The
journey so far and challenges ahead, IEEE Softw. 35 (3) (2018) 24–35.

[2] J. Lewis, M. Fowler, Microservices: a definition of this new architectural term,
2014, URL https://martinfowler.com/articles/microservices.html.

[3] S. Newman, Building microservices, O’Reilly Media, 2021.
[4] S. Baškarada, V. Nguyen, A. Koronios, Architecting microservices: Practical

opportunities and challenges, J. Comput. Inf. Syst. 60 (5) (2020) 428–436.
[5] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software engineering:

A Systematic mapping study and a revised taxonomy development method,
Inf. Softw. Technol. 85 (2017) 43–59, http://dx.doi.org/10.1016/j.infsof.2017.
01.006.

[6] G. Schwarz, A. Bauer, Supplementary materials for the study ‘‘A taxonomy of
microservice integration techniques’’, 2024, http://dx.doi.org/10.5281/zenodo.
12740383.

[7] O. Nierstrasz, L. Dami, Component-oriented software technology, Object-
Oriented Softw. Compos. 1 (1995) 3–28.

[8] K.-K. Lau, Software component models, in: Proceedings of the 28th International
Conference on Software Engineering, 2006, pp. 1081–1082.

[9] M.-T. Schmidt, B. Hutchison, P. Lambros, R. Phippen, The enterprise service bus:
making service-oriented architecture real, IBM Syst. J. 44 (4) (2005) 781–797.

[10] D. Shadija, M. Rezai, R. Hill, Towards an understanding of microservices, in:
2017 23rd International Conference on Automation and Computing, ICAC, IEEE,
2017, pp. 1–6.

[11] H. Barki, A. Pinsonneault, Explaining ERP implementation effort and benefits
with organizational integration, 2002, Cahier du GReSI no 2.

[12] N. Mohamed, B. Mahadi, S. Miskon, H. Haghshenas, H.M. Adnan, Information
system integration: A review of literature and a case analysis, in: Mathematics
and computers in contemporary science, Wseas LLC, 2013, pp. 68–77.

[13] W. Hasselbring, Information system integration, Commun. ACM 43 (6) (2000)
32–38.

[14] P. Bourque, R.E. Fairley (Eds.), SWEBOK: Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society, Los Alamitos, CA, 2014.

[15] R. Keshav, R. Gamble, Towards a taxonomy of architecture integration strategies,
in: Proceedings of the Third International Workshop on Software Architecture,
1998, pp. 89–92.

[16] H. Hofmeister, G. Wirtz, A pattern taxonomy for business process integration
oriented application integration., in: SEKE, 2006, pp. 114–119.

[17] V. Clarke, V. Braun, N. Hayfield, Thematic analysis, Qual. Psychology: A Pr.
Guid. Res. Methods 222 (2015) 248.

[18] J. Bogner, A. Zimmermann, Towards integrating microservices with adaptable
enterprise architecture, in: 2016 IEEE 20th International Enterprise Distributed
Object Computing Workshop, EDOCW, 2016, pp. 1–6.

[19] R. Petrasch, Model-based engineering for microservice architectures using en-
terprise integration patterns for inter-service communication, in: 2017 14th
International Joint Conference on Computer Science and Software Engineering,
JCSSE, IEEE, 2017, pp. 1–4.

https://zenodo.org/records/12740383
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb1
https://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb4
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb4
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb4
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.5281/zenodo.12740383
http://dx.doi.org/10.5281/zenodo.12740383
http://dx.doi.org/10.5281/zenodo.12740383
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb19

G.-D. Schwarz et al. Information and Software Technology 183 (2025) 107723
[20] B. Shafabakhsh, R. Lagerström, S. Hacks, Evaluating the impact of inter process
communication in microservice architectures., in: QuASoQ@ APSEC, 2020, pp.
55–63.

[21] A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, T. Lynn, Microservices
migration patterns, Software: Pr. Exp. 48 (11) (2018) 2019–2042.

[22] H. Harms, C. Rogowski, L. Lo Iacono, Guidelines for adopting frontend architec-
tures and patterns in microservices-based systems, in: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 902–907.

[23] F. Osses, G. Márquez, H. Astudillo, An exploratory study of academic architec-
tural tactics and patterns in microservices: A systematic literature review, in:
Avances en Ingenieria de Software a Nivel Iberoamericano, CIbSE, Vol. 2018,
2018, pp. 71–84.

[24] J. Fritzsch, J. Bogner, A. Zimmermann, S. Wagner, From monolith to mi-
croservices: A classification of refactoring approaches, in: Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment: First International Workshop, DEVOPS 2018, Chateau de
Villebrumier, France, March 5-6, 2018, Revised Selected Papers 1, Springer,
2019, pp. 128–141.

[25] S. Weerasinghe, I. Perera, Taxonomical classification and systematic review on
microservices, Int. J. Eng. Trends Technol. 70 (3) (2022) 222–233.

[26] G. Márquez, H. Astudillo, Actual use of architectural patterns in microservices-
based open source projects, in: 2018 25th Asia-Pacific Software Engineering
Conference, APSEC, Ieee, 2018, pp. 31–40.

[27] D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microservices: A
systematic mapping study, in: V. ctor Méndez Muñoz, D. Ferguson, M. Helfert, C.
Pahl (Eds.), Proceedings of the 8th International Conference on Cloud Computing
and Services Science, CLOSER 2018, Funchal, Madeira, Portugal, March 19-21,
2018, SciTePress, 2018, pp. 221–232.

[28] M. Söylemez, B. Tekinerdogan, A. Kolukısa Tarhan, Challenges and solution
directions of microservice architectures: A systematic literature review, Appl.
Sci. 12 (11) (2022) 5507.

[29] D. Taibi, V. Lenarduzzi, C. Pahl, Microservices anti-patterns: A taxonomy, in:
Microservices, Springer, 2020, pp. 111–128.

[30] K. Brown, B. Woolf, Implementation patterns for microservices architectures, in:
Proceedings of the 23rd Conference on Pattern Languages of Programs, 2016,
pp. 1–35.

[31] F. Osses, G. Márquez, H. Astudillo, Exploration of academic and industrial
evidence about architectural tactics and patterns in microservices, in: Proceedings
of the 40th International Conference on Software Engineering: Companion
Proceeedings, 2018, pp. 256–257.

[32] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice
architecture, in: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications, SOCA, IEEE, 2016, pp. 44–51.

[33] B. Kitchenham, Procedures for performing systematic reviews, vol. 33, (no. 2004)
Keele University, Keele, UK, 2004, pp. 1–26.

[34] H. Jansen, The logic of qualitative survey research and its position in the field of
social research methods, Forum Qualitative Sozialforschung (Forum: Qualitative
Soc. Res.) 11 (2) (2010).

[35] O. Zimmermann, Microservices tenets, Comput. Sci.- Res. Dev. 32 (3) (2017)
301–310.

[36] V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering, Inf. Softw.
Technol. 106 (2019) 101–121.

[37] L.A. Guion, D.C. Diehl, D. McDonald, Triangulation: establishing the validity of
qualitative studies: FCS6014/FY394, rev. 8/2011, Edis 2011 (8) (2011) 3.

[38] H. Kallio, A.-M. Pietilä, M. Johnson, M. Kangasniemi, Systematic methodological
review: developing a framework for a qualitative semi-structured interview guide,
J. Adv. Nurs. 72 (12) (2016) 2954–2965.

[39] J.J. Francis, M. Johnston, C. Robertson, L. Glidewell, V. Entwistle, M.P. Ec-
cles, J.M. Grimshaw, What is an adequate sample size? Operationalising data
saturation for theory-based interview studies, Psychol. Heal. 25 (10) (2010)
1229–1245.

[40] A. Strauss, J. Corbin, Basics of qualitative research techniques, Citeseer, 1998.
[41] V. Braun, V. Clarke, Using thematic analysis in psychology, Qual. Res. Psychol.

3 (2) (2006) 77–101.
18
[42] T. Cerny, M.J. Donahoo, M. Trnka, Contextual understanding of microservice
architecture: current and future directions, ACM SIGAPP Appl. Comput. Rev. 17
(4) (2018) 29–45.

[43] S. Salii, J. Ajdari, X. Zenuni, Migrating to a microservice architecture: ben-
efits and challenges, in: 2023 46th MIPRO ICT and Electronics Convention,
MIPRO, 2023, pp. 1670–1677, http://dx.doi.org/10.23919/MIPRO57284.2023.
10159894.

[44] N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
L. Safina, Microservices: Yesterday, today, and tomorrow, in: M. Mazzara, B.
Meyer (Eds.), Present and Ulterior Software Engineering, Springer International
Publishing, Cham, 2017, pp. 195–216, http://dx.doi.org/10.1007/978-3-319-
67425-4_12.

[45] M. Kalske, N. Mäkitalo, T. Mikkonen, Challenges when moving from monolith
to microservice architecture, in: Current Trends in Web Engineering: ICWE 2017
International Workshops, Liquid Multi-Device Software and EnWoT, Practi-O-
Web, NLPIT, SoWeMine, Rome, Italy, June 5-8, 2017, Revised Selected Papers
17, Springer, 2018, pp. 32–47.

[46] T. Salah, M.J. Zemerly, C.Y. Yeun, M. Al-Qutayri, Y. Al-Hammadi, The evolution
of distributed systems towards microservices architecture, in: 2016 11th Inter-
national Conference for Internet Technology and Secured Transactions, ICITST,
IEEE, 2016, pp. 318–325.

[47] D.I. Savchenko, G.I. Radchenko, O. Taipale, Microservices validation: Mjolnirr
platform case study, in: 2015 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics, MIPRO, IEEE,
2015, pp. 235–240.

[48] J. Soldani, D.A. Tamburri, W.-J. Van Den Heuvel, The pains and gains of
microservices: A systematic grey literature review, J. Syst. Softw. 146 (2018)
215–232.

[49] L. Chen, Microservices: architecting for continuous delivery and DevOps, in: 2018
IEEE International Conference on Software Architecture, ICSA, IEEE, 2018, pp.
39–397.

[50] A. Bucchiarone, N. Dragoni, S. Dustdar, S.T. Larsen, M. Mazzara, From monolithic
to microservices: An experience report from the banking domain, Ieee Softw. 35
(3) (2018) 50–55.

[51] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M.K. Reiter, V. Sekar, Gremlin:
Systematic resilience testing of microservices, in: 2016 IEEE 36th International
Conference on Distributed Computing Systems, ICDCS, IEEE, 2016, pp. 57–66.

[52] A. Singleton, The economics of microservices, IEEE Cloud Comput. 3 (5) (2016)
16–20.

[53] D. Lu, D. Huang, A. Walenstein, D. Medhi, A secure microservice framework for
iot, in: 2017 IEEE Symposium on Service-Oriented System Engineering, SOSE,
IEEE, 2017, pp. 9–18.

[54] Z. Xiao, I. Wijegunaratne, X. Qiang, Reflections on SOA and microservices, in:
2016 4th International Conference on Enterprise Systems, ES, IEEE, 2016, pp.
60–67.

[55] N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R. Mustafin, L. Safina, Mi-
croservices: How to make your application scale, in: International Andrei Ershov
Memorial Conference on Perspectives of System Informatics, Springer, 2017, pp.
95–104.

[56] W. Hasselbring, G. Steinacker, Microservice architectures for scalability, agility
and reliability in e-commerce, in: 2017 IEEE International Conference on
Software Architecture Workshops, ICSAW, IEEE, 2017, pp. 243–246.

[57] P. Di Francesco, P. Lago, I. Malavolta, Migrating towards microservice architec-
tures: an industrial survey, in: 2018 IEEE International Conference on Software
Architecture, ICSA, IEEE, 2018, pp. 29–2909.

[58] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation, IEEE Cloud Comput.
4 (5) (2017) 22–32.

[59] A. Balalaie, A. Heydarnoori, P. Jamshidi, Migrating to cloud-native architec-
tures using microservices: an experience report, in: European Conference on
Service-Oriented and Cloud Computing, Springer, 2015, pp. 201–215.

[60] D. Riehle, H. Züllighoven, Understanding and using patterns in software
development, Tapos 2 (1) (1996) 3–13.

[61] Y.S. Lincoln, E.G. Guba, Naturalistic inquiry, sage, 1985.
[62] S. Spall, Peer debriefing in qualitative research: Emerging operational models,

Qual. Inq. 4 (2) (1998) 280–292.

http://refhub.elsevier.com/S0950-5849(25)00062-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb38
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb38
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb38
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb38
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb38
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb42
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb42
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb42
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb42
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb42
http://dx.doi.org/10.23919/MIPRO57284.2023.10159894
http://dx.doi.org/10.23919/MIPRO57284.2023.10159894
http://dx.doi.org/10.23919/MIPRO57284.2023.10159894
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb61
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb62
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb62
http://refhub.elsevier.com/S0950-5849(25)00062-X/sb62

	A taxonomy of microservice integration techniques
	Introduction
	Microservice Integration
	Related Work
	Research Design
	Literature Selection
	Search Strategy
	Selection Strategy
	Literature Selection Execution
	Data Analysis

	Expert Interviews
	Interview Preparation and Guide
	Sampling Model
	Interviewee Sampling
	Interview Execution
	Data Analysis

	Thematic Analysis for Taxonomy Construction
	Method Choice
	Analysis Procedure
	Execution of Analysis
	Inter-Coder Reliability

	Results
	Main Categories
	(C1.1–C1.3) Refined Categories of Integration Techniques With External Systems
	(C3.1–C3.4) Refined Categories of Integration Techniques Among Microservices
	(C4.1–C4.3) Refined Categories of Integration Techniques Within a Microservice

	Illustration of the taxonomy usage
	Discussion
	A Holistic View on Integration
	Focus of Literature and Interviews

	Limitations
	Credibility
	Transferability
	Dependability
	Confirmability

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Funding
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

