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Abstract
Open collaborative workflows are common, for example, in open-source software develop-
ment orWikipedia. They reduce costs for individual participants and can improve the overall
quality of the result. A potential application domain for open collaboration is data engineer-
ing, especially for open data, which shares many qualities with open-source software as it can
be freely used, modified, and shared.
However, data from complex domains requires the expertise of human subject-matter ex-

perts to be understood and made usable for later applications. These experts often lack the
technical background needed to collaborate with software engineers using existing, text-based
collaboration tools like general-purpose programming languages and project forges. Instead,
various visual programming tools exist that allow non-technical contributors to build data
pipelines. These tools are often proprietary and are not easy to collaborate on.
In this thesis, we explore a potential middle ground in the form of using domain-specific

languages as the foundation for a shared collaboration artifact to describe data pipelines. To
do so, we follow a design science methodology to identify underlying problems for collabora-
tive data engineeringwith subject-matter experts, contribute an innovative artifact in the form
of a domain-specific language, and empirically validate and evaluate this artifact to investigate
the underlying reasons for its performance.
Initially, we summarize the literature on collaboration systems in open collaborative data

engineering using a systematic literature review to develop an understanding of the current
state of the art. We find a diverse ecosystem of participants, activities, tools used, and artifacts
that are created during collaboration.
Based on an interview study with data engineering practitioners, we describe how their

work is organized in social systems based on roles and their interactions for small-scale project
groups and the wider open data ecosystem. We identify concrete challenges to collaborative
data engineering and develop recommendations for resolving them.
Following upon a recommendation for themost pressing challenges, such as high technical

barriers to contribution and no standard collaboration artifacts, we suggest and implement a
textual domain-specific language for creating data pipelines, based on the well-known pipes-
and-filters architecture.
Lastly, in a series of empirical studies with human participants, we first validate that the

domain-specific language is a potential basis for a collaboration artifact for non-professional
programmers and then evaluate its performance compared to Python using controlled exper-
iments. By combining the results of the controlled experiments with a follow-up survey, we
describe the effects that using a domain-specific language for data engineering has on collabo-
rators.
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Zusammenfassung
Offen kollaborative Workflows sind weit verbreitet, beispielsweise in der Programmierung
von Open-Source Software oder bei Wikipedia. Sie reduzieren die Kosten für einzelne Teil-
nehmer und können die Qualität der Ergebnisse verbessern. Ein potenzieller Anwendungs-
bereich für offene Zusammenarbeit ist das Data Engineering, insbesondere für offene Daten.
Diese teilen viele EigenschaftenmitOpen-Source-Software, da sie frei genutzt, verändert und
geteilt werden können.
Daten aus komplexen Domänen erfordern jedoch das Wissen menschlicher Experten, um

sie zu verstehen und für spätere Anwendungen nutzbar zumachen. Diesen Experten fehlt oft
der technischeHintergrund, ummit Softwareentwicklern über existierende, textbasierte Kol-
laborationstools wie Entwicklungsplattformen und Allzweck-Programmiersprachen zusam-
menzuarbeiten. Stattdessen gibt es verschiedene visuelle Programmiertools, die es auch nicht-
technischen Teilnehmern ermöglichen, Datenpipelines zu erstellen. Diese Tools sind oft pro-
prietär und nicht für eine einfache Zusammenarbeit gedacht.
In dieser Thesis untersuchen wir einen möglichen Mittelweg durch die Verwendung do-

mänenspezifischer Sprachen alsKollaborationsartefakt zurBeschreibung vonDatenpipelines.
Dazu nutzen wir die Design-Science-Methode, um die grundlegenden Probleme des kollab-
orativen Data Engineering mit Experten zu identifizieren, ein innovatives Artefakt in Form
einer domänenspezifischenSprache zu entwickelnunddiesesArtefakt empirisch zu validieren
und zu evaluieren, um die Gründe für seine Leistung zu beschreiben.
Zunächst fassen wir die Literatur zu Kollaborationssystemen im offenen kollaborativen

Data Engineering mithilfe einer systematischen Literaturrecherche zusammen, um ein Ver-
ständnis für den aktuellen Stand der Technik zu entwickeln. Wir beschreiben ein vielfältiges
Ökosystem aus Teilnehmern, Aktivitäten, verwendeten Tools und Artefakten, die während
der Zusammenarbeit erstellt werden.
Basierend auf einer anschließenden Interviewstudie mit Data Engineering Anwendern aus

der Praxis beschreiben wir, wie ihre Arbeit in sozialen Systemen, basierend auf Rollen und
Interaktionen für kleine Projektgruppen und das breitereOpen-Data-Ökosystem, organisiert
ist. Wir identifizieren konkreteHerausforderungen des kollaborativenData Engineering und
entwickeln Empfehlungen zu deren Lösung.
Ausgehend vonEmpfehlungen für die dringendstenHerausforderungen, wie zumBeispiel

hohe technischeHürden zurTeilnahmeunddasFehlen eines Standards fürKollaborationsarte-
fakte, schlagen wir eine textuelle domänenspezifische Sprache zur Erstellung von Datenpipe-
lines vor und implementieren diese.
Abschließend validieren wir in einer Reihe empirischer Studien mit menschlichen Teil-

nehmern zunächst, dass die domänenspezifische Sprache ein potenzielles Kollaborationsar-
tefakt für Experten ohne Erfahrung in der professionellen Softwareentwicklung ist, und bew-
erten die Angemessenheit der Sprache imVergleich zu Pythonmithilfe von kontrollierten Ex-
perimenten. Indemwir die Ergebnisse der kontrollierten Experimente mit einer deskriptiven
Umfrage kombinieren, beschreiben wir die Effekte der Verwendung einer domänenspezifis-
chen Sprache für das Data Engineering.
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1
Introduction

High-quality data is the foundation for many decisions, as well as innovative software appli-

cations and artificial intelligence products. Without access to appropriate data, these projects

can not be completed or are reduced in effectiveness.

An increasingly important source of data is open data, which is data published under a

permissive license that can be freely used, modified, and shared by anyone, for any purpose.

These datasets are mainly published by public administrations and companies due to legal

requirements, but a large ecosystem of private data publishers and users exists as well.

However, most data is hard to use due to a variety of challenges, including technical ones.

This is especially true for open data, which is often published out of legal necessity and not

reused by the original publisher, meaning the usability of the data is a low priority, and pub-

lishers have few incentives to improve it. Data engineering, the process of extracting, trans-

forming, and cleaning data to make it usable for a specific use-case, is therefore a costly but

required engineering activity [48, 55].

Because open data shares many attributes with open-source software, data users could col-
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laboratively improve the general quality of available open data in open collaborative work-

flows in which everyone can participate without an externally enforced process, similar to the

ones found in open-source software development. Open collaborative work has proven to re-

duce individualworkload and to improve the quality of outcomes in domains such as software

engineering or the creation of knowledge bases such as Wikipedia.

Similarly, improvements in data quality or availability that benefit everyone in the ecosys-

tem exist in open data contexts aswell. As part of their larger role, infomediaries are actors that

are neither data publishers nor consumers, but rather increase the use of open data. They do

so by improving its supply and quality as well as building relationships [52], republishing im-

proved datasets that make it easier for data consumers to use them in their individual projects.

Therefore, on a community level, open collaborative data engineering workflows by individ-

ual open data users have the potential to improve data quality for every participant, but are,

compared to software engineering, rare.

This thesis focuses on understanding collaboration systems of individual data users, what

challenges they face, and how open collaboration could be further enabled in order to im-

prove data quality for everyone. In the process of our research, we recognized the importance

of subject-matter experts (SMEs) and other non-technical users as contributors to collabora-

tive data engineering to improve the understanding of data content. We found that a missing

standard collaboration artifact and inappropriate tools are some of themajor problems for col-

laboration between subject-matter experts and software engineers. Proven tools and artifacts

from open-source software engineering are often hard to understand and use for participants

without a technical background, while easy-to-use visual tools are hard to collaborate with

and scale poorly to larger projects.

For this reason, we study textual domain-specific languages (DSLs) as a potential middle

ground. Given that DSLs can be used for open collaborative data engineering, we explore

important design considerations to improve their usability by subject-matter experts. The

question that we ask is: Can they be the foundation for an alternative collaboration artifact
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that would still allow communities to reuse existing infrastructure and workflows from open-

source software development, but be more accessible to users without a strong software engi-

neering background?

The thesis is structured as follows: Initially, we summarize existing work on open data, col-

laborative workflows, and DSLs in chapter 2. In chapter 3, we outline the goals of the thesis,

including research questions. We also describe the overarching research design of design sci-

ence that structured our work. We present our work in understanding collaboration systems

in data engineering, identifying challenges to open collaboration and deriving objectives for a

potential solution in chapter 4. The design and development of the proposed solution, aDSL

to create data pipelines and a test bed to evolve it, is described in chapter 5 while its appropri-

ateness is demonstrated in chapter 6. The created artifact is extensively evaluated in chapter 7

using empirical methods. Finally, our contributions are summarized in chapter 8.
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2
State of the Art

In this chapter, we discuss existing work that provides the background for our contribution.

We first give an overview of open data and the data engineering work required to access it

in section 2.1. Collaborative work, both in software engineering and in data engineering, is

discussed next in section 2.2. Finally, we present prior research on domain-specific languages

and their evaluation in section 2.3.

2.1 Open Data and Data Engineering

Opendata is published under an open data license,meaning it can be accessed, used,modified,

and shared by anyone for any purpose1. The amount of, and interest in, open data increased

strongly following the 2009 Open Government Directive by the United States government

[48].

The open data ecosystem consists of loosely connected data publishers, legislators, facilita-

tors to data use (often referred to as infomediaries [52]), and data consumers [68]. Research
1According to the Open Definition by the Open Knowledge Foundation, https://opendefinition.org
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into open data and its ecosystem has largely focused on data publishers and less on how open

data users consume data [48, 67]. Motivations to publish open data differ, ranging from gov-

ernments trying to improve transparency and increase citizen engagement to private entities

looking to establish a community of users around their products. Data consumers can them-

selves have a commercial interest, e.g., to build or enhance their own private data products, or

be individual data users such as journalists or citizen activists. Increasingly, open data is also

published in the form of replication packages as part of scientific research.

An important pillar of the ecosystem is open data portals that host or link to open datasets

and allow consumers to search their catalogue. While open data portals of private publishers

exist, most portals are run by government entities such as govdata.de2 by the Federal Repub-

lic of Germany. On these portals, many open datasets are published in tabular formats, for

example CSV or XLS files, and are smaller than 10 MB [44, 57]. Because many open data

publishers are government agencies that publish data only to fulfill legal obligations, the qual-

ity of open data is often poor, and considerable effort must be expended to clean errors and

make open data usable [48].

Data engineering, any activity to extract, clean, transform, andmake available data for later

use, is a costly part of any project involving data [55]. In long-running projects, data engi-

neering often takes the form of creating data pipelines instead of one-off data cleaning efforts.

These data pipelines can be re-run on new datasets and can automatically fix data that is up-

dated, such as transport schedules that are regularly changed. Especially in open data contexts,

building pipelines that clean data is often the only way consumers can reliably fix errors be-

cause publishers are not interested in implementing changes themselves [16].

Regarding data pipelines, various processmodels (such as batch and streamprocessing) and

configurations exist. In this work, we focus on batch processing, pipelines that are executed

once or in scheduled intervals, and are most relevant for open data. Batch pipelines gener-

ally consist of data extraction, transformation, and loading steps. Depending on the order of
2https://www.govdata.de/
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operations, these pipelines are referred to as ETL-pipelines (Extract-Transform-Load, data is

extracted, transformed, and then loaded into a final data store called a sink) or ELT-pipelines

(Extract-Load-Transform, data is loaded into an intermediate data warehouse and then trans-

formed).

2.2 Collaborative Work and Collaborative Data Engineering

Collaborative work processes are defined by the participation of multiple contributors to

achieve a shared goal. Collaborationprocesses have been studied across a range of domains, for

example, in software engineering. Common forms of collaborative work include distributed

collaboration [46] or crowdsourcing approaches like hackathons [39].

Collaborativework that is egalitarian,meritocratic, and self-organizing is calledopen collab-

oration [50]. Awell-known example in software engineering is open-source software develop-

ment, but open collaborative workflows exist across a variety of domains and projects, such as

Wikipedia. Community platforms, such as project forges, enable open collaboration by defin-

ing standard tools and artifacts to collaboration [50]. Additionally, large-scale social coding

platforms such as GitHub are important to coordinate work and increase transparency about

the goals of other contributors [10]. GitHub’s pull-based development flow has become a

standard collaborative workflow for many software engineers due to its popularity in open-

source software development. Best practices from open-source development workflows have

been successfully applied to software engineering in closed environments as well, known as

inner source [6].

Collaborative work processes can also be found in data science projects. Studies in large

corporate environments showed that data scientists work in small, very collaborative teams

[66]. To collaborate, data scientists use a wide variety of tools such as Jupyter Notebooks

that allow them to share pipeline code with context; however, overly complex tools can be a

challenge to collaboration, especially when subject-matter experts must be included due to

the complexity of the data [59].
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Similar to software engineering, distributed collaboration supportedby asynchronous tools

like Slack andEmail is a commonmode ofwork during data engineering [7, 66]. On the other

hand, open collaboration is rare in data science, with most collaboration happening only for

specific projects and in small groups with diverse groups of participants. During their col-

laboration, participants largely develop their own tools or create reports based on data they

previously cleaned [7]. However, Smith et al. [53] showed that practices from open-source

software development could be successfully applied to collaborative data science workflows

in the case of feature engineering for a machine learning pipeline. They found that task man-

agement, tool mismatch, evaluation of contributions, and maintaining infrastructure are the

main challenges to collaborative data science efforts.

In addition to the tool mismatch and lack of specialized tools, no centralized collaboration

platforms exist for collaborative data science [7]. Existing research on tools and practices for

collaborative data engineering has typically focused on individual activities such as creating

labeled data [49], feature engineering [54], or versioning of datasets [2]. Evaluation of these

tools has shown promising results in their specific niche; however, no standard set of practices

or tools has been established for the data science process as a whole.

In open data ecosystems, an additional challenge exists because entities with different goals

(data publishers and data consumers) work with one dataset [68]. While open collaborative

projects in open-source software development typically work on an artifact under shared con-

trol, open data consumers often have no way to directly influence the publishers of the data

they are working with. Collaboration between data publishers and data consumers, together

with technical difficulties, has been described as a common challenge to open data use [68, 69].

However, research into collaboration between open data users themselves is rare, even if info-

mediaries demonstrate that intermediate improvements to published data have value for the

ecosystem [68].
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2.3 Domain-Specific Languages

Domain-specific languages (DSLs) are (programming) languages that are designed using the

semantics and syntax of one specific domain, instead of covering all possible domains like

general-purpose programming languages (GPLs). DSLs trade a more limited feature set for

being better suited for problems in the domain they cover. Well-known examples for DSLs

can be found in the domains of typesetting (LaTeX) or relational data processing (SQL). Due

to their focus on one particular field of application, they can reuse glossary and concepts that

are known to subject-matter experts in that domain instead of general programming concepts,

allowing these experts to learn and program more efficiently [26, 36]. Therefore, DSLs can

increase productivity and enable more participants to contribute to a problem solution than

GPLs [42].

DSLs can be categorized along numerous dimensions. While most DSLs are text-based,

graphical DSLs supported by additional tools also exist. In regard to text-based DSLs, Fowler

and Parsons [13] consider the distinction between internal and external DSLs. Internal DSLs

build on a pre-existing language, such as Scala, and add domain concepts or adapt syntax

depending on the flexibility of the host language. The public interface of domain-focused

libraries can be considered an internal DSL as well, with the API of Apache Kafka for the do-

main of stream processing as an example. In contrast, an external DSL is a separate language

that must be supported with its own tooling, but allows for a maximum of freedom during

implementation of the language itself. Often, external DSLs align with syntax conventions

found in related languages, but because they are not dependent on any host language, they

can incorporate any conventions from the application domain as well.

Requirements anddesign guidelines forDSLs are described in the literature. Requirements

include capturing domain concepts, providing adequate tool support, simplicity, longevity,

and high quality [34]. Karsai et al. [29] gathered design guidelines for DSLs, which included

defining target users and use-cases early and asking questions to alignwith theirmentalmodel.
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Todo so,DSLs should reuse the glossary of the domain and also include informal conventions

that can be learned from documents such as sketches created by domain experts [61]. Includ-

ing specific domain concepts in aDSL also allows subject-matter experts to workwith it more

quickly [22].

Another aspect that should be decided early on is if a DSL should be textual or graphical

in nature [29]. For some domains, experiments have shown that textual and graphical ap-

proaches are possible, but textual DSLs lead to higher quality models [41].

The quality of a givenDSLs can be investigated in a number of ways, but generally any eval-

uation has to be domain-specific [36]. Evaluationsmatter because ultimately the usability of a

DSL drives its adoption [1]. In comparison to purely technical or theoretical evaluations, em-

pirical studies have been rare in programming language research because they are complicated

and expensive to execute [1, 45]. Instead, a large number of publications onDSLs are solution

proposals without empirical evaluations [35, 45]. However, researchers who complete them

report that they lead to deeper insights that can not be found with other evaluation methods

[5].

Empirical studies with human participants, such as controlled experiments, should already

be considered during the development process to guide the design of the language [1]. How-

ever, controlled experiments have been relatively rare in thewider area of software engineering

research as well [33, 58].

Nevertheless, empirical evaluations of DSLs exist in multiple application domains.

Due to their limited availability, studies with real subject-matter experts are rare. In the

domain ofmarine science, Johanson andHasselbring [26] compared program understanding

by ecologists using aDSLwith theGPLC++ and found they could complete tasks in less time

and with higher correctness.

In previous studies, student participants were used as proxies for subject-matter experts.

Kosar et al. comparedGPLswithDSLs and appropriate libraries across a number of domains,

such as GUI programming, and found that the DSLs are more accurate and efficient [36, 37,
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38]. Other studies in the domains of traffic simulation and optimization [21] as well as rules

for type inference [32] showed similar improvements.

Aside from controlled experiments, other empirical research methods, such as interviews

with subject-matter experts, are used to evaluate challenges to the use of DSLs, such as low-

quality tooling [23].

Because data engineering and working with pipelines are foundational processes in many

domains, a number of DSLs that are related to the work presented here have been suggested.

Closely related to working with data pipelines is the definition of scientific workflows. Work-

flowmanagement systems are used to define and runpipelines of tools that transform and ana-

lyze data with high transparency and reproducibility [40]. Multiple DSLs that support these

definitions exist, for example, the Common Workflow Language (CWL) [9]. Using CWL,

scientists can use container technologies to define workflows consisting of any command-line

enabled tool.

An example of a DSL for data pipelines in biological sciences is BigDataScript [8], created

for use by subject-matter experts and using a script-style programming model. Its goal is to

be architecture-independent and allow data pipelines to be executed on many different com-

puting environments. The concept of pipelines can also be found in the domain of software

engineering, for example, during continuous integration. Fonseca et al. [12] described an ex-

ternal DSL called PACE that improves on the previous manual editing of JSON configs by

professional software engineers in an industrial context. Lastly, PiCo is a DSL using pipes

and the data flow computational model. Misale [43] demonstrated and evaluated the perfor-

mance of their implementation.

AsKosar et al. [36] point out, the design and evaluationofDSLshave tobedomain-specific.

In this thesis, we contribute to the body of knowledge on DSLs by studying the impact of

design choices for DSLs in the domain of data engineering.
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3
Aim and Structure of the Thesis

In this chapter, we present the main goals and research questions that are discussed in this

thesis. In addition, we outline the overall structure that we followed during the research and

how it maps to the published articles and chapters in this thesis.

3.1 Goals and Research Questions

Our main goal was to find out why open collaborative workflows are not as prevalent in data

engineering for open data as they are in software development, and how to enable the open

data community to work more collaboratively.

We focused here on a subset of identified problems, namely a shared collaboration artifact

between software engineers and subject-matter experts, and appropriate tooling for it. As

part of the solution, a DSL was implemented as an open-source software artifact. We cover

the research and scientific contributions surrounding the language design and the creation of

a test bed for continuous improvement of this language using rigorous, empirical evaluations.

Therefore, even thoughwepresent the language as part of chapter 5,we aimed to investigate
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the wider context of problems in open collaborative data engineering and generalized insights

into how text-based DSLs for data engineering can best be adapted to the needs of subject-

matter experts.

In this thesis, we initially set out to answer one overarching research question (RQ):

Research Question 1 (RQ1): “How can open collaborative data engineering with open

data be enabled?”

After investigating existing challenges and narrowing down the scope of the work to en-

abling subject-matter experts to contribute to collaborative data engineering projects, we ad-

ditionally considered the following research questions:

Research Question 2 (RQ2): “Is a text-basedDSL a viable foundation for a collaboration

artifact in open collaborative data engineering?”

Research Question 3 (RQ3): “What are important considerations for a DSL to create

data pipelines by subject-matter experts?”

3.2 Thesis Structure: Design Science

In this section, we discuss the thesis structure, the overarching research design that we used,

and how itmaps to the publications. Part of the workwas completed in collaborationwith an

industry partner during the Software Campus project, which is presented first. Our research

methodology was based on design science according to Peffers et al. [47]. We present design

science, its activities, and how they relate to the research projects that we conducted. An

explanation of the individual research methods and their results is discussed in the following

chapters when appropriate.

An overview of the projects that are discussed here is shown in Table 3.1.

Industry Collaboration: The Software Campus

Thework presented herewas partially completed as part of the SoftwareCampus (SWC).The

Software Campus is an accelerator for future leaders in IT and provides funding for doctoral
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Project Methods Publication Results Described In

P1 Systematic Literature Review [30]
Descriptive Data Synthesis [30] [16]

1. Overview of participants, activities,
tools used and artifacts created during
collaborative data engineering

2. Description of first challenges to
open collaboration

Section 4.2

P2 Qualitative Survey [24]
Descriptive Data Synthesis [30] [17] 1. Identified challenges to open collaboration

2. Guidelines to enable open collaboration Section 4.3

P3 Descriptive Survey [31]
Thematic Analysis [4] [20]

1. Viability of a DSL for data engineering
by SMEs

2. Description of major effects when using
a DSL for data engineering

3. Important hypotheses to test

Section 7.2

P4
Controlled Experiment [33]
Descriptive Survey [31]
Thematic Analysis [4]

[19]
1. Effects of a DSL on data pipeline structure
understanding

2. Descriptions of reasons for the effects
Section 7.3

P5 Controlled Experiment [33] [18] 1. Effects of spreadsheet syntax on
DSL efficiency Section 7.4

Table 3.1: Overview of projects, methods, and publications that were completed as part of the
thesis.

students in computer science to complete a research project with an industry partner.

For this project, JValue-OCDE-Case1, we cooperated with Springer Materials, a company

of the Holtzbrinck Publishing Group. Springer Materials offers a data product consisting of

curated data for materials science. In addition to closed data sources, ingesting high-quality

open data (for example, from scientific publications) adds additional value to their business.

As a partner in the Software Campus project, they offered feedback and guidance from an

industry viewpoint. We worked with industry contacts for the problem identification, and

during the demonstration activity of design science research.

Design Science

Design science, according to Peffers et al. [47], is a research methodology based on the itera-

tive creation and evaluation of an innovative artifact to solve a real-world problem. Six main

activities are part of the design science process: Problem identification, objective definition,

design and development, demonstration, evaluation, and communication. While these activ-

ities are presented as a linear process, in practice, they are iterative, and researchers can revisit

earlier activities if new information requires an adaptation.
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1. Problem identification: During problem identification, researchers define a specific

research problem and motivate its solution. Concluding this activity requires a clear under-

standing of the problem domain that has to be developed. We approached the problem iden-

tification phase by first familiarizing ourselves with the academic literature on collaboration

systems in data engineering by open data users using a systematic literature review (see subsec-

tion 4.1.1). Building on the knowledge gained from the literature, we extended our problem

identification with a qualitative survey using semi-structured interviews with open data prac-

titioners (see subsection 4.1.2).

2. Objective definition: With a deeper understanding of the problems in the field of re-

search, the researchers define objectives for a solution, based onwhat is considered possible to

build and which alternative solutions already exist. Objectives also lay the basis for how the

solution is evaluated during the following activities. In our work, we derived the objectives

based on the challenges to collaborative data engineeringwe identifiedpreviously anddescribe

them in section 4.4. To ensure we could make meaningful progress, we focused on a subset

of the most important challenges that we were in a good position to propose solutions for in

the form of a complex software engineering artifact.

3. Design and development: The design science artifact is created during the design and

development activity. An artifact does not have to be physical or a software solution, but can

also be a new model, theory, or even an improvement for already existing solutions. In our

work, the developed artifact is an open-source DSL, called Jayvee, to build data pipelines and

the accompanying infrastructure to empirically evaluate and improve it using scientific meth-

ods. We give an overview of the language design, technology choices, and the development

process in chapter 5.

4. Demonstration: After it is developed, the artifact is used to solve at least one instance

of the described problem to demonstrate that it is usable and appropriate. In contrast to the

following evaluation, the goal of the demonstration is only to show that the artifact can be

used to solve the problem at all, without formally evaluating the outcome. We were able to
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demonstrate the use of our artifact in two different use-cases, first with students solving data

engineering exercises (see section 6.2) and secondwith industry during the project completed

as part of the Software Campus (see section 6.1).

5. Evaluation: During evaluation, the artifact is observedwhile it is being used to solve the

problem, and the outcomes are measured. These performance insights are then compared

against the objectives defined earlier. Depending on the goal of the evaluation, different eval-

uation methods, measurements, and analyses can be appropriate.

For our evaluation, we followed a two-step process. First, we evaluated if the proposed

DSL was a potential basis for a collaboration artifact for data engineering and developed po-

tential hypotheses to be evaluated by working with user feedback using qualitative methods

(see section 7.2). Second, we narrowed our focus and evaluated concrete hypotheses using

mixed-methods (in section 7.3) and later with a controlled experiment (see section 7.4). To

do so, we created a module calledMethods of Advanced Data Engineering to teach students

about open data and data engineering while introducing them to Jayvee (described in more

detail in section 6.2). The module enabled us to evaluate the language with feedback from

a large number of users, while also providing a test bed for future language design based on

empirical data.

6. Communication: Finally, the knowledge about the identified problem, the proposed

solution in the form of the artifact, and the results of the evaluation must be communicated

to the broader scientific community. As a cumulative thesis, the scientific contributions of

the work described here have been continuously communicated in the form of scientific pub-

lications. The overall context and process are additionally described in this thesis. Because

design science is an iterative process, multiple cycles of objective definition, design, develop-

ment, and evaluation are typically completed during a project, while the final report presents

only the outcome of the work linearly. This is also the case in this thesis, where we will focus

on the final result of the process instead of reporting on each iteration.

To summarize, Figure 3.1 shows an overview of the activities and how they relate to the
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research projects we conducted.

P1: Systematic
Literature Review

Problem
Identification

P2: Qualitative Survey

Objective
Definition

P3: Descriptive Survey

P4: Controlled
Experiment

& Descriptive Survey

P5: Controlled
Experiment

Design &
Development Demonstration Evaluation Communication

DSL: Jayvee Software Campus:
Springer Materials

Teaching:
Methods of Advanced

Data Engineering

Thesis

Figure 3.1: Activities of the design science process according to Peffers et al. [47] with associ-
ated projects and artifacts described in this thesis.

Each of the following sections will focus on a specific activity of the design science process,

from problem identification to evaluation, highlighting the research methods used and main

results, as well as how they were communicated in scientific publications.
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4
Problem Identification and Objective

Definition

During the problem identification and objective definition, we started with explorative re-

search studies to build an understanding of major challenges to open collaborative data engi-

neering. Initially, we took into account a diverse set of sources and projects. In addition to

providing a wider overview of the field, includingmultiple viewpoints, such as academic liter-

ature and interviewswith data practitioners, also allowed us to investigate the same challenges

from different angles.

In this chapter, we first present the research methods we used in section 4.1, followed by

major research projects we conducted during problem identification and their main results

(section 4.2 and section 4.3). Finally, as a result of the activity, we derived objectives from the

identified problems that guide the design and development of the design science artifact in

section 4.4.
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4.1 ResearchMethods

During problem identification, we used systematic literature reviews according to Kitchen-

ham [30] to familiarize ourselves with the existing academic literature and prepared a qualita-

tive survey according to Jansen [24] to gain insights from practitioners working with data.

4.1.1 Systematic Literature Review

Systematic literature reviews according to Kitchenham [30] can be used to understand the

current state of the art in the academic literature. The steps are first to plan the review, then

to conduct the review (including selecting primary studies and extracting and synthesizing

data), and finally to report the review in an appropriate venue.

During planning, researchers define a research protocol based on the motivation for a sys-

tematic review. This research protocol includes the research questions that should be an-

swered, a clearly defined search strategy with objective inclusion and exclusion criteria, and

quality measurements for primary studies. Additionally, researchers should decide at this

point on a strategy for data extraction as well as a plan for data synthesis.

Based on the research protocol, the structured review is then conducted. While carefully

documenting the process, the researchers are executing the search for primary studies as de-

fined previously. Found studies are evaluated based on the inclusion/exclusion criteria and

their quality, after which they are either retained or removed from the pool of relevant litera-

ture.

Once relevant studies have been identified, data can be extracted and finally synthesized us-

ing appropriate researchmethods depending on the researchquestions. Kitchenham includes

suggestions for purely descriptive approaches as well as quantitative synthesis using statistical

methods.
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4.1.2 Qualitative Survey

The qualitative survey, according to Jansen [24], is a research method appropriate for explor-

ing the diversity of a domain under study. In contrast to a statistical survey, which describes

distributions of variables in a populationbasedonquantitative data, qualitative surveys gather

qualitative data (typically using interviews) from a defined population. When performing a

qualitative survey, the first step is to operationalize a way to answer the research question by

defining a knowledge aim consisting of the topic to be studied (thematerial object), the aspect

of it to study (the formal object), the empirical domain, and the unit under observation.

Regarding sampling, qualitative surveys aim for a diverse sample that covers all relevant ex-

pressions of the phenomenon under study. This sampling can either be achieved by creating

a sampling model in advance (e.g., with knowledge from previous studies about the popula-

tion) or by sampling iteratively, analyzing the collected data for categories, and adapting the

sampling model until a predefined stopping criterion is reached.

Data collection ismost oftendoneby interviewingmembers of the population, either using

free-form or semi-structured interviews and transcribing them. It is also possible to use other

qualitative data sources, such as meeting minutes or observation notes. After collecting data,

it can be analyzed descriptively. Additionally, a variety of appropriate data analysis methods

for qualitative data can be used to extract meaning from the data. Generally, a qualitative

survey can be either inductive or deductive. When conducting an inductive qualitative survey,

the raw data is analyzedwithout preconceived theory, while in a deductive study, at least some

predefined structure (for example, from an existing theory) is appliedwhen analyzing the data.

Especially inductive qualitative surveys are often iterative, where new data is collected and

analyzed until a stopping criterion is reached. Qualitative surveys can also be executed as a

single run with a data gathering phase, followed by an analysis phase, usually when based on

existing knowledge from a pre-existing theory.

For the analysis phase, Jansen describes three categories of possible analysis: Unidimen-

sional andmultidimensional description, aswell as explanation. Inunidimensional approaches,
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data is organized into objects, their dimensions, and categories for each dimension. To ac-

complish this, parts of the data are assigned a code, and codes can be related to each other.

In downward coding, codes get increasingly more specific to describe diversity. In upwards

coding, codes become increasingly abstract to show common patterns in the data. During

multidimensional description, the data is synthesized either by concept or by case. In the

concept-oriented approach, common topics or categories are extracted frommultiple samples,

while in the case-oriented approach,multiple similar cases are grouped together based on their

characteristics and assigned labels. In addition to these descriptive categories or labels, a data

analysis approach in the explanation category would relate them to a wider context.

4.2 Collaboration Systems in Open Collaborative Data Engineering

As a first step to problem identification, our goal was to understand how data users collabo-

rate during data engineering with open data. While data engineering by data publishers is a

relatively well-covered topic in the literature, few studies exist that summarize how data users

improve their data. We conducted an exploratory systematic literature review to gain an un-

derstanding who participates during collaborative data engineering by data users, what activ-

ities they complete, which tools they use and what artifacts they create. Here we present the

main results that relate to the thesis topic, for additional details see the full publication in

Appendix AHeltweg and Riehle [16].

4.2.1 Study Design

After first reading existing literature in an ad-hoc manner, we designed a systematic literature

review according to Kitchenham [30]. We decided to search in Scopus and Google Scholar

to include most scientific publications. For both, we designed search queries based on a com-

bination of open data with workflow, process, practice, or participant, their plurals and synonyms.

We included only articles that describe data engineering workflows or concrete projects with

open data and excluded any articles that are not peer-reviewed, not accessible to us, or that
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only present the point of view of data publishers.

Based on these searches and forward snowballing [62], we found 487 primary studies that

we filtered for duplicates, study type, and relevance to create a final set of 18 relevant articles.

From these articles, we extracted elements of collaboration systems (participants, activities,

tools, and artifacts) in open collaborative data engineering by open data practitioners. We

also noted some potential challenges to explore in follow-up studies. For data extraction, we

followed the guidelines for descriptive synthesis by Kitchenham and created a data extraction

form to gather the relevant elements from each article in a structured manner.

Because we were interested in the diversity of existing elements and did not want to make

statistical inferences at this point, we decided to use theoretical saturation as a stopping crite-

rion [3]. Therefore, we tracked how many new elements we identified with each processed

article and considered theoretical saturation to be reached when we did not gain any new in-

sights in the final studies.

4.2.2 Data Engineering Includes Social Activities

We described a wide range of activities that are completed as part of data engineering efforts

by participants, as shown in Table 4.1.

Acquire Assess Communicate Extend Improve Maintain Understand

Build Infrastructure Ensure Anonymity Ask Publisher AddMetadata Aggregate Archive Analyze
Discover Evaluate Discuss Create Features Clean Document Ask Experts
Extract Preview Find Community Label Combine Refresh Experiment
Read Documentation Measure Availability Find Skilled Users Rate Curate Learn Subject-matter Knowledge
Search Verify License Give Feedback Translate Enrich Learn Structure
Select Visualize / Plot Data Request Data Link
Store Share Data (Publisher) Normalize
Validate Share Data (Stakeholders) Reformat

Share Information Repair
Structure

Table 4.1: Activities performed during data engineering (adapted from [16]).

Aside from the expected technical work, such as creating software and infrastructure to

extract and clean data, we observed that participants also complete activities related to under-

standing data or communicating with other stakeholders. In regard to understanding data,

participants either engage the data directly, e.g., by experimenting with the data or exploring
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its structure, or they have to learn subject-matter knowledge in the application domain of

the data. The need for deeper subject-matter knowledge is especially prevalent in fields with

more complex datasets, such as data from open science projects. We found that, to acquire

this knowledge, activities related to communication are important. Often, data users have

to communicate with data publishers to ask questions about the data offers or report issues

with the data. In addition, data users try to find other users to help them either with specialist

skills, such as software engineering, or subject-matter knowledge to make sense of the dataset

content. In this sense, collaborative data engineering is as much a social challenge as it is a

technical one.

4.2.3 Participation by Subject-Matter Experts

Participants from a diverse set of backgrounds engage in data engineering. Table 4.2 provides

an overview of the roles we extracted from the literature.

Participants
Businesses Mediators
Citizen Scientists NGOs
Civil Servants Open Data Experts
Data Scientists Organisations
Subject-matter Experts Private Citizens
Goverment Agencies Researchers
Hackathon Participants Software Developers
Infomediaries Startups/Entrepreneurs
Journalists Students
Legal Advisors

Table 4.2: Participants in data engineering, by user role (adapted from [16]).

Noteworthy is the participation of users with specialist knowledge, such as experts in the

subject matter of the data, legal advisors, or open data experts who are familiar with the wider

data ecosystem. As a result of the need to understand data, these participants collaborate with

other data users to share their knowledge. In these collaborations, experts without a software

development background face challenges with the high entry barriers to programming and
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have to collaboratewith software engineerswho actually build the pipelines handling the data.

Additionally, subject-matter experts are also data users themselves and need high-quality

data for their own projects, e.g., to analyze during scientific research or to build products in

industry. In these cases, experts need to either reach out to other participants with specialized

knowledge in software engineering or try to create data pipelines themselves.

4.2.4 Conclusion and Future Research

Based on our systematic review of the existing literature on collaborative data engineering

with open data, the experiences and challenges of data users are not clearly described. In the

collaborations we investigated, participants completed the expected technical work, such as

building software to extract and clean data. However, many activities are of a social nature,

such as reaching out to subject-matter experts to understand data content or working with

legal advisors to clarify allowed usage. Participants come from a multitude of backgrounds

with varying previous experiences in software engineering. As a result, users without a pro-

gramming background collaborate with software engineers or face high technical challenges

when completing their own data engineering projects.

With the insights from this study, we defined a follow-up qualitative survey using semi-

structured interviews with data engineering practitioners to gain a more detailed, first-hand

knowledge of the challenges that data users face during data engineering. Our goal was to

add additional rigor to the results by data source triangulation [56] and to clearly describe the

work dynamics and challenges in open collaborative data engineering.

4.3 Problems in Open Collaborative Data Engineering

Building on the knowledge gained in the systematic literature review (section 4.2), we con-

ducted a qualitative survey using semi-structured interviews with data engineering practition-

ers according to Jansen [24]. In addition to verifying the elements of collaboration systems

found previously in the literature, we asked for more detailed insights into the social systems
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(including roles and interactions) in which participants work during data engineering, and ex-

plicitly about challenges they face when performing collaborative data engineering. The com-

plete study has been published as part ofHeltweg andRiehle [17] (seeAppendix B). Here, we

summarize the main findings regarding roles in collaborative data engineering project teams

and challenges relevant to the research questions.

4.3.1 Study Design

We developed the qualitative survey according to Jansen [24] by defining the knowledge aims

as understanding the diversity of social systems and challenges during collaborative data en-

gineering by data engineering practitioners. Our sampling model was based on our previous

insight into the population with categories relating to job role, employer, project type, and

subject matter. We considered professional and hobbyist data practitioners and whether they

weremainly workingwith open or private data. As wewere still in an exploratory phase of the

project and did not need to make generalized conclusions based on statistical methods at this

point, we employed convenience sampling from our personal networks and industry contacts

from the Software Campus project (see section 3.2). For this sampling, we reached out to in-

terview participants from various roles, employers, and subject-matter domains that worked

with open and private data.

Before starting the interviews, we designed an interview guide that allowed us tomake sure

interviews would contain sections about demographic data, collaborative data engineering

itself, the social systems participants worked in, and the challenges they faced. We left oppor-

tunities for participants to go deeper into any topic they felt strongly about or to add further

points at the end of the interviews. Similar to the systematic literature review, we used descrip-

tive data synthesis as described byKitchenham [30] to analyze the qualitative datawe gathered

when transcribing the interviews. Because of our pre-existing theory, based on the structured

literature analysis described in section 4.2, we approached the data analysis as deductive. We

extracted roles and interactions that existed in social systems, as well as social and technical
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challenges mentioned by interviewees.

4.3.2 Roles in Collaborative Data Engineering

In the context of larger collaborative projects in the open data ecosystem, roles can be catego-

rized by the type of involvement in a concrete data project. We observed that, at its core, a

project group is directly working on a specific application based on data. A larger data com-

munity consisting of other data users, data publishers, or external subject-matter experts inter-

acts with the project group, facilitated by individual participants who fulfill communication

and connection roles. These data communities are most obvious in open data environments

where they are loosely connected by a shared interest, but similar communities exist in closed

data contexts as well, for example, when multiple business units work with the same dataset.

Lastly, sometimes auxiliary roles such as infrastructure providers, external software develop-

ers (e.g., developing open-source software that is used by the project group), or statisticians

can be observed that support the project group on very specialized tasks.

Of high interest to collaborativework in data engineering are the social dynamics inside the

project group itself, as they are the core of all collaborative data engineering projects, and they

work togethermost closely. We found that it includes contributors that fulfill the roles of soft-

ware developer, creating the software artifacts that ultimately handle the data, data engineer,

who provides guidance on how to work with data regardless of its type and subject-matter

expert, a non-technological role that provides expert knowledge to understand the semantic

content of the data. Amediator role facilitates the exchange of knowledge between these roles.

Depending on the nature of the data, the skills required to fulfill any of these roles might be

very advanced (with complex data, for example, from scientific measurements). It is possible

for one person to combine multiple roles, for example, for a technical person with a program-

mingbackground tobothbuild software artifacts as a software developer andunderstandhow

to work with data as a data engineer.

Because of the different knowledge required to serve in these roles, some participants have
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a technical viewpoint on data engineering, while others have a subject-matter viewpoint. On

the one hand, contributorswith technical expertise understand how to develop infrastructure

for data or how to work with common file formats, but struggle to understand the meaning

of complex datasets. On the other hand, subject-matter experts know the content of the data

and canfind and resolve semantic issues, but face technical challengeswhen they have to create

software artifacts to work with data. Between these two viewpoints, a mediator has to explain

both technology and subject matter, either by having a basic understanding of both or by

developing that understanding from talking to other contributors. Without this facilitation,

subject-matter experts and the more technical roles of software developer and data engineer

struggle to collaborate.

Figure 4.1 shows the roles described in a project group and the social interactions related

to this mediation process.

Explain technology

Software Developer

Explain subject-matter
Explain subject-matter

Explain technology

Mediator Explain subject-matter

Subject-matter
ExpertData Engineer

Figure 4.1: Roles and social interactions in a project group during the mediation process as
part of collaborative data engineering (adapted from [17]).

4.3.3 Lack of Purpose-Built Tools and Standard Artifacts

We identified a number of both technical and social challenges faced by data practitioners

during collaborative data engineering from the interviews. For completeness, an overview of

all challenges, coded as C1-C13, is shown in Table 4.3.
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ID Type Title

C1 Technical Need for specialized skills but high barriers to participation
C2 Social Finding and connecting with community members
C3 Social No well-understood collaboration practices
C4 Technical No standard tools or artifacts
C5 Technical Data representation
C6 Technical Inadequate tools
C7 Technical Infrastructure for data projects
C8 Technical Bad data sources
C9 Social Conflicts with data publishers
C10 Social Unclear data use cases
C11 Social Data semantics
C12 Social Missing incentives
C13 Social Missing knowledge

Table 4.3: Challenges to open collaborative data engineering (adapted from [17]).

Some, such as the need for specialized skills but high barriers to entry (C1), problems with

data infrastructure (C7) or semantics (C11), aswell asmissing knowledge (C13), directly arise

due to the multiple viewpoints on data explained earlier.

In comparable open collaboration workflows such as open-source software development,

technical solutions such as version control systems like git and project forges likeGitHubhave

contributed to reducing technical challenges and enabling open collaboration. Additionally,

a standard collaboration artifact exists in open-source software: Programs are expressed in

text as source code, meaning collaboration tools can focus on one artifact to support, and

community standards can develop for collaboration processes involving this artifact (such as

the pull-request-based workflow used by GitHub).

In contrast, we could neither find well-understood collaboration practices (C3) nor stan-

dard tools or artifacts (C4) that are used during collaboration in data engineering with open

data. The technicalmembers of the community often use tools that are originally built to sup-

port software engineering (such as git and GitHub) to collaborate on source code in general-

purpose programming languages (GPLs). While these tools are usable for collaborative data

engineering, they do not ideally support it and, in fact, might hinder the adoption of spe-
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cialized tools by being just good enough not to search for better alternatives. On the other

side, subject-matter experts often rely on visual programming tools to build data pipelines or

spreadsheet software to clean data. These tools aremostly proprietary and do not support col-

laboration well. Instead, they focus on being easy to use for individual, non-technical users.

With these differences, subject-matter experts encounter high technical barriers to collabora-

tion when they need to contribute source code in a GPL, while technical users do not know

the tools subject-matter experts use and can not reuse the existing collaboration infrastructure

from open-source software development.

From these insights, we created a number of guidelines to enable open collaboration dur-

ing data engineering as shown in Table 4.4. They include general problems to be aware of

with open data, such as low quality or non-responsive publishers (G1). Most importantly,

however, we described guidelines that can be followed by project teams to enable easier collab-

oration, such as making sure the project is accessible to software developers, data engineers,

and subject-matter experts alike (G2) and agreeing on standard collaboration practices and

artifacts (G3). One way to achieve these goals is to create purpose-built tools for collaborative

data engineering that can be used by technical and non-technical contributors (G4).

ID Guideline

G1 Planwith data problems like distributed sources, updates, low-quality,
and limited access to publishers

G2 Make projects accessible to data engineers, software developers, and
subject-matter experts

G3 Enable collaboration by agreeing on standards, improving project vis-
ibility, and curating data

G4 Support projects with tools built specifically for collaborative data en-
gineering

Table 4.4: Guidelines to enable open collaborative data engineering (adapted from [17]).
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4.3.4 Conclusion and Next Steps

With additional data from a qualitative interview study with data engineering practitioners,

we found multiple roles with varying degrees of technical expertise that collaborate during

data engineering. These roles include subject-matter experts, who understand the semantic

meaning of data, aswell as software developers and data engineers, who canworkwith data on

a technical level. Contributors to collaborative data engineering projects face a variety of tech-

nical and social challenges to collaboration. In contrast to open collaborative workflows that

have been shown toworkwell, such as open-source software development, open collaborative

data engineering lacks specialized tools and standard collaboration artifacts. Instead, techni-

cal contributors rely on existing open-source software development infrastructure, such as

git and GitHub, while subject-matter experts use visual tools or spreadsheet software to solve

their individual data engineering problems.

The domain knowledge we gained and the challenges we identified conclude the problem

identification step of the design science process. We derive objectives to solve by designing an

artifact in the following section.

4.4 Objectives for Design and Development

During the problem identification, we developed an understanding of the main challenges

to open collaboration in data engineering (shown in Table 4.3) and the social dynamics in

project groups. We described the participation by subject-matter experts and friction when

working with non-optimal tools due to the high barriers to participation.

With reference to RQ1 (in section 3.1), how open collaborative data engineering can be

enabled, reducing these challenges would lower barriers to entry and increase participation.

Especially the lack of a standard collaboration artifact for both subject-matter experts and

technical participants is an important challenge for which we were well-positioned to pro-

pose a solution. As a middle ground between text-based GPLs and visual tools, DSLs stand
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out as a potential solution that could allow software engineers to reuse existing collaboration

infrastructure and still be accessible to subject-matter experts.

Derived from these insights, we defined our objectives for the design and development

phase:

Objective 1: Develop a text-based DSL to create data pipelines that is easier to use by

subject-matter experts than a GPL.

By designing and developing a newDSL as the artifact of the design science process, we can

potentially validate and evaluate it iteratively to answer RQ2, regarding the viability of a DSL

for open collaborative data engineering, andRQ3, regarding the important considerations of

a language for subject-matter experts, respectively.

Because our goal was to create a purpose-built language for experts in subjects we are not fa-

miliar with, we did not attempt a purely theoretical construction. Instead, we understood the

design of the language as an empirical software engineering challenge in which we iteratively

designed and evaluated language features based on user feedback.

Objective 2: Create a test bed for future language development to support open collabo-

rative data engineering with subject-matter experts.

As a result of the empirical software engineering approach to language design, our goal

was to create a solid foundation to get user feedback and run experiments to gather data to

evaluate features. With this development approach, we were building out a theory of which

features are important for a good DSL developed for subject-matter experts, answering what

important considerations exist for DSLs when it comes to creating data pipelines by subject-

matter experts in general (RQ3, section 3.1).
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5
Design and Development

Based on the previously defined objectives, our goal was to develop a text-based DSL that

makes creating data pipelines easier for subject-matter experts. Additionally, the language

ecosystem should be usable as a good test bed for future language design, based on empirical

data from users.

The implementation of the language as a software artifact is mainly a software engineering

challenge. In the context of this thesis, the main scientific purpose of developing a new DSL

was the ability to make use of it in empirical studies to guide the incremental evolution of

the language and provide knowledge for similar projects. These evaluations, including the

development and testing of hypotheses related to important features for DSLs used in data

engineering, are described in chapter 7.

In this chapter, to provide the necessary context, we start by giving an overview of the final

output of the design and development activity, the DSL Jayvee itself in section 5.1. After-

wards, we present the underlying ideas behind the initial language design in section 5.2, the

process we followedwhile developing it (section 5.3), andmajor implementation choices (sec-
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tion 5.4).

5.1 Jayvee, A Domain-Specific Language to Create Data Pipelines

We implemented Jayvee, a DSL to model data pipelines. Additionally, we wrote a reference

interpreter that parses a Jayveemodel and executes one pipeline run as a batch process. In sup-

port of the language itself, we published a language server and a VSCode plugin that provides

syntax highlighting and autocompletion to edit Jayvee models. The entire project is available

as open-source software on GitHub1 under the AGPL-3.0-only license.

As previously described, Jayvee aligns closely with the mental model of data pipelines as a

connected series of processing steps and follows a pipes-and-filters architecture. Jayveemodels

consist of pipelines that include these processing steps (called blocks). Blocks are connected in

a directed, acyclic graph (DAG)with pipes. This structure represents a data flow from a source

(a block without an input pipe that extracts data), over transformation steps (blocks with an

input and output pipe), into a sink (a block with an input pipe but without an output pipe).

As an accompanying example, consider the Jayvee model given in Listing 5.1. The model

describes a data pipeline that extracts open transport data, parses it, and saves it in a SQLite

database. The data is provided in the General Transit Feed Specification (GTFS) format that

consists of a ZIP file containing CSV files following standard schemata. The model is struc-

tured with one pipeline (called GTFSPipeline) and multiple blocks (following the block keyword,

such as the GTFSFeedExtractor). The blocks are connected into a DAG with pipes (using the ->

syntax) in lines 4-10.

Jayvee models can publish elements from files and use elements that have been published in

the workspace. In addition, a standard library of common block and value types is loaded

automatically for every Jayvee model.
1https://github.com/jvalue/jayvee
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Listing 5.1: A complete Jayvee model to extract an open transport dataset, parse it, and save

the transport stops in a SQLite database.
1 use { Latitude, Longitude } from "./value-types.jv";

2

3 pipeline GtfsPipeline {

4 GTFSFeedExtractor

5 -> ZipArchiveInterpreter

6 -> StopsFilePicker

7 -> StopsTextInterpreter

8 -> StopsCSVInterpreter

9 -> StopsTableInterpreter

10 -> StopsLoader;

11

12 block GTFSFeedExtractor oftype HttpExtractor { url: "https://developers.google.com/static/transit/gtfs

/examples/sample-feed.zip"; }

13

14 block ZipArchiveInterpreter oftype ArchiveInterpreter { archiveType: "zip"; }

15

16 block StopsFilePicker oftype FilePicker { path: "/stops.txt"; }

17

18 block StopsTextInterpreter oftype TextFileInterpreter { }

19 block StopsCSVInterpreter oftype CSVInterpreter { enclosing: '"'; }

20

21 block StopsTableInterpreter oftype TableInterpreter {

22 header: true;

23 columns: [

24 "stop_id" oftype text,

25 "stop_name" oftype text,

26 "stop_lat" oftype Latitude,

27 "stop_lon" oftype Longitude,

28 ];

29 }

30

31 block StopsLoader oftype SQLiteLoader { table: "stops"; file: "./gtfs.db"; }

32 }
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Blocks have an oftype relationship to a block type, either built-in (with its execution imple-

mented in the interpreter) or written in Jayvee itself. To describe a block type in Jayvee, a

composite block is used that defines properties, inputs, outputs, and an internal pipeline from

input ports to output ports. The Jayvee standard library includes some domain-specific com-

posite block types, such as the GTFSExtractor, shown in Listing 5.2, that combines the download

of aGTFSfile and the extractionof the underlyingZIP archive. Similar composite blocks exist

for interpreting the contents of a GTFS dataset according to the standard definition.

Listing 5.2: The GTFSExtractor, a domain-specific composite blocktype to extract GTFS

data, implemented in Jayvee.
1 publish composite blocktype GTFSExtractor {

2 property url oftype text;

3 input inputPort oftype None;

4 output outputPort oftype FileSystem;

5

6 inputPort

7 -> FileExtractor

8 -> ZipArchiveInterpreter

9 -> outputPort;

10

11 block FileExtractor oftype HttpExtractor { url: url; }

12 block ZipArchiveInterpreter oftype ArchiveInterpreter { archiveType: "zip"; }

13 }

Value types in Jayvee are described by a valuetype element that contains a named collection of

constraints that restrict valid values for built-in or user-defined value types. If a value does not

conform to the defined value type, it is discarded as invalid. Value types are used in Listing 5.1

to define an expected data schema in the StopsTableInterpreter block (line 32). Some are built-in

value types (such as integer), others are imported from an additional file where they are defined

by the model author as shown in Listing 5.3.
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Listing 5.3: Value type definitions in Jayvee using a constraint with expressions.
1 constraint GeographicCoordinateRange on decimal: value >= -180 and value <= 180;

2 publish valuetype Longitude oftype decimal {

3 constraints: [ GeographicCoordinateRange ];

4 }

5 publish valuetype Latitude oftype decimal {

6 constraints: [ GeographicCoordinateRange ];

7 }

Using Jayvee, data can be transformed with transform elements that use expressions written

in a limited set of operators and the value keyword to calculate an output value from any num-

ber of input values.

Using the Jayvee interpreter, the example model shown in Listing 5.1 can be executed, op-

tionally with added debug output using a command-line command: jv -d model.jv. Listing 5.4

shows the resulting output. An overview of the instantiated pipeline (lines 1 - 9) is always

printed, followed by debug output (lines 11 - 18, truncated for readability).
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Listing 5.4: A complete Jayvee model to extract an open transport dataset, parse it, and save

the transport stops in a SQLite database.
1 [GtfsPipeline] Overview:

2 Blocks (7 blocks with 1 pipes):

3 -> GTFSFeedExtractor (HttpExtractor)

4 -> ZipArchiveInterpreter (ArchiveInterpreter)

5 -> StopsFilePicker (FilePicker)

6 -> StopsTextInterpreter (TextFileInterpreter)

7 -> StopsCSVInterpreter (CSVInterpreter)

8 -> StopsTableInterpreter (TableInterpreter)

9 -> StopsLoader (SQLiteLoader)

10

11 [GTFSFeedExtractor] Fetching raw data from https://developers.google.com/static/transit/gtfs/examples/

sample-feed.zip

12 [GTFSFeedExtractor] Successfully fetched raw data

13

14 // ... more debug output

15

16 [StopsLoader] Inserting 9 row(s) into table "stops"

17 [StopsLoader] The data was successfully loaded into the database

18 [StopsLoader] Execution duration: 4 ms.

19 [GtfsPipeline] Execution duration: 258 ms.

The execution of the data pipeline described in the example model downloads the GTFS

source, cleans the content according to the defined value types, and creates a SQLite file as

sink that contains stops data, as shown in Figure 5.1.

A full documentation of Jayvee is available online2. Additional examples for the use of

Jayvee can be found in chapter 6.
2https://jvalue.github.io/jayvee

38

https://jvalue.github.io/jayvee


Figure 5.1: AnSQLite database file, created by a Jayveemodel downloading an open transport
data file. The table shown includes stop ids, names, and locations, extracted and validated
from the original GTFS format.

5.2 Initial Language Design

With a background in agile software development methods, our approach to language design

was iterative and to take early user feedback into account. However, we still needed an initial

version of the language before we could gather information on potential improvements.

To start, we followed guidelines from academic literature on DSLs, which emphasize the

importance of aligning with the mental model and notation that is used by the eventual users

of the DSL and not relying too closely on terms from language theory [29, 61]. In regard

to data pipelines, we understood that most data practitioners were either using visual pro-

gramming tools, which presented data pipelines as a graph of connected processing steps, or

thought of them thatway. We also looked at informal notations of data pipelines (as suggested

byWile [61]), such as sketches and diagrams, which are also typically using a boxes and arrows

notation.

Jayvee’s execution semantics are defined by a reference interpreter that allows us to evolve

the semantics togetherwith the implementationunder test. To arrive at aworking version fast,

we started out by providing a small set of basic functionality using the language structures pro-
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vided by this interpreter. Following those, we bootstrapped as soon as possible into describing

more complexprocessing steps in the language itself using a combinationof these atomic steps,

motivated by thewell-known composition over inheritance guideline fromobject-oriented pro-

gramming. This understanding closely resembles the pipes-and-filters architectural pattern

used for data processing [14]. However, for users without a technical background who are

not familiar with this approach, the name filter is not very intuitive. Because this structure

invokes the idea of building a larger structure from small blocks, we ultimately decided to call

these processing elements blocks and connectors pipes. In order to keep the initial version as

simple as possible, we decided on a minimal set of language elements, adding only a pipeline

element to group blocks and pipes.

In addition to the design considerations regarding the language, we understood from our

objectives that the DSL could not only be an academic prototype, but we would also need to

provide a language ecosystem with support tooling if it were to be used by data practitioners.

Our goal was to have one major integrated development environment (IDE) that supported

the languagewith syntax highlighting and completion hints, a design decision that influenced

our technology choices as explained later in section 5.4.

5.3 Development Process

During development, we followed an open-source style development process using GitHub

to coordinate activities.

After we gathered an increasing amount of feedback and knowledge about the language

design approaches that worked, we synthesized them into a Jayvee Manifesto3 that acts as a

guideline to make self-directed decisions of each individual contributor. At the time of writ-

ing, the main design principles in this document (formulated as approaches we have come to

value over others, inspired by the agile manifesto) are:

1. Describing a goal state over how to get there.
3https://jvalue.github.io/jayvee/docs/0.5.0/dev/design-principles
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2. Explicit modeling over hidden magic.

3. Composition over inheritance.

4. Flat structures over deep nesting.

Long form discussions to evolve the language design were done using Request for Com-

ments (RFC) documents4. During the RFC process, a proposed change is described in detail

by a responsible developer using a Markdown document in the Jayvee repository. Figure 5.2

shows a part of an RFC document for reference.

Figure 5.2: Screenshot of an RFC in discussion to introduce mathematically correct arith-
metic expressions in Jayvee.

The document has a flexible structure but generally outlines motivations, a suggested solu-

tion, and possible alternatives. After creating anRFC in a DRAFT state, theRFC enters DISCUSSION
4An example RFC discussing potential block instantiation syntax can be found at https://github.com/jvalue/

jayvee/blob/c4d1e0c7310465b1f716212e1a314e52e946bf6d/rfc/0016-block-instantiation-syntax/0016-block-i
nstantiation-syntax.md
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within the developer community. During the discussion, contributors give feedback and re-

quest changes based on the language design guidelines presented earlier. Finally, the RFC is

either ACCEPTED or REJECTED. If the RFC is accepted, the responsible developer creates an issue to

track the implementation of the RFC. While typically the developer who prepared the RFC

also implements it, any participant can contribute to resolving the issue. Figure 5.3 shows an

overview of the process.

Plan RFC Discuss
with contributors

No consensus

Create issueConsensus reachedDRAFT DISCUSSION

ACCEPTED

REJECTED

Changes requested

Figure 5.3: RFC process followed during the development of Jayvee.

In addition to this formal, asynchronous process, the core members of the development

team also regularly met in person to discuss potential new features and a roadmap for Jayvee

that was managed in an external project management tool.

5.4 Implementation Choices

We built Jayvee based on Eclipse Langium5, a language engineering toolkit to create DSLs

using TypeScript. The syntax for languages developed with Langium is defined using the

Langium grammar language, which allows developers to describe context-free grammars sim-

ilarly to extended Backus-Naur form notation. Listing 5.5 shows Jayvee language elements
5https://langium.org

42

https://langium.org


defined in the Langium grammar language. In this excerpt, referenceable block types are de-

fined as either composite or built-in block types (lines 1 - 2). Further, the syntax to implement

these two types is defined in lines 4 - 7 and lines 9 - 19. Each uses a specific keyword (builtin

and composite respectively), followed by the blocktype keyword, a name, and a list of possible

properties.

Listing 5.5: Jayvee language elements, defined in the Langium grammar language.
1 ReferenceableBlockTypeDefinition:

2 BuiltinBlockTypeDefinition | CompositeBlockTypeDefinition;

3

4 BuiltinBlockTypeDefinition:

5 'builtin' 'blocktype' name=ID '{'

6 (inputs+=BlockTypeInput | outputs+=BlockTypeOutput | properties+=BlockTypeProperty)*

7 '}';

8

9 CompositeBlockTypeDefinition:

10 'composite' 'blocktype' name=ID '{'

11 (

12 inputs+=BlockTypeInput

13 | outputs+=BlockTypeOutput

14 | properties+=BlockTypeProperty

15 | blocks+=BlockDefinition

16 | pipes+=BlockTypePipeline

17 | transforms+=TransformDefinition

18 )*

19 '}';

With these definitions, Langium provides support for parsing language models into ab-

stract syntax trees (ASTs). To interact with ASTs, Langium generates TypeScript classes for

AST nodes and instantiates the concrete AST of a data pipeline model from them. We de-

veloped a language server using the language server protocol (LSP) based on the framework

provided byLangium. Todo so, we implemented validation rules for all elements of a pipeline

model with helpful error messages and hints that can be used by IDEs to provide guidelines
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for users. With these validation functions, we ensure that a Jayvee model is valid semantically.

Listing 5.6 shows such a validation function that checks if a block type has more than one

input and, if so, returns an error object with amessage for the user on how to resolve the issue.

An IDE such as VSCode uses this information to display semantic errors in a Jayvee model

before it is executed.

Listing 5.6: A validation function for a block type definition in the Jayvee language server.
1 function checkNoMultipleInputs(

2 blockType: ReferenceableBlockTypeDefinition,

3 props: JayveeValidationProps,

4 ): void {

5 if (blockType.inputs === undefined) { return; }

6

7 if (blockType.inputs.length > 1) {

8 blockType.inputs.forEach((inputDefinition) => {

9 props.validationContext.accept(

10 'error',

11 `Found more than one input definition in block type '${blockType.name}'`,

12 { node: inputDefinition },

13 );

14 });

15 }

16 }

Based on our goals, we chose Langium in order to provide a language ecosystem of tools to

support users, such as at least one integration into a popular IDE.By implementing a language

server basedon theLSP,we could implement anopen-sourceplugin forVSCodeourselves and

enable other developers to write plugins for their favorite editors. In addition, being able to

use TypeScript to interact with the AST and implement the LSP allowed us to make use of

our previous knowledge andmade language development accessible for outside contributors,

especially students, whooftenhave experiencewithwebdevelopment. Additionally, we could

provide easy-to-useweb editors towork on Jayveemodels based on theMonaco editor project.
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The language semantics of Jayvee are defined by a reference implementation of an inter-

preter that traverses the instantiated AST and executes code depending on block type. The

data that flows through an instantiated pipeline is then transferred from block to block and

finally written into a sink. Figure 5.4 shows an overview of the technical implementation de-

scribed here. For any Jayvee model, the Langium framework is used to perform lexical and

syntax analysis, converting the input text into tokens and ensuring the model is syntactically

correct before instantiating an AST from the input. Based on this AST, our Jayvee language

server implementation can perform semantic analysis to verify that the model is semantically

correct as well. In the final step, the Jayvee interpreter uses the AST to interpret the model

and generates output in the form of data written into sinks.

Jayvee Interpreter

Jayvee Language Server

Langium Framework

Lexical Analysis Syntax Analysis Semantic Analysis Interpretation

Jayvee Model Output Data

Figure 5.4: Overview of the phases and projects involved in interpreting a Jayvee model,
adapted from the Jayvee developer documentation.
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6
Demonstration

As explained in section 3.2, during demonstration, an artifact is used to solve exemplary in-

stances of the problem under study to illustrate its use and show its feasibility. A thorough

evaluation follows in chapter 7. The demonstration is less formal than the evaluation, and the

main outcome is the knowledge that the artifact is a possible solution to the identified prob-

lem. Here we present a project with an industry partner in section 6.1 and how we involved

Jayvee in teaching in section 6.2.

6.1 In Industry: Material Science Data with Springer Nature

One part of the demonstration was completed as part of the Software Campus collaboration

with Springer Nature (see section 3.2). To demonstrate Jayvee with subject-matter experts in

the material science domain, we explored a set of potentially valuable open science datasets

provided by Springer Materials. The full demonstration, including example Jayvee models,

can be found in a GitHub project1.
1https://github.com/jvalue/Exploring-Materials-Science-Data-Using-Jayvee
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The Jayvee interpreter creates data pipelines from these models that download and trans-

form open datasets. These datasets are mainly based on data from scientific literature that

was extracted automatically and needs to be cleaned up. Using Jayvee, we defined domain-

specific value types such as digital object identifiers (DOIs), standardized DOI values, and

introduced constraints on some columns to filter out invalid data. On every new release, the

data pipelines get automatically executed usingGitHub actions, and their output datasets are

attached to the release. The cleaned datasets can be used in follow-up projects, such as the

example material science data report notebook that is included in the demonstration.

We presented the results of the project at the Springer Nature Campus in Heidelberg. Af-

terward, we followed up with an online questionnaire according to the guidelines for a de-

scriptive survey by Kitchenham and Pfleeger [31] (previously described in subsection 7.1.2)

with our industry contact at SpringerMaterials. We asked about their agreement (on a 5-point

Likert scale from Strongly Agree to Strongly Disagree) regarding the problems we identified

(see also chapter 4) and free text feedback about the approach of developing aDSL and Jayvee

itself. Our industry expert answered StronglyAgree to the challenges of amissing standard col-

laboration artifact and the need for specialized skills, but high barriers to entry. In response to

DSLs themselves, they expressed having used a DSL before and “the idea of having a domain-

specific language is a very good one”, but cautioned “A challenge is to find the right balance

between ’specialization’ to a domain, and flexibility to transfer artifacts/code/workflows to

other, related domains. Also, the domain-specific language needs to be integrated and used

in the complete ecosystem of tools and data flows - otherwise, it may just end up adding com-

plication.” Jayvee itself was considered to “[...] look very promising”.

6.2 In Teaching: The Methods of Advanced Data Engineering Module

In the summer semester 2023, we created a university module called Methods of Advanced

Data Engineering (MADE) and have taught it for four semesters since. The goal of the mod-

ule was to share knowledge about open data and advanced data engineering and software en-
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gineering practices, such as automated testing, as they apply to data engineering. We mainly

taught technology-agnostic concepts, but the language used in examples and the suggested

prerequisite is Python. In addition to Python, we introduced how to read and write Jayvee

code in two lectures. At the time of writing, 422 students, mostly from master’s degrees in

artificial intelligence and data science, have completed the module.

For the applied project work in MADE, students complete a self-directed data science re-

port using open data, which describes their search for data, any required data engineering, and

finally analyzes the data to answer a research question of the students’ choice. Whilemost stu-

dents use Python for data engineering, like extracting and cleaning the data they are using,

some have also created data pipelines in Jayvee. In addition to themain project, students were

required to solve five data engineering exercises based on real-world open datasets during the

semester. To pass these exercises, students had to implement a data pipeline that extracts the

dataset, transforms it according to the exercise requirements, and writes the data to a sink.

As an example, a slightly shortened exercise description is included here. In this exercise, the

students used an open dataset about planted trees in Neuss. They were asked to:

• Define types of values and constraints for valid data

• Only include rows if stadtteil starts with Vogelsang

• id contains geopoints with the following pattern: {geo-coordinate 1}, {geo-coordinate

2}.

• A geo-coordinate is defined as {1-3 numbers}.{numbers}

• Drop the baumart_deutsch column and all rows with invalid values

• Assign fitting built-in SQLite types to all columns

• Write data into a SQLite database
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During the first two semesters, participants in the MADE module were split into two

groups and submitted exercises alternating in Python and Jayvee, demonstrating that Jayvee

could be used to solve the same data engineering challenges as Python. In later semesters,

only Jayvee was permitted to solve exercises. A sample solution using Jayvee to model a data

pipeline for this is shown in Listing 6.1.
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Listing 6.1: Sample solution for an exercise in the MADEmodule.
1 constraint DistrictRegex on text: value matches /Vogelsang[.]*/;

2 valuetype VogelsangDistrict oftype text { constraints: [ DistrictRegex ]; }

3

4 constraint GeoPointRegex on text: value matches /[0-9]{1,3}\.[0-9]+, [0-9]{1,3}\.[0-9]+/;

5 valuetype GeoPoint oftype text { constraints: [ GeoPointRegex ]; }

6

7 pipeline TreePipeline {

8 Extractor

9 ->TableParser

10 ->Sink;

11

12 block Extractor oftype CSVExtractor {

13 url: "https://opendata.rhein-kreis-neuss.de/api/v2/catalog/datasets/stadt-neuss-herbstpflanzung

-2023/exports/csv";

14 delimiter: ';';

15 enclosing: '"';

16 }

17

18 block TableParser oftype TableInterpreter {

19 header: true;

20 columns: [

21 'lfd_nr' oftype integer,

22 'stadtteil' oftype VogelsangDistrict,

23 'standort' oftype text,

24 'baumart_botanisch' oftype text,

25 'id' oftype GeoPoint,

26 'baumfamilie' oftype text,

27 ];

28 }

29

30 block Sink oftype SQLiteLoader {

31 table: "trees";

32 file: "trees.sqlite";

33 }

34 }
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Participants in theMADEmodule create open-source projects. Because students are asked

to fork the MADE template repository to use the provided structure, a list of most projects

with exercise submissions is available on GitHub2. We consider the student population in

MADE as a proxy for the target audience of Jayvee (discussed inmore detail in the later evalu-

ation, subsection 7.1.1). Their success in completing the data engineering exercises is a good

demonstration of the accessibility of Jayvee for non-professional programmers, both for being

able to learn the new language quickly and for using it to create working data pipelines.

2https://github.com/jvalue/made-template/forks
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7
Evaluation

We approached the evaluation of Jayvee in multiple steps, where we combined qualitative

and quantitative methods that are described in section 7.1. First, we validated that a DSL is a

potential alternative toGPLs for building data pipelines to answerRQ2 (section 3.1). During

the use in the context of theMADEmodule (see section 6.2), we gathered data about how the

students solved their exercises using theDSL to verify that their performance is at aminimum

comparable to using a GPL.

For the evaluation, we startedwith an initial exploratory phase, in whichwe gathered quali-

tative data about the effects of using Jayvee during data engineering. We did so to develop fur-

ther, more focused hypothesis tests and, following the advice of Greenberg and Buxton [15],

to not commit to a narrow, statistical evaluation of individual features too early. Because we

worked iteratively, we could also learn from the insights for further revisions of the language

before evaluating concrete features with controlled experiments. This work is described in

section 7.2.

After generating concrete hypotheses to test, we conducted two controlled experiments
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to evaluate individual design decisions. On a higher abstraction level, we considered an im-

proved understanding of program structure by subject-matter experts as essential for using a

DSL. Accordingly, we designed a mixed-method study including a controlled experiment to

understand if and how the program understanding by subject-matter experts is influenced by

the use of the DSL, presented in section 7.3. Next, we evaluated a specific syntax decision

we made during design and implementation - the use of domain-specific cell selection syntax

inspired by spreadsheet syntax - again with a controlled experiment in section 7.4.

This development of potential hypotheses using mixed-methods research, with a follow-

up stream of controlled experiments with human participants, is the essence of the language

developmentprocesswith an iterative, empirical approachwedeveloped. It is basedon the test

bedwehave createdwith our customDSLand the implementationof aweb-based experiment

tool that allows us to quickly develop new tasks and track automated measurements1. In

future work, we plan to continue to use this process to evaluate more concrete features, such

as the best way to express user-defined value types.

The combined insights frommultiple evaluation studies of individual design decisions on

different abstraction levels allowed us to develop a deeper understanding of their effects, an-

swering RQ3 about important considerations for a DSL to create data pipelines by subject-

matter experts (section 3.1).

An overview of the research approach is shown in Figure 7.1.

Evaluate pipes-and-filters architecture
(P4)

Evaluate spreadsheet cell selection syntax
(P5) 

Generate
hypotheses

(P3)

Evaluate further design decisions, e.g. value types

Validate potential
collaboration

artifact
(RQ2, P3)

Communicate 
considerations for a DSL
(RQ3)

Figure 7.1: Research approachduring evaluation andhow it relates to researchquestions (RQ,
section 3.1) and publications (P, Table 3.1).

1The experiment tool’s source code is available as part of the data release for Heltweg et al. [18] at https:
//doi.org/10.5281/zenodo.15543965
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7.1 ResearchMethods

During the evaluation, we used a combination of qualitative and quantitative research meth-

ods. We conducted surveys according to Kitchenham and Pfleeger [31] to get qualitative feed-

back fromusers andused thematic analysis according toBraun andClarke [4] to analyze it and

identify common themes. Additionally, we ran controlled experiments according to Ko et al.

[33] to gather qualitative data about participants’ performance and test concrete hypotheses.

7.1.1 Population Description

For the evaluation studies, we sampled participants from the MADE module on advanced

methods of data engineering, during which we also demonstrated the use of Jayvee for home-

work exercises, described earlier in section 6.2. The students mainly pursue master’s degree

programs in artificial intelligence and data science, with some related disciplines like informa-

tion systems and computer science. They generally have some previous experience in using

Python for small data science applications, but are not professional system programmers due

to the structure of their degree programs.

We consider these students a good proxy for data practitioners who have some experience

writing scripts to work with open data, but are experts in their subject area and not software

engineers. As described in chapter 4, open data practitioners come from awide range of back-

grounds and include subject-matter experts without a technical background. Similarly, the

students might have some previous experience in programming and data engineering, but are

not professionals in either [11].

However, while we expect the evaluation to generalize well to this limited population, we

caution against assuming that professional programmers and other participants with a strong

technical background face similar challenges. In future work, we want to replicate the ex-

isting experiment designs with professionals working with open data in industry projects to

strengthen the results.
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7.1.2 Descriptive Survey

Surveys, according to Kitchenham and Pfleeger [31], are a research method to gather quanti-

tative data about subjective opinions of participants, or objective data such as demographics,

typically using an online questionnaire. For this, Kitchenham and Pfleeger describe six steps:

Setting objectives, survey design, developing and evaluating the questionnaire, obtaining the

data, and analyzing the data.

Objectives are typically descriptive, such as a frequency or the severity of a characteristic in

a population, but survey goals can also include identifying factors that influence a condition.

In either case, before designing a survey, a research question and a way to answer it using

measurements must be defined. During survey design, the survey itself is planned. Common

designs include cross-sectional surveys (across a population at one fixed point in time) and

longitudinal (repeated surveys at different points in time) studies. In addition, the method of

administration must be clarified. Nowadays, most surveys are run using a self-administered

online questionnaire.

Developing the questionnaire starts by first searching existing literature for relevant work

and previously validated measurement instruments and questions. Afterward, questions are

defined, which can be either open (for respondents to answer freely) or require respondents

to select answers from a list. Answers can be numerical values, categories, binary (Yes/No

questions), or ordinal scales. A common form of ordinal scales are Likert scales, on which

respondents select from an ordered list of choices, often labeled with both a number and

description. Likert scales can measure agreement with a statement (e.g., from Disagree to

Agree), frequency of occurrence (Never to Always), or evaluate a concept (Terrible to Excel-

lent). Questions should be precise and unambiguous, and the target populationmust be able

to understand them correctly. To this end, questions should be as simple as possible and ac-

companied by appropriate instructions.

Once a first versionof the questionnaire is developed, it canbe evaluatedusing focus groups

or pilot studies in which the questionnaire is usedwith a smaller sample to test it for being un-
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derstandable and of appropriate length. This process can be iterative, where each pilot study

leads to a changed questionnaire that is then evaluated again. Finally, the survey instrument

must bedocumented, e.g., bywriting aquestionnaire specification that includes the objectives

of the study, rationale for each element of the questionnaire, and how it was evaluated.

Obtaining the data is the activity of actually administering the questionnaire. Because it is

typically impossible to survey the whole target population, a subset sample has to be selected.

Themain concerns for selecting a sample are the avoidance of bias, the sample being appropri-

ate to the target population, and cost-effectiveness to be able to actually administer the survey.

A variety of sampling strategies exist, including probabilistic samplingmethods (e.g., a simple

random sample), cluster-based sampling (individuals of defined groups are sampled), or non-

probabilistic sampling. Non-probabilistic sampling, such as convenience sampling, runs the

risk of being biased or not representative of the target population, but is reasonable to use

if the target population is hard to define or not easily available. After defining a sample, the

survey instrument is administered. During administration, response rates should be tracked

and reported because a low response rate can introduce bias to the results (e.g., is the pool of

respondents still representative?).

Once the data is obtained, it has to be analyzed. Even though this activity is the final step of

a survey, it should be planned before the data is actually collected. First, the data is validated,

and inconsistent or incomplete questionnaires are handled according to a predefined strategy.

With the validated data, statistical methods such as calculating measures of central tendency

or statistical tests can be used to describe the content and test hypotheses.

7.1.3 Thematic Analysis

Thematic analysis, according to Braun andClarke [4], is a researchmethod to analyze qualita-

tive data for meaning across the entire dataset. It is a flexible and conceptually simple method

that is accessible for researchers with varying degrees of familiarity with qualitative methods.

The core concepts of thematic analysis are codes and themes. Codes are annotations in the
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form of a short label on a subsection of the source data. Codes can be descriptive and directly

based on the content expressed in the data, or interpretative, meaning they capture an under-

lying meaning in the data based on the researcher’s understanding. Due to the connection

between a code and the annotated data, every code consists of a label and excerpts from the

data that illustrate its meaning. Themes are a collection of codes that describe a pattern or

a concept in the dataset that is relevant to the research question. They consist of a descrip-

tive title and, ideally, a so-called thick description, meaning explicitly chosen citations from

the source data that express the theme well, and an additional analysis by the researcher that

summarizes how and why the theme is relevant to the research question is presented.

Using these building blocks, thematic analysis can be approached in an inductive or de-

ductive manner. When working in an inductive way, researchers create codes and themes

bottom-up from the content of the data itself. If the researchers have a preconceived theory

or topics onwhich they base their interpretation of the data, theywork in a top-downmanner

and follow a deductive approach.

The thematic analysis process, as described by Braun and Clarke [4], consists of six steps.

First, the researchers familiarize themselves with the data by actively engaging with it and tak-

ing personal notes. If the qualitative data exists in the form of interviews, the act of transcrib-

ing can be a form of familiarization with the dataset. At the end of this step, the researchers

should have a good overview of the data. Second, initial codes are generated. During this ac-

tivity, coding should be inclusive and, if in doubt, codes should rather be created than not.

Each data item should be completely coded before moving on to the next, but codes can be

continuously modified based on new data, and old data can be revised to apply new or modi-

fied codes. At the end of this step, the dataset should be fully annotated withmany codes that

capture the diversity of concepts in the data as they relate to the research question.

Next, the initial codes are used to search for themes. In this step, the researchers actively

build themes from the codes, for example, by combiningmultiple codes that share a common

feature. In this process, the researchers aim to describe the overall insights that can be gathered
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from the datawith themes and their relationships to each other. There is no clear guideline on

howmany themes should be created, but themes should be relevant to the research question

and not simply a summary of every topic that exists in the data. After searching for themes,

these are reviewed for quality and coherence. To do so, the candidate themes from the initial

search are first checked against the codes. If the theme has enough support to stand on its own

(and should not just be a code), is of high quality with clear boundaries and a singular focus,

it is kept. In a final review, the theme is then checked against the full dataset again. Themes

that capture a meaningful aspect of the dataset are retained.

In the final data analysis step, the remaining themes are clearly defined and named. During

this activity, a descriptive name should be assigned to every theme and the aforementioned

thick description, consisting of exemplary citations and an analysis by the researcher. The

themes retained at this point should have a clear focus and boundaries, be related to each

other, and address the research question. They can be largely descriptive, based only on di-

rect excerpts, or interpretative and include concepts derived by the researcher. In both cases,

the combination of themes and the analysis they contain should build on the data and add

additional insights towards the research question instead of being only a summary. After all

themes are collected, the last step of thematic analysis is to produce a report, typically as part

of an academic publication. The report puts the themes in the larger context of a research

study and answers the research questions. For this, the themes are actively organized in a way

that makes the insights found in the data most clear.

7.1.4 Controlled Experiment

A controlled experiment, according to Ko et al. [33], is a comparative method to test clearly

defined hypotheses based on quantitative measurements. The authors provide guidelines for

controlled experiments with human participants to evaluate new software engineering tools.

Experiments determine if the application of a treatment (a change in an independent variable)

leads to a change in a dependent variable. Common to any experimental research design is
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the core tradeoff of controlling as much of the environment as possible versus providing a

realistic environment. Controlled experiments err on the side of controlling as much of the

environment as possible, and therefore, they provide a way to rigorously test hypotheses, but

are more challenging to generalize to real-world contexts.

Even before running a concrete experiment procedure, the experiment should be defined,

including clear goals, formal hypotheses and variables, aswell as the experiment context and its

participants [63]. Depending on these choices, a fitting experiment design, such as a crossover

design [58], will determine how participant groups are formed and how treatments are ap-

plied.

After planning,Ko et al. [33] describe the controlled experimentprocess in eight steps, start-

ing with gathering experiment participants by recruiting them, testing them against inclusion

criteria, and then asking for their informed consent. The experiment procedure itself con-

sists of gathering demographic data, assigning participants to a group, training them, having

participants complete tasks, and finally debriefing them.

Recruiting participants can be problematic for experiments in software engineering be-

cause software engineers in industry are relatively well compensated, and it is hard to convince

them to spend time participating in an experiment. As an alternative, experiments with stu-

dent participants can be a goodway to test initial hypotheses, as long as they are chosenwith a

clearly defined target population in mind [11]. In any case, participants should be filtered by

inclusion criteria, such as programming experience or previous work in related technologies.

It is imperative to follow ethical research practices when working with humans. While

formal ethics approval is often not required in software engineering experiments due to their

low risks for harm and their limited focus on sensitive populations or topics, every participant

must be able to give informed consent. Typically, this is accomplished by providing a handout

that details the study and any risks, how data will be managed, and what benefits are expected

from the results. Additionally, researchers must create opportunities for participants to ask

any questions they might have about the experiment and to withdraw their consent without
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any negative effects at any time.

After participants are recruited and have given their consent, the experiment procedure is

executed. The exact experiment design will determine how many and which different treat-

ments and groups exist. First, participants are assigned to treatments, most often by simple

random assignment. Afterward, the participants must be trained so they have all the knowl-

edge required to succeed in their tasks. Either before or after the experiment procedure, ad-

ditional demographic data can be gathered. Next, participants solve tasks in controlled con-

ditions using the treatment that is assigned to them. The environment can be more or less

controlled (e.g., in a lab setting versus at home), with researchers typically favoring control.

The tasks themselves can be designed from scratch or be realistic examples from real-world

problems, such as existing open datasets. It is important to prepare tasks carefully so they are

neither too hard nor too easy and can be completed by participants in a realistic timeframe.

During task attempts, outcome variables are measured, either by the researchers themselves

or automatically using an automated experiment tool. Typically, outcome variables can be

categorized into different success on task and time on task measurements. Because these cate-

gories are tradeoffs (the more time participants spend on a task, the better it can be solved),

researchers must decide on how to guide participants.

Finally, after all participants have completed the tasks, they are debriefed with additional

information about the study, such as goals, correct solutions, and the chance to use the new

tool as well.

Since experiments are complex to set up and hard to execute, Ko et al. [33] suggest it-

eratively developing the experiment tasks and procedures using pilot studies with other re-

searchers or with smaller subsets of the population under study. This approach also allows

for designing better experiment instructions for participants andmaking sure tasks are not too

difficult to complete. Reporting experiments typically happens as part of a publication. Vari-

ous reporting templates, such as by Jedlitschka and Pfahl [25], exist to increase comparability

and make sure researchers include all important information.
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7.2 Domain-Specific Languages as aViable Basis foraCollaborationAr-

tifact

The focus of our first exploratory evaluation study was to verify if a domain-specific language

can be a viable basis for a collaboration artifact for subject-matter experts who contribute to

collaborative data engineering projects. Additionally, we were interested in the effects that

users of a DSL are experiencing when creating data pipelines. Our goal was to adapt our

language implementation and generate future hypotheses to test, based on these insights.

The following sections are a summary of the work published in Heltweg et al. [20]; more

details are available in the original paper (see Appendix C).

7.2.1 Study Design

We chose a mixed-methods research design that allowed us to mitigate the weaknesses of the

individual methods and strengthen our results with insights frommultiple data sources [27].

The research design had three phases to gather qualitative and quantitative data before analyz-

ing the results.

First, we collected quantitative data in a cross-sectional, descriptive survey according to

Kitchenham and Pfleeger [31] (see subsection 7.1.2). We used convenience sampling with

MADE students (see subsection 7.1.1) and gathered data on their previous programming ex-

perience before randomly assigning them to two groups. Each week, one group solved the

data engineering exercises using Python and Pandas while the other used Jayvee. For the next

exercise, the language assignments were swapped. After each exercise, we asked students to

voluntarily give us feedback using an online survey. The survey questionnaire asked how

much time students spent on the exercise, their impression of difficulty, and the quality of

the result (both on a 5-point Likert scale). In preparation for follow-up interviews, we also in-

cluded free-text questions about problems the participants encountered and suggestions for

improvements. In this way, students could provide further feedback about the language and

their experience using it.
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Second, we followed upwith a qualitative survey (see subsection 4.1.2) according to Jansen

[24] after the semester had completed. Based on the data from the descriptive survey, we de-

veloped an interview guide according to Kallio et al. [28] and held semi-structured interviews

about difficulty, quality, and experienced challenges with volunteers.

Lastly, we analyzed the resulting quantitative data with statistical methods (using descrip-

tive statistics and hypothesis tests) and used thematic analysis according to Braun and Clarke

[4] (see subsection7.1.3) to analyze thequalitative data forpotential reasons for the results and

summarize challenges the participants experienced. Because we had no preconceived theory

of the effects of using a DSL for data engineering, we chose an inductive approach to cod-

ing, annotating codes according to what we found in the data, and then iteratively combining

them into major themes.

An overview of the research design is shown in Figure 7.2.

Descriptive Surveys

Semi-Structured Interviews

Implementation

Quantitative Data
(Speed, Difficulty, Quality)

Interview Transcripts

Qualitative Data Analysis

Code System

Jayvee (DSL) Python / Pandas (GPL)

Comparison Tool

Free Text
(Problems, Improvements)

Figure 7.2: Study design as performed for Heltweg et al. [20].
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7.2.2 Improved PerformanceWithout Previous Experience

We analyzed the results of the descriptive survey with appropriate hypothesis tests to com-

pare the participants’ previous experience in Python and Jayvee and to evaluate if their per-

formance on individual exercises had improved with regard to perceived quality, speed, or

difficulty. As expected, participating students had significantly less experience in Jayvee than

in Python on a scale from 1 very inexperienced to 5 very experienced (n = 223,MdnPython = 4,

MdnJayvee = 1, p ≤ .001). Formost exercises, students performed similarlywhen using Jayvee

or Python. However, in some exercises, students performed significantly better using Jayvee.

Participants solved exercise 2 faster (n = 52, p = .042), considered exercise 4 easier (n = 35,

p = .040), and their solution to exercise 1 of higher quality (n = 95, p = .021). For a more

detailed description of the exercises themselves, please refer to Appendix C.

In their interviews, participants rarely mentioned any impressions regarding implementa-

tion speed, but considered Jayvee faster for smaller problems and generally slightly preferred

the terse syntax of Python for larger ones. Jayvee was described as easier because it was quick

to learn and had a much more limited feature set (and no libraries) in comparison to Python.

Additionally, sometimes the automated, hidden logic employed by Python and Pandasmeant

students could not understand their code clearly and had to double-check the output of their

pipeline.

With regard to the quality of the result, participants especially highlighted the stronger en-

forced structure that Jayvee provided. This consistent framework was able to guide develop-

ment and remind students about the steps they needed to perform. As an additional benefit,

the data pipeline code was always broken up into smaller, coherent pieces that were easier

to understand and reuse. The results of the qualitative data analysis also reinforced our im-

pression that a language ecosystem including good documentation, IDE integration, and a

debugger is essential for a DSL to succeed with real users.
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7.2.3 Easier Collaboration

For completeness, an overview of the full code system of the thematic analysis is shown in

Figure 7.3. Here, we highlight a subset of important results regarding the research questions

of this thesis. For a full discussion of the thematic analysis, see the complete publication in

Appendix C.

Effects of using a
DSL over a GPL with

libraries

Limited Feature
Coverage

Increased
Approachability

Magic Requires Trust

Guided Development
Workflow

Different Code
Structure

Easier Reuse /
Collaboration

Considerations for a new
data engineering language

Developer Experience

Use of ChatGPT

Importance of
Documentation

Relevance of Code and
Data

Figure 7.3: Effects of using a pipes-and-filters based DSL on data engineering (adapted from
[20]).

Even though collaboration was not a topic we specifically asked about, some participants

shared that they felt that the block-based structure of Jayvee made it easier to reuse previ-

ously written code for future pipelines. Furthermore, they mentioned that this easier reuse

would also enable collaborative work. Themain reason for this impression was the consistent

bundling of all code related to a step in the pipeline in a block. While this structure can be
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used in Python as well (for example, by using classes or functions), often smaller scripts are

written in an imperative manner and lack a structure that makes reuse easy.

In addition, participants described user-defined value types as easier to understand and

reuse than writing custom callbacks using if statements in Python code. Lastly, Jayvee is

scoped only to data engineering and does not provide an additional library system, which

means that only one way to achieve a goal is available. The extensive availability of libraries

(such as Pandas) and their different approaches to problem-solving were described as hin-

drances to understanding code written by other participants in Python.

7.2.4 Strongly Enforced Code Structure Guides Development

When talking about why Jayvee was easy to understand and write, a major theme mentioned

by interviewees was the strongly enforced code structure in comparison to the flexibility of

Python. While writing code, students experienced this structure as a guideline or reminder

for steps they still needed to complete before a pipeline was done.

The largest effect was described in regard to the readability of source code, with the struc-

tured overview by wiring up blocks using the pipe syntax mentioned as especially important.

The block structure itself leads to smaller units of connected code that are easier to understand

in isolation than script-style programming. In combination, the enforced structure of Jayvee

seemed to allow participants to understand source code better and consider their results of

higher quality.

7.2.5 Approachability andRelevantExperienceOutside of Software En-

gineering

Students mentioned various reasons for Jayvee being easy to approach and learn. Since the

design of Jayvee was directly inspired by the mental model of data pipelines as connected pro-

cessing steps (and the visual representation as a DAG, see also section 5.2), some participants

described that they could reuse experience fromdata pipelinemodeling tools they used before.
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Additionally, multiple participants mentioned that they learned data engineering using

spreadsheet tools and still use them when exploring and cleaning datasets. This matches our

experience of how data practitioners work with open data (see section 4.2). During the de-

sign of Jayvee, we decided to use domain-specific syntax, inspired by spreadsheet tools, to

select cells in 2D data structures. This choice was highlighted by participants as reminding

them of spreadsheet software and making it easier to select cells in Jayvee, rather than having

to program in a GPL.

7.2.6 Conclusion and Future Research

In conclusion, we documented that a DSL such as Jayvee is a potential choice for data engi-

neering bynon-professional programmers, with the quantitative results showing that it canbe

learned quickly and is usable with slight improvements to solve small data pipeline creation

tasks. The positive feedback on the effects of collaboration is an indicator that source code

written in Jayvee can be a viable foundation for a collaboration artifact in data engineering

(RQ2, section 3.1).

In future research, we want to follow up with more focused studies on individual effects.

First, Jayvee code was described as easier to understand, withmajor effects from the stricter

enforcement of code structure, and less hidden logic. However, of course, tradeoffs exist, such

as less flexible and more verbose code. To determine if these tradeoffs are worthwhile, we de-

signed amixed-method study to evaluate the effect size and the ways that a DSL can influence

program structure comprehension, presented in section 7.3.

Second, domain-specific syntax was mentioned in the interviews as a reason for the ap-

proachability of Jayvee with previous experiences outside of software engineering. Especially

the spreadsheet syntax used to select cells from 2Ddata in Jayvee is relevant, because data prac-

titioners also regularly use spreadsheet tools to complete data engineering tasks. We planned

a focused, controlled experiment to test the hypothesis that spreadsheet syntax improves task

performance for data practitioners compared to numeric indexing often found in GPLs and
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share the main results in section 7.4.

7.3 Program Structure Understanding

Amain effect of using Jayvee to complete data engineering tasks, as described by interviewees,

is the lower difficulty of understanding the source code. Moreover, program understanding

is a core activity during programming [51, 65], and to collaborate with others, contributors

must at the very least correctly understand the shared collaboration artifact. For this reason,

we first designed a mixed-methods study to test our hypothesis that the use of Jayvee has an

effect on bottom-up program structure comprehension and to describe in more detail any

reasons for the effects. Here, we present relevant excerpts from thework published inHeltweg

et al. [19], please see Appendix D for the complete manuscript.

7.3.1 Study Design

We chose a mixed-method design to combine the hypothesis tests with a search for potential

explanations for the results. To start, we performed a controlled experiment according to Ko

et al. [33] (see subsection 7.1.4). As discussed in chapter 4, we consider the design and evalua-

tion of a new DSL from the viewpoint of empirical software engineering and were therefore

interested in gathering data from users instead of making purely technical comparisons.

We chose to test if the use of Jayvee had an influence on how fast or correct non-professional

programmers understand data pipelines compared to Python/Pandas and if the perceived dif-

ficulty of understanding the source code changed with both treatments.

Using the controlled experiment, we gathered two performance measurements, time on

task and correctness, which are common standards in software engineering experiments [64].

For participants, we relied on a convenience sample of largely artificial intelligence and data

science master’s students from the MADE module as proxies for data practitioners (see sub-

section 7.1.1).

We chose a factorial crossover design in which every participant is assigned to each treat-
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ment (within-subjects) [58]. To reduce carryover and familiarization effects, we created two

sequences with a reversed order of treatment assignment to tasks and randomly assigned par-

ticipants to sequences.

Tasks were designed based on real-life open datasets. We implemented comparable data

pipelines to access them in Python/Pandas and Jayvee, and used pilot studies to refine the

tasks themselves and their description. Participants used a web-based experiment tool devel-

oped by us to read the source code and to recreate the data pipeline using a drag-and-drop

interface of possible steps. In addition to allowing us to provide a controlled environment for

the participants, the tool also took automatedmeasurements of time and correctness to ensure

the variables were accurately tracked. An example screenshot from a program understanding

task displayed in the experiment tool web interface is shown in Figure 7.4.

After the experiment, we asked participants to complete a descriptive survey according to

Kitchenham and Pfleeger [31] (see subsection 7.1.2). Using this web-based survey, we gath-

ered responses on the perceived level of difficulty (rated on a 5-point Likert scale) to complete

the gathering of quantitative data for further hypothesis tests. In the same questionnaire, we

included free-formquestions aboutwhatmakes data pipelines written in Jayvee/Python hard

or easy to understand and what differences they experienced between the languages. The re-

sponses to these questions created the qualitative dataset we analyzed to explore potential rea-

sons for the results of the hypothesis tests.

For hypothesis tests, we chose appropriate statistical methods (the Wilcoxon signed-rank

test [60]) for the paired data from a crossover experiment design according to Wohlin et al.

[63].

Weanalyzed thequalitative data fromthe surveyusing thematic analysis according toBraun

and Clarke [4] (presented earlier in subsection 7.1.3). To do so, we chose an inductive ap-

proach with the goal of capturing the diversity of effects that had an influence on program

understanding. During the process of coding and creating themes, we kept track of changes

to our codebook and judged the maturity of our theory based on theoretical saturation [3].
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Figure 7.4: Screenshot of a program understanding task as it was displayed in the web-based
experiment tool.

7.3.2 Improved Correctness but Not Faster

Participants could understand data pipelines expressed in Jayvee significantly more correctly

than those expressed in Python/Pandas (n = 57, p = .002). The kernel density plot in

Figure 7.5 shows the distributions of the data.

In contrast, there were no significant differences for time on task (n = 57, p = .546) or on

perceived difficulty (n = 56, p = .153).
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Figure 7.5: Kernel-density plot comparing correctness of task solution using Jayvee and
Python/Pandas (adapted from [19]).

7.3.3 Code Structure and Language Elements

In addition to the hypothesis test results, we present in the following sections a selection of

important insights from the thematic analysis. The complete codebook is shown in Figure 7.6

and is described in the manuscript in Appendix D.

In the context of direct effects of the language used (in contrast to human factors), the ex-

periment participants highlighted the code structure as a positive influence on data pipeline

understanding. Especially the pipeline overview, provided by wiring up the data pipeline

graph using the pipe syntax, in a separate location of the source code, was described as an im-

portant difference to Python/Pandas. On the one hand, the separation allowed participants

to ignore unnecessary code when reading the pipeline for the first time and contributed to a

better overview. On the other hand, some participants described that the additional naviga-

tion required to jump from the pipeline overview into code details costs time.

While the pipeline overviewwas overwhelmingly identified as helpful, pipeline steps them-

selves must be correctly scoped. Participants were confused by steps like interpreting a down-

loaded file first as text and then as CSV, because they did not consider these low-level steps in
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Figure 7.6: Reasons for differences in program structure understanding between Jayvee and
Python/Pandas (adapted from [19]).

their own mental model of a data pipeline.

Regarding language elements, the participants considered domain-specific elements, such

as blocks, as intuitive and described them as having a positive effect on understanding. In

contrast, unusual language elements that are not a direct match to the application domain,

such as Jayvee’s value types based on constraints, confusedparticipants. Similarly, participants

identified advanced programming concepts, such as lambdas or list comprehension in Python

source code, as reasons for reduced understanding. Very likely, this is especially true for data

practitioners without a strong system programming background, but less of a challenge for

more experienced programmers.

We observed that these language elements also had an effect on the experience needed to

understand the data pipeline models. When represented in Python/Pandas, the source code

is structured using programming concepts such as functions or library imports that require

previous knowledge of software engineering. In comparison, participants mentioned that

they felt like they could draw on other experiences, such as previous data engineering work,

when reading Jayvee code.

72



Additionally, more flexibility andmultiple approaches to solving a problemdue to libraries

and amore complex syntaxmeant that Python codewas harder to understand for participants.

They also mentioned that, while it is possible to structure Python code well, more experience

would be required to follow best practices without a strongly enforced structure by the lan-

guage itself. Some participants mentioned that, because Jayvee pipelines look very similar to

each other due to this enforced structure, reading or implementing multiple pipelines pro-

vides more opportunities for learning effects. This is different in Python, where the added

flexibility means that two pipelines by different developers do not necessarily follow similar

patterns, and therefore learning effects are reduced.

7.3.4 The Right Level of Abstraction Is a Challenge

Participants further described the alignment of their mental model of data pipelines with

the elements they found in the data pipeline model as improving their understanding of the

source code. This effect existed even without a large amount of previous programming expe-

rience, but was based on an understanding of the underlying domain of data pipelines.

A repeating pattern in participants’ responses was how domain-specific concepts they ex-

pected were intuitive and supported understanding, while concepts they did not consider

were confusing. This means that finding the right level of abstraction based on the mental

model of a data pipeline is a core challenge for designing a good DSL. One example for this

effect is the previously mentioned pipeline overview, which was highlighted as a major posi-

tive influence on understanding, except when participants were confused by individual steps

that were too low level to make sense to them (such as downloading a file as binary data, then

interpreting it as text and CSV).

Importantly, this mental model depends on the users who work with the DSL. A language

that aims to support data practitioners, such as subject-matter experts, must consider a higher

level of abstraction than a language that is used by system programmers in regard to program-

ming. However, it could instead include domain concepts that data practitioners are familiar
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with from their work with data pipelines.

7.3.5 Conclusion

To summarize, we show that a DSL such as Jayvee can improve correctness for bottom-up

program understanding of data pipeline models by data practitioners, such as subject-matter

experts. Because program understanding is a central programming activity and a prerequi-

site for contributing to a shared collaboration artifact, a more correct understanding enables

collaboration and can lead to fewer bugs and better downstream data.

In regard to RQ3 (see section 3.1 for details) about important considerations for DSLs for

data engineering by subject-matter experts, our results highlight that finding the correct ab-

straction level for data practitioners is amajor challenge. Designers ofDSLswill need to invest

in clearly defining their target users and understanding their mental models of the domain.

In the domain of creating data pipelines, experiment participants seem to consider the blocks

and pipes structure of Jayvee intuitive, but struggle with value types based on constraints and

block types that are too low-level.

Lastly, the choice of language elements has a large effect on the usability of a DSL as well.

In our experiment, GPL elements such as functions or complex programming concepts such

as lambdas were considered negative, while domain-specific elements such as blocks had a

positive influence. In the follow-up experiment (section 7.4), our goal was to build on this

insight and validate whether domain-specific syntax, such as spreadsheet syntax to select a

subset of cells in 2D data, also had positive effects on usability.

7.4 Cell Selection Syntax

During theproblem identification and inourprevious evaluation studies, we learned that data

practitioners regularly use spreadsheet software for data engineering. We have also shown the

importance of aligning language elements with the mental models of their users. To evaluate

if using domain-specific syntax has a positive effect as well, we design a focused evaluation of
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the design decision implemented in Jayvee to use spreadsheet syntax in order to select cells in

2D data.

The work presented here is a summary of relevant points from a manuscript published as

Heltweg et al. [18]. Additional descriptions and results can be found in the original publica-

tion (see Appendix E).

7.4.1 Study Design

We designed and conducted a controlled experiment according to Ko et al. [33] (previously

discussed in subsection 7.1.4). The experiment was again performed with students of the

MADE module (see subsection 7.1.1), and we invited participants mainly from master’s de-

grees in artificial intelligence and data science as proxies for data practitioners without a pro-

fessional software engineering background.

Our goal was to evaluate if domain-specific syntax, represented by spreadsheet syntax such

as A5:B10, is better for selecting cells in 2D data compared to the common numerical syntax

found in Python/Pandas (based on iloc, e.g. df.iloc[2:6, 1:4]).

We decided on designing two sets of tasks, based on real-life open datasets, to measure task

performance for program understanding on the one hand and for code creation on the other

hand. The tasks involved participants reading cell selection code, marking the selected cells

in a visual representation of the data, and seeing a visual representation and writing cell se-

lection code to reproduce it. For both dimensions, we measured time spent on the task and

correctness of the solution. Based on this data, we testedmultiple hypotheses: Does the use of

spreadsheet syntax have any influence on speed or correctness for either program comprehension

or code creation by data practitioners compared to numerical selection syntax?

We adapted and reused our web-based experiment tool (an example task is displayed in

Figure 7.7) for measurements and invited participants to a university-provided lab to offer a

controlled environment. As an experiment design, we chose the crossover design [58] with

participants assigned randomly to two sequences and completingmultiple tasks with alternat-

75



ing treatments.

To analyze the data, we used Wilcoxon signed-rank tests [60] and explored the data distri-

butions using kernel density plots.

Figure 7.7: Screenshot of a code creation task as it was displayed in the web-based experiment
tool.

7.4.2 Improved Correctness

Correctness of task solutions was significantly different for both program comprehension

(n = 83, p = .019) and code creation (n = 93, p ≤ .001). In both cases, the solutions

based on spreadsheet syntax showed improved correctness compared to the numerical cell se-

lection syntax.

For program comprehension tasks, participants did not submit solutions at significantly

different speeds. This could indicate that both syntax approaches appear to be similarly easy

to read andunderstand,while thenumerical indexing actually introduces subtle errors,mostly

with off-by-one errors.

The improved correctness for program comprehension using Jayvee mirrors the previous

results from section 7.3 in a new, more focused context. The extension of improved correct-

ness to code creation using spreadsheet syntax was a new insight from this study.
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7.4.3 Code Creation Is Faster Using Spreadsheet Syntax

In contrast to program comprehension, time on task for code creation was significantly dif-

ferent between both treatments (n = 84, p ≤ .001). From the data shown in Figure 7.8,

it is clear that participants creating code with spreadsheet syntax were actually significantly

faster than participants using numerical indexing. This is in addition to creatingmore correct

solutions as previously presented.
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Figure 7.8: Kernel-density plot comparing time on task for spreadsheet syntax compared to
numerical syntax (adapted from [18]).

One likely explanation for this effect is that participants considered the spreadsheet syn-

tax more intuitive and spent less time reading documentation and verifying their solution. In

contrast to the complex, programming-adjacent concepts needed to understand numerical in-

dexing (zero indexing, identical syntax to access both dimensions instead of a clear separation

into identifiers for rows and columns), the spreadsheet syntax could potentially be known to

data practitioners from working with spreadsheet software during previous data engineering
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projects.

7.4.4 Conclusion

In conclusion, aligning with the syntax that practitioners know from working with other

tools should be one of the important considerations when designing a new DSL. More con-

cretely, in the case of DSLs for data engineering by subject-matter experts, spreadsheet syntax

is a promising alternative to more traditional programming syntax that should be further ex-

plored.

The improved correctness and speed up when writing code we described might be limited

to smaller datasets (because the alphanumeric indexing of columns does not scale well). How-

ever, these improvements are highly relevant in opendata contexts becausemost opendatasets

are small andprovided in tabular formats [44, 57]. Especially, the improved correctness of pro-

gram comprehension is an important improvement given the importance of understanding

source code due to the increasing amount of code generated by artificial intelligence tools.

While we have shown a positive effect of using spreadsheet syntax and can discuss potential

reasons based on our knowledge of the subject, more rigorous qualitative studies would be

needed to describe the causes for these effects. In future work, we would like to extend the

analysis of quantitative data by adding insights from experiment participants completing exit

surveys.
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8
Conclusion

In this thesis, we researched data engineering with open data and the challenges that must be

resolved to enable open collaborative work to improve the overall data quality for every par-

ticipant. We described the collaboration systems during data engineering and highlighted the

importance of subject-matter experts who contribute their domain expertise to understand

complex data correctly. We chose a problem we were well-positioned to solve, the lack of an

adequate shared collaboration artifact for both software engineers and subject-matter experts,

and investigated a potential solution by constructing aDSLwith a test bed to evaluate it using

design science research.

We showed that a DSL has the potential to be used for collaborative work with subject-

matter experts. In addition, we identified the effects of major design decisions and discussed

them to provide a basis for additional language iterations and future DSL designers. In this

chapter, we summarize important results anddiscuss them in the context of the initial research

questions. We also provide an outline for future research.
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8.1 Contributions

Regarding artifacts, we contributed to the design and development of Jayvee, a DSL for the

creation of data pipelines. The implementation of Jayvee is available for users as an open-

source project and can be used by practitioners to improve their data engineering. Addition-

ally, to support the design, we developed a process for the iterative generation and evaluation

of hypotheses of important language design decisions using controlled experiments with stu-

dent participants. With the creation of an adaptable language and tools to run experiments,

the evaluation studies can be extended to data practitioners from industry and further hy-

potheses in the future.

The scientific contributions of our work lie in accurately describing collaboration systems

in data engineering, identifying important problems, and evaluating DSL design decisions

for collaboration with subject-matter experts. These contributions are best discussed in the

context of the initial research questions from section 3.1.

Research question 1 - how open collaborative data engineering with open data can be en-

abled - focused on the exploration of how data engineers collaborate andwhat challenges they

face, was addressed during the problem identification and objective definition activities de-

scribed in chapter 4. After investigating the open data ecosystem, we found that different

stakeholders exist who can be categorized into the major categories of data publishers, info-

mediaries, and data consumers.

Unique to the open data context is that data publishers are not necessarily data consumers

themselves and instead can be participants without an active interest or involvement, because

they are only releasing data due to legal requirements. Instead, open data consumers must

self-organize and improve data from sources that are not receptive to changes requested by

the community. Due to this, open collaborative workflows are a way for the community to

reduce individualworkloads, and creating automated data pipelines that consistently improve

data releases solves the challenges of data that is repeatedly released with errors.

80



While describing the wider social systems in data engineering projects in more detail, we

observed at its core a so-called project group which included the roles of mediator, software

engineer, data engineer, and subject-matter expert. The involvement and challenges of non-

technical contributors are an important element of these collaborations. The expertise of

subject-matter experts is needed to correctly understand datasets, especially in complex do-

mains such as open science. Our research showed that, while technical problems exist, social

challenges play a major role in collaborative data engineering projects. Partially, these arise

for the larger community, like the need for deep knowledge and specialized skills, but existing

barriers to entry and difficulty in finding experts. But they are also relevant for smaller-scale

collaborations in project groups, where the individual participants have no shared collabora-

tion artifact or standard processes and lack specialized tools that support their work well.

As concrete recommendations, we therefore suggest first defining a standard collaboration

artifact for the creation of data pipelines, adapting proven open collaboration workflows to

data engineering, andproviding a centralized project forge to disseminate these standards. Par-

ticipants in open collaborative data engineering should be supported by purpose-built tools.

In the context of the wider open data ecosystem, the creation of data communities should be

supported by providing and aligning the incentives of all participants andhighlightingmodels

of working [17].

Because our background in software engineering allows us to contribute well-built tools,

and we consider the missing standard collaboration artifact to be an important challenge, we

focused our investigation on determining that a text-based DSL is a viable foundation for

this collaboration artifact in open collaborative data engineering to answer RQ2. After the

construction of a DSL using the pipes-and-filters architectural style, we demonstrated that it

is possible to use it to solve existing, real-world data engineering problems. Additionally, our

empirical validation with students as proxies for data practitioners has shown that a DSL is a

valid alternative to GPLs to collaboratively develop data pipelines.

By using aDSL to solve data engineering exercises based on real open data sources, students
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were able to experience improvements across speed, correctness, and the impression of diffi-

culty [20]. Narrowing the investigations to specific features and uses of the DSL showed that

the improved speed does depend on the activity under consideration. Code understanding

was generally completed in similar times compared to aGPLwith libraries. However, individ-

ual activities and feature combinations, such as code creation with spreadsheet syntax, took

less time. It seems that potential speed improvements can be realized using DSLs for data

pipeline creation, but how and to what extent requires more research.

In contrast, the correctness of solutions saw significant, consistent improvements when

using a DSL or domain-specific syntax instead of a GPL with libraries. Our studies docu-

mented that students can understand data pipeline structures more correctly using a DSL

based on pipes-and-filters [19]. Additionally, they could read and write code more correctly

using spreadsheet syntax compared to numeric cell selection approaches [18]. These results

show that a major advantage of using domain-specific concepts during data engineering with

subject-matter experts can be found in improved correctness, but not necessarily faster imple-

mentation. In the context of our studies of data engineering for smaller-scale open datasets, a

DSL is a valid basis for a collaboration artifact for subject-matter experts.

In research question 3, we asked which considerations are important for a DSL used to cre-

ate data pipelines by subject-matter experts. Based on the qualitative user feedback we gath-

ered as part of our evaluation, we described a number of effects experienced by participants

when solving data engineering tasks with aDSL.Overall, the pipes-and-filters architecture we

chose for the structure of theDSLhas proven to be a good fit. Itmatches the commonmental

and visualmodel of data pipelines asDAGs, with blocks of computation connected by arrows.

Our results show that how well the language aligns with the mental model for data pipelines

of the users is very important for the ease of use when working with it. The core challenge is

to find the correct level of abstraction from the technical details to what the users expect to

see. When this level of abstraction is too low, users are confused by technical steps, but if it

is too high, the language lacks the flexibility needed to work with low-quality data. Language
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designers should be prepared to conduct empirical studies with their target audience in order

to learn about their mental model of the problem domain.

One main feature that was universally described as improving understanding and being

helpful is the separated pipeline overview that is created in any Jayvee pipeline model when

blocks are connected using the arrow syntax. Even though it is possible to recreate this struc-

ture using a GPL, the strongly enforced and consistent structure found in Jayvee models

helped users to orient themselves quickly and ensured that created models followed it, even

without knowledge of good programming practices. Additionally, the structure was consid-

ered a helpful guideline and a reminder for the necessary implementation steps. From these

descriptions, it seems clear that a strict structure without many options, ideally with a syntac-

tically separated overview section, should be considered important for future DSL develop-

ments for users without a technical background.

Regarding collaboration and code reuse, the co-location of related code in a block is an

upside of the pipes-and-filters structure. Additionally, providing everything needed to create

a data pipeline from one language implementation and a standard library, instead of third-

party libraries, has a positive effect on how easy the DSL is to understand, as users only need

to comprehend one consistent glossary and one approach to solve problems. However, these

upsides come with tradeoffs since excluding third-party libraries means more individual im-

plementation work and a lower innovation speed.

An important consideration for DSLs used for data engineering is how to verify that data

matches a schema. In our evaluation, participants considered user-defined value types easier

to understand than callback functions used to filter datasets. Moreover, user-defined value

types are described as enabling collaboration due to better code reuse. Despite these facts,

the concrete design choice we made for Jayvee by implementing value types based on a collec-

tion of constraints was considered not intuitive. Future language designers (and future work)

should consider value types as a core language concept and explore the best way to implement

them.
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On a more narrow level, we found that domain-specific syntax, such as the spreadsheet-

inspired cell selectionwe evaluated for data engineering, can improve performance for subject-

matter experts. Similar to DSLs, domain-specific syntax choices should also be investigated

individually because their effect can change depending on the domain and target user. In

our experience, understanding the previous experience of non-technical users is important

knowledge that should be taken into consideration as soon as possible. A well-designed DSL

should allow subject-matter experts to reuse their expertise fromnon-technical domainswhen

implementing models. This way, their previous experience matters when learning and using

the DSL, making themmore productive faster.

When it comes to data engineering, for example,many subject-matter experts have previous

experience working with spreadsheet software. This might be the case due to using it as a

regular part of their job to accomplishunrelated goals or because they are actually cleaning and

transforming data using spreadsheet software in one-off projects. DSLs for data engineering

can make this a strength by reusing syntax and concepts from spreadsheet software.

Finally, empirical evaluations matter and are important for DSLs. Over the course of this

work, we gained new insights that we did not anticipate and could not have formally deduced.

Examples include feedback for the mental model and correct abstraction level, but also hear-

ing about subject-matter experts learning data engineering from spreadsheet software. Exe-

cuting evaluation studies with human participants was complicated to plan and execute, but

provided unique insights. We recommend that any language designer include user studies in

their design process.

8.2 FutureWork

In future work, we want to improve the generalizability of the experimental evaluation by

executing the same protocols with data practitioners from industry, as well as open data en-

thusiasts. Gaining initial data and insights from students as proxies for subject-matter experts

in the open data ecosystem was valuable and allowed us to refine our experimental approach
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and tool. Using this existing platform to run replication studies with participants from the

real population would add additional rigor and deeper insights.

Further, it would be important to extend the experimental framework to other concrete

features that emerged from the qualitative research designs during the evaluation, such as how

to best implement value types. We learned that participants considered user-defined value

types as easier to understand and a goodbasis for code sharing and collaboration; however, our

design of using a collection of constraints on an existing value typewas described as confusing.

With additionalmixed-method studies, wewant to learnmore about the effect of user-defined

value types for collaborative data engineering and how to best implement them so that they

are helpful for subject-matter experts as well.

Moving beyond the line of research presented here, we are interested in additional improve-

ments of open collaborative data engineering workflows for open data. We identified and

described multiple challenges from interviews with practitioners and shared multiple recom-

mendations that we could not attempt as part of this work. Building or adapting a centralized

collaboration platform to the specific needs of collaborative data engineering is a promising

research and engineering challenge that would be important for setting and distributing col-

laboration standards among the open data community. Such a platform would connect po-

tential contributors, match projects with experts, and provide standard tooling and processes

for participants.

Finally, outside the possible engineering contributions, creating additional incentives and

aligning existing ones for the provision of high-quality open datasets on a community level

could improve data availability. This would require interdisciplinary work to identify existing

incentives and work with government agencies and economists to create sustainable models

that reward contributions to improving open data as a public good. As a result, higher-quality

open data could be an even more important source of innovation and transparency for every-

one.
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Abstract

Open data is data that can be used, modified,
and passed on, for free, similar to open-source
software. Unlike open-source, however, there is little
collaboration in open data engineering. We perform
a systematic literature review of collaboration systems
in open data, specifically for data engineering by users,
taking place after data has been made available as open
data. The results show that open data users perform
a wide range of activities to acquire, understand,
process and maintain data for their projects without
established best practices or standardized tools for
open collaboration. We identify and discuss technical,
community, and process challenges to collaboration in
data engineering for open data.

1. Introduction

Open data can be created, used, modified, and shared
by anyone and therefore has the potential to be a driver
of innovation. Still, research has shown that users
face challenges when using open data. Part of these
challenges are technical issues that make accessing the
data hard. Additionally, the quality of data sources is
often poor (Purwanto et al., 2020).

Data engineering, the activity and process of
preparing data for use for a specific purpose, is costly
and routinely consumes large parts of the budget for
data science projects (Terrizzano et al., 2015). The
importance of data engineering in open data is even
larger because of the varying quality of data provided
by publishers.

However, because open data can be freely modified
and distributed, a community of users can share the work
of making data easier to use. Open-source development
has shown that individual costs can be lowered if
separate parties collaborate on shared artifacts. This
form of egalitarian, meritocratic, and self-organizing
collaboration, called open collaboration (Riehle et al.,
2009), naturally extends to open data. Similar to the

open-source workflow, being able to share intermediate
artifacts between projects would allow distributed
communities of episodic volunteer contributors to
collectively increase data quality, motivated by their
own reuse. Open data users could collaboratively
work to improve data for themselves after it has been
published. By doing so, they would not have to rely on
data publishers that might be slow to improve their data
or have no incentives to provide data in a well-structured
format.

In contrast to open-source software development,
large-scale open collaboration seems to be uncommon
in data engineering by open data users, with most open
data projects being completed by small teams (Choi &
Tausczik, 2017). It is unclear why open data users do
not collaborate as much as open-source developers.

Virtual collaboration plays a major part during data
engineering and participants make extensive use of
asynchronous collaboration tools like GitHub, Slack, or
Email (Choi & Tausczik, 2017; Zhang et al., 2020).
Especially open data can be shared and improved
among geographically distributed, virtual communities.
However, reusing existing software and workflows that
have been developed for software engineering does not
optimally support data engineering activities. Tools
that support virtual and collaborative work during
other phases of the data science workflow have shown
promise, for example during feature engineering (Smith
et al., 2017) or for the creation of labeled data (Reddi
et al., 2021). A recent publication by Smith et al., 2021
shows that open-source software development practices
can be used during feature engineering as part of a
machine learning pipeline. Understanding how open
data users collaborate virtually during data engineering
will be essential to create workflows and tools that are
better adapted to the challenges they face.

Yet, academic research into open data has mainly
focused on data publishers. If data engineering by
users is described, it is usually seen as just a phase
of a larger data science workflow. Therefore, data
engineering, as performed by users of open data, is



often mentioned in the literature but not described in
depth. To support large-scale open collaboration in
data engineering across multiple projects, it is necessary
to know the participants, their workflows, and the
challenges they encounter in their individual projects.
We asked the following research question to create an
overview of the involved elements:

Research Question: Which elements of
collaboration systems for data engineering by open
data users exist, and what are potential challenges?

We contribute an overview of existing practices,
participants, the tools they use, and artifacts open
data users create in the course of data engineering
collaboration. To do so, we conducted an exploratory
literature review to identify the state-of-the-art
workflows and processes in projects built on open
data. Going beyond the identification of the current
reported practices, we elicited the potential challenges
to collaboration in open data engineering. Our
contributions can be used as a basis for future research
into workflow methods and improvements of supporting
tools for open collaboration during data engineering.

This paper is structured as follows: First, we review
related work in section 2. The research approach for the
survey is presented in section 3. Results of the survey
are summarized in section 4, followed by a description
of their implications beyond the immediate findings
in section 5. After a discussion of the limitations in
section 6, we summarize the results and point out future
research opportunities in section 7.

2. Related Work

To the best of our knowledge, there exist no reviews
of how open data users collaborate in data engineering.
Mainly, insight is gained across the whole data science
workflow from surveys or interviews with data science
practitioners, often in commercial settings. If open data
is mentioned, the focus of publications is mostly on open
data publishers and the work they need to do to provide
data of adequate quality.

The challenges of data engineering are an active
research topic in corporate environments. Terrizzano
et al., 2015 describe what they call ”Data Wrangling”
at IBM, highlighting various barriers like privacy or
technical issues to data usage. Also at IBM, Zhang et al.,
2020 investigate collaboration of data science workers in
a large company environment. They find data scientists
are highly collaborative, work in small teams and with
a variety of tools. However, they point out it is unclear
if their results are generalizable outside of the specific
corporate environment at IBM.

Previous work by Wang et al., 2019, while mainly

focused on work practices of data scientists and their
impressions of automated AI, includes a review of
academic literature on what roles exist in data science
teams and tools that are used during data science
activities. They find interactive computing software like
Jupyter Notebooks to be a widely used tool in companies
like IBM and Netflix. At the same time, they also point
out the problem of overly complex tools and missing
features to include domain experts in data science teams.

In the context of open data, Choi and Tausczik,
2017 used interviews and survey responses to gain
insight into collaboration during open data analysis.
Their results show most collaboration happens in
small, interdisciplinary groups that mainly build tools
to make the use of data easier or reports based on
new information from data. They identify that open
data analysis is a new phenomenon that has yet to
develop standardized norms and practices, as well as
the lack of a centralized collaboration platform, as
reasons for the fact that large-scale open collaboration
is uncommon. While some participants used GitHub,
Choi and Tausczik discuss that the platform might lack
features and call for further research into how a platform
could best support open data analysis.

Zuiderwijk et al., 2014 take a wider ecosystem
perspective of open government data, including data
publishers. Their work includes a systematic literature
review to identify key elements that allow for the
publication and use of open data across all stakeholders,
including publishers. These elements include releasing
data on the internet, being able to search for appropriate
data, processing it, and finally using the data and
providing feedback to publishers. Additionally, they
point out the need for elements to integrate different
tools and data sources.

3. Methods

We conducted a systematic literature review (SLR)
according to Kitchenham (Kitchenham, 2004). During
an initial pilot study, we identified the need for a review
because most research in open data focuses on the
activities of data publishers. If data engineering is
discussed, it is only in the context of a larger data
science process and often specific to a domain. To
identify collaboration practices that are applicable to all
open data users, we had to create an overview from the
state-of-the-art literature.

3.1. Search Strategy

We defined an initial search strategy and refined it
with information from the pilot study. The pilot study
itself consisted of an iterative and broader approach
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Figure 1. Process of the systematic literature review

to gain familiarity with the literature on collaborative
work, data engineering, and open data over a variety
of academic search engines. We included articles that
were potentially relevant to the research question from
these results. Based on the knowledge gained from the
pilot study, we defined a systematic search strategy. We
retrieved literature from Google Scholar and Scopus to
cover a wide range of publications.

An overview of the process is shown in Figure 1.
We searched for articles that included open data
and workflow, process, practices or participants or
variations thereof.

Scopus offers a comprehensive search interface
that allowed us to search in the title and abstract of
publications, while still ensuring relevance by making
sure the keywords were not too far apart. The keywords
in the search string used were:

("open data" OR "open-data")
W/5 ("workflow" OR "workflows"
OR "process" OR "processes"
OR "practices" OR "participants")

In addition, we limited the results to articles written

in either English or German, the type of article only to
journals or conference proceedings, and the publication
stage to final.

The Google Scholar search was executed similarly.
Because Google Scholar does not offer the ability to
limit the distance of keywords in abstracts, we restricted
the search to paper titles. The search string used was:

allintitle:workflow OR workflows OR
process OR processes OR practices
OR participants "open data"

For all searches, we only included articles published
after 2008 because most publications on open data were
created after that time (Purwanto et al., 2020).

We defined explicit inclusion and exclusion criteria:

• Include articles that describe data engineering
workflows or processes with open data

• Include articles reporting on data engineering
during a concrete project with open data

• Exclude articles that are not peer-reviewed
journal or conference papers

• Exclude articles exclusively on data publishers

• Exclude articles that could not be retrieved in full

Every result of our search algorithm was checked for
relevance first by its title, then by its abstract, and finally
by skimming the article’s full text and applying the
inclusion and exclusion criteria. We removed duplicates
and any articles that could not be accessed.

During the reading of potential articles, we noted
down references that were potentially relevant because
they were mentioned in the context of data engineering
by open data users. We included these references in the
pool of potential articles and verified their relevance by
applying the same inclusion and exclusion criteria as for
other articles.

3.2. Data Extraction & Synthesis

Our data extraction strategy was aimed at listing
all elements of collaboration systems. We set up four
shared documents in a sheet management software to
track any mention of an activity, participant, tool used,
or artifact created during data engineering with open
data. We worked iteratively: When an element was
mentioned in the current article, we added it to the
corresponding list and saved a reference to the source.

When presenting work that builds on open data,
most authors do not focus on the exact data engineering



activities performed but on the final results. To capture
the whole scope of data engineering by open data users,
elements were included liberally if they were mentioned
in an article, even if they were not part of the main
contribution. After every article, we merged entries that
had already been identified in previous articles and noted
the number of new elements found.

We followed the descriptive data synthesis approach
described in Kitchenham, 2004 to provide a broad
overview of data engineering in open data, prioritizing
including edge cases over a compact summary. We
therefore explicitly kept any elements that were only
mentioned in few articles but provided new insights to
cover the whole breadth of the process.

We grouped elements only when including
individual elements did not offer additional insight,
mostly for mentioned tools. Here, we merged entries
that mentioned different concrete tools of a common
type without a clear distinction, but kept any concrete
tools that were mentioned specifically. For example, we
grouped various mentions of PHP, Python, Java, etc.
in the context of implementing software tools into one
general purpose programming languages entry but kept
Open Refine as a specific tool because it was mentioned
multiple times explicitly.

Descriptions and examples were added for the
extracted elements to clarify their meaning, the full
descriptions are part of the raw data1.

In addition, it became apparent during data
extraction that a large number of different activities are
performed by open data users during data engineering.
We considered it important to preserve the detailed
separation because the data engineering process is
seldom described in detail, especially in the context of
open data. However, with the large number of activities
identified, we felt it would be valuable to create groups
for a clearer overview. We created these groups one by
one after all activities had been extracted by considering
the list of activities, their descriptions, and examples.
Once we felt that every activity was assigned to a
matching group, we stopped the addition of new groups.

In a final step, the SLR results were shared with
an open data expert working in the domain of open
transport data for a member check (see Table 1). Their
feedback pointed out some additional activities and
distinctions between artifacts but was overall positive
and confirmed that they felt the data was complete.

3.3. Concluding the search

Because the goal of this study was to identify the
diversity of elements in collaboration systems for open

1Available on Zenodo at https://doi.org/10.5281/zenodo.6598447

data engineering, we used theoretical saturation as the
stopping criterion for the search. Theoretical saturation
is considered to be reached when no new insights are
gained by analyzing additional data (Bowen, 2008).
During our iterative approach to data extraction, we
counted the number of new elements added with every
article. We considered the data adequate when we
did not add any new elements for multiple additional
articles.

3.4. Quality Assurance

During writing, we regularly held peer debriefing
sessions (Spall, 1998) to ensure the credibility of the
results. We discussed qualitatively with two other
researchers that were not working on the same research
but had experience with the methods we used. Two
review sessions were conducted. First, we presented
the search strategy of the systematic literature review
and the resulting articles, as well as the extracted data.
Based on the feedback, we added additional detail to the
methods description and discussion of results. In a final
peer debriefing session, we focused on the challenges
that were identified from the data and how to best
present them.

After obtaining the results, the results were
discussed with an expert that has practical experience
working on multiple open data projects as a form of
member checking (Guba, 1981). For this, we created
a handout document describing the research goals and
methods and asked if we either had identified any
elements that should not be included or missed any
elements that were part of their practical experience.
Based on the comments from the open data expert we
then revised the results slightly and explicitly asked if
the data seemed complete to which the open data expert
confirmed that they had no further comments.

Method Participants Topic

#1 Peer Debriefing 2 Researchers Search Strategy & Results
#2 Member Check 1 Open data expert Results
#3 Peer Debriefing 2 Researchers Identified challenges

Table 1. Feedback methods used

Table 1 shows an overview of feedback sessions,
participants, and main topics.

4. Results

We first discuss the search results of the systematic
literature review. In addition, the identified elements
of open collaboration systems during data engineering
by open data users are presented by their categories of
participants, activities, tools, and artifacts. As described



in section 3, the list of activities also includes themes
that were created by grouping related activities.

4.1. Search results

The search returned 296 results from Scopus and 175
from Google Scholar, as shown in Figure 1. We initially
excluded articles by their title, leaving 88 results from
Scopus and 49 from Google Scholar.

For results from Google Scholar, we removed
duplicates and articles that were not peer-reviewed
journal papers or conference proceedings, leading to the
exclusion of 25 articles. We then read the abstracts of
all remaining articles and kept any that sounded relevant
to the research question. After this step, 27 results from
Scopus as well as 12 results from Google Scholar were
included. Together with the initial search, 49 potentially
relevant articles were identified.

The remaining results were read in full and the
inclusion/exclusion criteria were applied. During this
step, 33 additional articles were excluded, largely
because they did not cover data engineering but only
later phases of the data science workflow.

In the process of reviewing articles, six potentially
relevant references were noted down for future revision.
The same inclusion- and exclusion criteria as for
other articles were applied, excluding two as not
peer-reviewed and two as not relevant. The remaining
articles (Lnenicka & Komarkova, 2019; Magalhaes
et al., 2013) were included in the final literature pool,
but did not contribute newly identified elements.

In the end, we identified a selection of 18 relevant
articles.
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We searched for publications starting in 2008,

included articles were published between 2013 and 2021
(see Figure 2) with a slight increase since 2017. Most
publications from 2022 could not be included because
the original searches were performed during March and
April 2022.
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Figure 3. New elements identified by article

We tracked the number of new elements we added
with every article (see Figure 3). Because the vast
majority of elements were identified in the first articles
and later articles contributed no new insights, we
considered theoretical saturation to be reached and
concluded the review.

The complete search results as well as data
extraction are part of the raw data 1. The raw data
also includes sources for all identified elements of
collaboration systems presented that have been omitted
in the tables for readability.

4.2. Participants

Participants

Businesses Mediators
Citizen Scientists NGOs
Civil Servants Open Data Experts
Data Scientists Organisations
Domain Experts Private Citizens
Goverment Agencies Researchers
Hackathon Participants Software Developers
Infomediaries Startups/Entrepreneurs
Journalists Students
Legal Advisors

Table 2. Participants in data engineering, by user

role



A diverse group of users participates in collaboration
systems for data engineering with open data, as shown
in (Table 2). Open governmental data is a focus of
academic research, so the list of participants is more
detailed for the domain of public administration. It is
noteworthy that government agencies and civil servants
also act as users of open data, not only as publishers.

Open data allows interested parties insights into
political processes, resulting in private citizens, NGOs,
and journalists being common participants in open data
engineering. These stakeholders are mainly involved in
creating reports from data or tools for further insight.

We also identified commercial participants that use
open data to build or enhance their products. These
include large businesses like IBM that use open data
as part of their larger data management strategy, but
also startups that may build products based solely on
open data. The literature also included references
to intermediate entities, called Infomediaries, that
offer services based on open data to end users, e.g.,
companies offering improved open data as a service,
either by bundling it or providing processed data.

Open data users come from different backgrounds
and view data from different perspectives. On one hand,
the use of data creates a number of challenges in itself,
requiring input from legal advisors and experts in open
data or data science itself. On the other hand, working
with open data is a technical challenge, which means
software developers are often part of open data projects.

Depending on the context, understanding open data
can be complicated and domain experts must be part of
the data engineering process. This is especially true for
the use of open data by researchers and students when
the data might be part of a larger academic project, but
also for citizen scientists that want to make sense of a
complex problem.

In contrast to general data engineering, open data
is often used by hobbyists or amateurs in the context
of hackathons, private citizens, or students in university
projects. Common to all these users is the low amount of
organization and direction, an environment that should
be ideal for open collaboration approaches.

4.3. Activities

A wide range of activities is potentially performed
as part of data engineering by open data users. Table 3
shows an overview with the larger themes that emerged
from the data. Not every activity will be executed
during a given project, often only a small subset of
activities is needed to make raw data available to use
in an application.

In any case, users will need to perform activities

related to acquiring and assessing open data to use.
Most often, acquiring data takes the form of searching
or discovering data and extracting it by downloading a
data set. More complex projects might need to build
infrastructure to automatically access data repeatedly.
Not all data is easy to extract either, some data
publishers require the creation of accounts or impose
limits on how often data can be downloaded. After
the data is acquired, it must be assessed for appropriate
scope and legal compliance. To do so, users often
visualize or preview part of the data. From expert
feedback, we learned that availability is often a concern
for open data users, when relying on an open data
source it is important to verify that it will be consistently
reachable. This process is necessarily iterative with
backtracking whenever a data source lacks the content,
license, or availability needed to be useful.

Once appropriate data has been acquired, it can
be improved or extended with additional data. These
steps contain a large number of technical activities like
changing data format or structure, normalizing values,
as well as finding and fixing errors. Additionally, users
link data with other data sets and add metadata like
data quality indicators. If the data is in a different
language it might be required to translate it, either
by employing automated translation tools or by hand.
Activities that are preparing data for later stages in an
ML workflow like feature creation and labeling of data
could be considered project-specific and therefore not
relevant to general data engineering. They are included
here because well-structured, public data sets can be a
useful basis for multiple ML projects that have no direct
relation (Reddi et al., 2021).

For open data projects that are planned to exist
long-term, maintaining data becomes a concern. Users
need to write documentation about the process to make
sure it can be repeated and data can be refreshed if it
changes, like e.g. transportation schedules. Archival
of open data might be necessary, especially if the
underlying data source is unreliable or old data is
replaced with new data.

To perform any of these activities it is essential to
understand the data. This can be a purely technical
challenge to learn the data format and structure of
the data. Users analyze parts of the data or create
small, ad-hoc experiments to gain insights into the data.
Often, understanding data also requires understanding
the underlying problem domain. Depending on the
complexity of the context, this can mean having to ask
(and find) domain experts or having to build up domain
knowledge.

During all of these activities, open data users
communicate with different participants in the



Acquire Assess Communicate Extend Improve Maintain Understand

Build Infrastructure Ensure Anonymity Ask Publisher Add Metadata Aggregate Archive Analyze
Discover Evaluate Discuss Create Features Clean Document Ask Experts
Extract Preview Find Community Label Combine Refresh Experiment
Read Documentation Measure Availability Find Skilled Users Rate Curate Learn Domain Knowledge
Search Verify License Give Feedback Translate Enrich Learn Structure
Select Visualize / Plot Data Request Data Link
Store Share Data (Publisher) Normalize
Validate Share Data (Stakeholders) Reformat

Share Information Repair
Structure

Table 3. Activities performed during data engineering by open data users

ecosystem. They ask questions and provide feedback
to data publishers, search for skilled users or domain
experts in a community surrounding the data, and share
their data and additional information with others. It
is noteworthy that interactions with data publishers
are expected and open data portals provide avenues to
contact them. On the other hand, communicating with
the larger community of users that are interested in
the same data is less common during data engineering.
Regarding other users, activities related to identifying
experts and finding other community members are
mentioned more often.

4.4. Tools and Artifacts

Tools used

Auth Providers Kaggle
Big Data Processing Tools Notebooks
Blogs / Websites Official Discussion Board
Command Line Tools Open Data Repositories
Data Science Libraries Open Refine
Databases Sheet Software
Domain Specific Languages Statistical Computing Languages
Domain Specific Software Translation Software
General Purpose Languages Travis
git Visualization Tools
GitHub Wikis

Table 4. Tools used during data engineering by open

data users

Table 4 shows mentions of tools in literature. We
could not identify a standard tool outside of Open Refine
which was mentioned multiple times. Depending on
the technical skills of project members, employed tools
can be self-developed (e.g., based on general-purpose
languages) or pre-made applications like Wikis or Sheet
Software. After expert feedback, we added custom
Software Applications as an explicit artifact. We
previously assumed open data practitioners collaborate
on building their own software in an open-source
development process (so the artifact would be Source

Code) but some applications (e.g., data validation
tools) are also developed internally and only shared as
closed-source programs.

Visualization tools play an important role in the
data engineering workflow because they allow users
to quickly evaluate data for quality and scope. When
performing the more technical activities for acquiring
and improving data, practitioners rely largely on
general-purpose programming languages like Python or
Java and the surrounding ecosystem of tools like Jupyter
Notebooks and GitHub.

Open data repositories are mentioned often, but
mainly just as a source of raw data. In contrast
to open-source development, where collaboration
increasingly happens on GitHub as a central project
repository, many different open data repositories exist
and data is spread between them. To find experience
reports about data, documentation, and feedback,
users must visit multiple, disconnected locations like
publisher websites, practitioner blogs, or discussion
boards.

Created Artifacts

CI Definitions Notebooks
Comments on Data Processed Data
Data Quality Ratings Raw Data
Documentation Software Applications
Feedback-/Experience Reports Source Code
Metadata
Table 5. Created artifacts by open data users during

data engineering

Similarly, open data practitioners do not collaborate
on one well-defined, shared artifact. Various artifacts
are created as part of data engineering activities (see
Table 5) but they mostly are related to metadata or tools
to deal with data.



5. Challenges

Open data has the potential for productive open
collaboration because the data itself as well as any
products resulting from it can be shared freely. Despite
this, data engineering in open data is largely considered
an activity for data publishers that concludes when the
data is made public. We identified a number of potential
challenges from the results of the systematic literature
review:

• Need for specialized skills but high barriers to
participation

• Finding and connecting with other community
members

• No standard tools or artifacts

• No well-understood collaboration practices

First, the use of open data requires additional
skills, making it more difficult for domain experts to
participate. Experience with software development is a
vital part of data engineering and software developers
are common participants in open data projects. In
addition, general-purpose programming languages, as
well as statistical computing languages, were among
the most mentioned tools for data engineering in our
literature review. Aside from software engineering, the
required data management skills can impose a barrier as
well. Common formats to describe structured open data
include semantic web formats like RDF, yet in a recent
survey of researchers in Kjærgaard et al., 2020 only
7% of respondents said they were comfortable using
it. The challenge will be to lower technical barriers
to participation while at the same time staying flexible
enough to work with a variety of data sources, formats,
and qualities.

A second challenge is connecting members of open
data communities. Our results show that the process of
understanding data involves learning domain knowledge
by finding domain experts or help from a community.
Additionally, skilled users have to be identified to help
with various barriers from software development to
legal advice. Here, the challenge to open collaboration
is that users must be able to identify and contact
other participants that have a required skill set and are
interested in the same data. Due to the public nature
of open data, communities can naturally form around
an area of interest but it is hard to find other members
(Ruijer & Meijer, 2020). Other domains of open
collaboration like open-source software development
or wikis provide a central location (e.g., GitHub or
Wikipedia) for community members to interact. In open

data, a similar role could be accomplished by open data
repositories, yet they are focused on providing data and
less on building communities around common interests.

The lack of a standard artifact is an additional
challenge for open collaboration. In open-source
software development, community members collaborate
on clearly defined artifacts, expressed in source code,
like frameworks or libraries. These artifacts have in
common that they are not competitively differentiating
but instead get used to build additional, potentially
closed-source products on top of. By collaborating
on an underlying artifact, open-source developers can
lower individual costs and with increased generality
and quality of the artifact improve their individual
applications. We could not identify a similar artifact
in open data engineering. Most artifacts described in
Table 5 are metadata surrounding the use of open data
but not the data engineering steps themselves. It will
be a challenge for open data engineering to find an
intermediate artifact that is generic enough to be of use
for many projects but can be developed collaboratively.
Even though the processed open data is an obvious
artifact that can be re-shared with the community, it is
too static. As identified by Terrizzano et al., 2015, data
must be regularly refreshed to be up-to-date, the same is
true for regularly released data sets like open transport
schedules. An ideal intermediate artifact would be able
to cope with changing or newly released data.

Without a shared artifact to collaborate on, data
engineering for open data faces the challenge of a
fragmented tooling landscape. Currently, traditional
software development tools like programming
languages and GitHub are common in data engineering
(see Table 4). As pointed out by Choi and Tausczik,
2017, these tools lack features that support collaboration
on data specifically. Especially during evaluation,
participants also use a variety of visualization tools and
sheet software to preview the scope and quality of open
data. For large-scale open collaboration, a centralized
location to collaborate on an artifact will be important.
In the open-source approach to software development,
this role has been increasingly filled by GitHub for
source code and module repositories like npm. Because
a more data-focused, well-built project forge has yet
to be created, GitHub is currently also used in many
open data projects but is missing solutions for e.g.,
previewing and visualizing data.

As a result of the previous challenges, limited
collaboration practices have been developed and
adopted during data engineering on open data. Instead,
a mindset of data publishers on one side and data users
on the other side is common. Participants acquire data
as-is and improve it for their own use-case but seldom



share the resulting data with the community. If data is
released with errors or in inconvenient formats, users
provide feedback and quality ratings to publishers but
do not work together to improve the data for everyone.
One exception are so-called Infomediaries (see Table 2)
that offer additional services on top of existing data.
This mindset difference is in contrast to the open-source
approach to software development, where developers
are collaborating on shared source code that then
is used in their individual projects. While some
data engineering activities like evaluating the scope of
data might be project-specific, others like finding and
fixing errors could be shared by interested parties. A
final challenge to open data collaboration will be to
identify which activities can be performed by aligned
participants and develop collaboration workflows and
practices for them.

6. Limitations

Our search was limited to Google Scholar/Scopus as
well as by the language of articles, potentially missing
out on relevant articles. We noted and reviewed relevant
forward references from the original search results to
increase our confidence in the completeness of the
results. However, the articles identified in the literature
search only include academic work while some papers
also cited not peer-reviewed content. An additional
search of practitioner literature would improve the depth
of the review.

We performed descriptive data synthesis for the
results of the systematic literature review. Without
extracting quantitative data, we can not make statistical
inferences about how common or important the
identified elements of open collaboration systems in
data engineering by open data users are. Given the
research goal of identifying the diversity of elements,
this was appropriate and allowed us to contribute a
descriptive overview. At later points in time, with an
extended search, other forms of qualitative data analysis
could also be used. Ideally, quantitative data should be
surveyed from open data practitioners instead.

A threat to validity in the form of bias could exist
because large parts of the academic literature on open
data is related to open government data. Because our
goal is to identify as many elements as possible, and we
are not attempting quantitative data synthesis, the threat
is mitigated. However, the potential to miss elements
from other domains exists. We used expert feedback
from an open transport data practitioner Table 1 to
increase our confidence that we captured the whole
breadth of the data engineering process.

7. Conclusion

In summary, we set out to identify elements of
collaboration systems for data engineering by open data
users and point out potential challenges.

We have performed a systematic literature review
and descriptive data synthesis to find elements of open
collaboration systems in data engineering. Our results
show that open data users come from many domains,
with varying technical skills, and perform a large
number of activities. We could find different tools and
artifacts, but no standard practice of collaboration across
open data engineering.

We identified a number of potential challenges to
open collaboration in data engineering: High barriers
to participation but the need for specialized skills,
identifying and connecting with a larger community, the
lack of standard tooling and artifacts as well as missing
collaboration practices.

These challenges are especially relevant for
large-scale, virtual collaboration that has the potential
to be very effective in the context of open data
projects. Working virtually with unknown members
in a larger community exacerbates the identified
challenges and makes standard tooling and practices
even more important. Our results will be the basis for
the development of an open collaboration workflow
method and supporting tool that allows data engineers
to collaborate in a geographically dispersed and
asynchronous manner.

Additionally, we plan to extend our description of
open collaboration systems in data engineering and
verify the discussed challenges. To do so, we will
conduct interviews with open data practitioners as well
as industry partners in further work.
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A Systematic Analysis of Problems in Open Collaborative
Data Engineering

PHILIP HELTWEG and DIRK RIEHLE, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Collaborative workflows are common in open-source software development. They reduce individual costs and
improve the quality of work results. Open data shares many characteristics with open-source software as it
can be used, modified, and redistributed by anyone, for free. However, in contrast to open-source software
engineering, collaborative data engineering on open data lacks a shared understanding of processes, methods,
and tools.

This article presents a systematic literature review of collaboration processes, methods, and tools in data
engineering as performed by open data users. An additional interview study with practitioners confirms and
enhances the findings and strengthens the resulting insights.

We find an ecosystem with heterogeneous participants and no standardized processes, methods, and
tools. Participants face a variety of technical and social challenges during their work. Our work provides a
structured overview of collaboration systems in open collaborative data engineering, enabling further research.
Additionally, we contribute preliminary guidelines for successful open collaborative data engineering projects
and recommendations to increase its adoption for open data ecosystems.

CCS Concepts: • Human-centered computing → Collaborative and social computing systems and
tools; Empirical studies in collaborative and social computing; • General and reference → Surveys and
overviews.

Additional Key Words and Phrases: collaboration, data engineering, open data
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1 INTRODUCTION
Open data is data that can be used, modified, and shared, free of charge. However, using open
data can be challenging for many reasons, including poor quality of data sources, uncommon
and undefined formats and schemata, and lack of well-understood workflows and processes. Data
engineering, the process of extracting, preparing and transforming the data into a usable format, is
a labor-intensive and hence costly engineering activity [18, 26].

Open-source development has shown that collaborating on shared software artifacts can lower
individual costs and improve quality. Similarly, sharing intermediate artifacts between data-projects
could allow contributors to collectively increase the quality of the data they use, as demonstrated
by Infomediaries that add value to data by preprocessing it for other consumers [31]. We make
the natural assumption, that, due to its similarities with open-source software, open data can be
improved in open collaborative workflows in which self-organizing, meritocratic and egalitarian
communities of users contribute to a shared artifact [20]. The collaborative effort can be driven by
the users’ own motivation to improve the data for their reuse, eliminating the need to rely solely
on data publishers, who may lack incentives to provide it in a well-structured format.
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However, while open collaboration is common in open-source software development, data
engineering is typically project-specific and done by small teams. These teams often reuse tools and
workflows from collaborative software engineering like GitHub that, while passable, lack features
to specifically support collaborative data engineering [4].
Tools and processes made specifically for collaborative data engineering would be needed for

best results. However, it is unclear which challenges they need to address. For other stages of
the data science workflow, using more specific tools and workflows has shown promising effects
[19, 22, 23].

It is therefore important to understand how data engineers collaborate. To do so, it is key to not
only consider specific software, but also who participates in the collaboration, their workflows and
how they interact. In this article, we investigate the larger context and refer to the combination of
participants, their workflows, and tools as well as the artifacts they create as collaboration systems.
Especially for open data, collaborative data engineering is a complex activity with participants from
various backgrounds working together [7]. Social systems and their interactions with technical
infrastructure are a large factor that creates challenges for data users. So far, academic research
has focused on data publishers and the technical challenges of publishing good quality data. A
comprehensive theory of collaborative data engineering by data users is missing.

To move towards such a theory, we answer the following research questions:
Research Question 1:Which elements of collaboration systems for data engineering by open data

users are described in literature?
Research Question 2: How and in which roles do participants in collaboration systems for data

engineering interact socially?
Research Question 3: What are challenges to collaboration in data engineering and why?
We contribute a descriptive overview of the elements of collaboration systems, during data

engineering by data users. Elements include participants, activities they attempt during the data
engineering process, the tools participants use and artifacts they create. Additionally, we describe
the social systems that participants work in, highlighting the different roles they fulfil and how
they interact with others during collaborative data engineering.
Furthermore, we contribute a list of challenges that data engineering practitioners face during

collaboration with a rich description and insights from interviews. Based on these insights, we
discuss guidelines that contribute to successful open collaborative data engineering projects. For
practitioners and researchers in an open data context, we provide a list of recommendations to
increase the adoption of open collaborative data engineering in their communities. Together, these
contributions provide a starting point for a theory of open collaborative data engineering that
can be extended in future research. The insights gathered about social systems and challenges
experienced by practitioners can be used to define better requirements for future software tools
that plan to support collaborative data engineering.

This paper extends previous work [7] with a qualitative survey among data engineering practi-
tioners, with a focus on social challenges experienced during collaborative data engineering. In
addition, guidelines and recommendations based on these insights are discussed.
The following structure will be used to present the work: Initially, related work is discussed in

section 2. A description of the research design that was used to answer the research questions
follows in section 3. The results are presented in section 4, followed by a discussion of their
implications and suggestion of guidelines and recommendations in section 5. Potential limitations
and how we attempted to mitigate them are shown in section 6, after which we provide a summary
and outlook in section 7.
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2 RELATEDWORK
Collaborative work, especially distributed collaboration, has extensively been studied in the domain
of software engineering. O’Leary et al. [17] provide an overview of distributed collaboration types,
based on a systematic literature review. They point out that it is important to consider both technical
as well as social contributing factors for successful distributed collaboration, and describe previously
identified factors found in literature. We follow a similar approach, considering both technical
and social elements of collaboration systems but with a much more narrow focus. The insights
regarding open collaboration in data engineering presented in this article provide additional data
on contributing factors in one specific domain.

In collaborative software engineering, researchers have explored approaches with increasingly
larger numbers of participants and less imposed social structure, from distributed software de-
velopment or global software development, over crowdsourcing approaches like hackathons to
open-source software development.
Distributed software development or global software development is especially relevant in an

enterprise context [10]. Challenges described include communication with remote colleagues and
accessing expert knowledge [8]. In their structured review, Jiménez et al. [10] conclude that tech-
nological tools and processes must be adapted to the specific needs of an organization to reap the
benefits of distributed software development. LaToza and van der Hoek [14] contribute a model
to categorize crowdsourcing approaches like hackathons or open-source software development
and come to a similar conclusion – the need to develop and adapt workflows for software develop-
ment tasks. With its close relationship to crowdsourced software engineering approaches, open
collaborative data engineering faces similar challenges and more insight into the underlying social
dynamics and challenges is needed to develop more appropriate tools and workflows.

Open collaborative data engineering is most closely related to open-source software development.
In both, organizational structure is not formally enforced but emerges from the community. Previous
work analyzed raw data from public mailing lists [1] and software forges [29] to gather insights into
community structures and roles. More recently, the structure of collaborative projects and resulting
challenges to social interactions and software architecture have been studied empirically [3, 25]. In
this article, we focus on a description of social interactions and challenges in open collaborative
data engineering in the hope to enable similar work in the future. Nonetheless, we also contribute
guidelines and recommendations based on insight from practitioners.
For open-source software development, project forges have proved essential to enable open

collaboration, for example by providing standard tools and artifacts inside companies [20] or
increasing awareness of community activity, as found on GitHub [5]. Due to its popularity, GitHub
has a strong influence on collaboration workflows used in software engineering with its pull-based
development flow becoming the de facto standard in open-source software development.
Data science has been a focus of academic activity recently, however, most publications that

contribute insights about collaborative work focus on machine learning or data analysis, often
in commercial settings. In open data contexts, publications that describe data engineering almost
solely look at how data publishers can provide better quality. As far as we know, no reviews of
how open data users collaborate during data engineering exists.

Workflows of data scientists and their impressions of automated AI are the focus of recent work
by Wang et al. [28], but they also provide a review of academic literature about data science teams
and tools they use. They conclude overly complex tools pose a barrier for subject-matter experts to
participate in data science teams. Likewise for corporate settings, Terrizzano et al. [26] describe data
engineering at IBM, including barriers to data usage. Zhang et al. [30] gather data on collaboration
of data science workers in large companies by conducting an anonymous survey. Their results
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show data scientists collaborate actively, work in small teams, and use a variety of tools. Because
their work is based only on survey responses from employees at IBM, they are unsure if their
results generalize outside of environments at large corporations. Our work builds on these studies
by providing more data on collaboration by data users in different contexts, like open data and
hackathons.

In the process of developing a collaborative framework for feature engineering, Smith et al. [22]
identify the four main challenges as task management, tool mismatch, evaluation of contributions
and maintaining infrastructure from literature and user studies. Whereas their work takes the
perspective of supporting machine learning projects, the challenges identified in this article relate
to collaboration during data engineering on open data without an ML focus.
Zuiderwijk et al. [31] review the literature about open data ecosystems, identifying important

elements and their activities that contribute to successful open data publication and reuse. They
describe scenarios of interactions across the ecosystem that include the release of data, search
for data, processing, and use of data as well as providing feedback to publishers. While their
work provides insights into the wider ecosystems that exist for open data, we focus only on the
collaboration by data users themselves to take a more detailed viewpoint.
Collaboration during open data analysis is studied by Choi and Tausczik [4] using interviews

and surveys. Participants work in small, interdisciplinary teams and create tools and reports based
on data. The authors identify the need for further research about how platforms can best support
open data analysis, as traditional hubs for software engineering like GitHub lack important features.
By contributing challenges to collaborative data engineering, we support further research and the
development of better tools towards that goal.

3 RESEARCH DESIGN
The need for a review was identified from an initial pilot study of the literature that revealed that
collaboration during data engineering is seldom discussed. We approached the research questions
with a two-step research design, first reviewing the existing literature and then using the acquired
knowledge to interview practitioners about their experience.
Initially, we performed a systematic literature review (SLR) according to Kitchenham [12].

The pilot study revealed that the focus of academic literature is often on later stages of a data
science project, like data analysis or machine learning. In the context of open data, research about
collaboration practices between data users is rare, while data publishers are covered. We therefore
concluded that a review of the existing literature on collaboration systems of data engineering by
open data users would be needed to close this gap.

In a second step, we complemented the acquired insight from literature with a qualitative survey
according to Jansen [9]. We aimed to create a description of social systems and the diversity of
challenges to collaborative data engineering among practitioners. We gathered qualitative data by
conducting semi-structured interviews, informed from the previous literature review. In addition to
new insights, we asked interview participants if they had experienced challenges we had previously
identified from literature to verify our results.

3.1 Systematic Literature Review
We performed a systematic literature review (SLR) according to Kitchenham [12] to answer RQ1
Which elements of collaboration systems for data engineering by open data users are described in
literature? To do so, we defined a search strategy consisting of data sources, queries, inclusion, and
exclusion criteria following a pilot study. From the pool of relevant literature, we extracted and
synthesized elements of collaboration systems for data engineering by open data users.
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Initial Search (10) Scopus Search (296) Google Scholar Search (175)
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Relevant References (2)

Final Articles (18)

Read Title

Read Abstract

Read Title

Deduplication
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Read Abstract

Read Article
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Fig. 1. Process of the systematic literature review

3.1.1 Search Strategy. An initial pilot study was performed to create the search strategy. For the
pilot study, we iteratively looked at a broad range of literature from different academic databases
to get an overview of existing research directions on collaborative work, data engineering and
open data. We included the most relevant articles that were part of the pilot study directly in a
pool of potential articles. From the results, we also decided on selecting Google Scholar and Scopus
as sources for our literature search to include a wide range of publications because all relevant
articles were found in these databases. We decided on searching for articles that include open data
and workflow, process, practices or participants and variations of those terms. Most publications on
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open data were published after 2008 [18], so we limited both searches to that time. An overview of
the full search process is shown in Figure 1.

For Scopus, search results were restricted to journal articles or conference proceedings in English
or German with a publication stage of final, leading to 296 results. We used the following search
string in article titles and abstracts, making sure the keywords appear within five words of each
other:

( " open da t a " OR " open− da t a " )
W/5 ( " workflow " OR " workf lows "
OR " p r o c e s s " OR " p r o c e s s e s "
OR " p r a c t i c e s " OR " p a r t i c i p a n t s " )

Google Scholar does not offer the ability to enforce keywords to be close together. Searching the
full text of articles returned many irrelevant articles, to narrow down the search and only include
relevant results, we searched the title of publications with the following search string:

a l l i n t i t l e : workflow OR workf lows OR
p ro c e s s OR p r o c e s s e s OR p r a c t i c e s
OR p a r t i c i p a n t s " open da t a "

The title-based Google Scholar search returned 175 articles.
After executing the initial search, we worked with 481 potential publications and ensured the

results were relevant with several additional checks.
As a basis for decisions, we used the following inclusion and exclusion criteria:
• Include articles that describe data engineering workflows or processes with open data
• Include articles reporting on data engineering during a concrete project with open data
• Exclude articles that are not peer-reviewed journal or conference papers
• Exclude articles exclusively on data publishers
• Exclude articles that could not be retrieved in full

For both result sets, we excluded irrelevant papers based on their title and kept 88 results from
Scopus and 49 from Google Scholar. Because Google Scholars results were less restricted, we also
removed 13 not-peer reviewed articles and 12 duplicates from them.

Finally, we read the abstracts of every article and applied the inclusion and exclusion criteria to
them to create a pool of 49 potentially relevant articles, 10 from the pilot search, 27 from Scopus
and 12 from Google Scholar.
Next, we read all articles in full, noting down references that seemed especially relevant in the

context of our research questions. After verifying that these were peer-reviewed and relevant, we
included a further two articles [15, 16] from forward references.

Based on the inclusion and exclusion criteria applied to the full text of an article, we excluded a
further 33 articles from the pool of potentially relevant articles, mainly because they focused on
other phases of the data science lifecycle and did not include a description of data engineering.

This process led to a final pool of 18 relevant articles. We searched for articles published after 2008
but identified relevant articles between 2013 and 2021 (see Figure 2). The searches were executed
during March and April 2022, meaning no article published in 2023 is included.

The search process, queries, and results are available in the published raw data 1.

1Available on Zenodo at https://doi.org/10.5281/zenodo.6598447
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Fig. 2. Publication date of included articles

3.1.2 Data Extraction & Synthesis. We extracted data according to the descriptive data synthesis
described by Kitchenham [12], using data extraction sheets for mentions of any activity, participant,
tool used, or artifact created during data engineering with open data.
For every article, we noted any mention into the corresponding data sheet, merging any that

were substantially similar to previously identified elements. Because publications that describe
projects including open data often do not focus on data engineering, we included elements of
collaboration systems liberally, even if they were not the main focus of the text. In the case of
data engineering activities, we grouped activities into larger categories but report the individual
activities separately as well. We created the categories of data engineering activities after data
extraction, based on the list of activities, to include a detailed overview of the data engineering
process.

We wrote descriptions and examples for all elements of collaboration systems that were identified
during the data extraction and made the raw data available online1.
Finally, we shared the results of the data extraction with a practitioner working on data engi-

neering with open mobility data as a member check [6] (see Table 2). From their feedback, we
added some activities and artifacts that were not described in literature. Overall, their feedback
was positive, and they felt that the data was complete and aligned with their experiences.

3.1.3 Stopping Criteria. Theoretical saturation [2] was chosen as stopping criterion for the search
becausewewanted to identify the diversity of elements in collaboration systems for data engineering
by open data users. Therefore, we tracked the number of new elements we added with every article
(see Figure 3). We considered theoretical saturation reached when we did not gain any new insights
after analyzing multiple articles and concluded the search.

3.2 Qualitative Survey
After gathering and analyzing the results from the systematic literature review, we extended the
research design with an additional qualitative survey using semi-structured interviews according
to Jansen [9]. Data was gathered from data engineering practitioners as a form of data source
triangulation [27], allowing for insights outside academic literature. Jansen describes a typical
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empirical cycle of one-shot qualitative surveys as consisting of the definition of knowledge aims
and sampling, data collection and finally analysis of the collected data.

3.2.1 Knowledge Aims & Sampling. Experiences of practitioners are needed to answer RQ2 How
and in which roles do participants in collaboration systems for data engineering interact socially? and
RQ3 What are challenges to collaboration during data engineering and why? We therefore aimed to
create an inductive description of the diversity of social systems and challenges to collaboration
in data engineering among people who have attempted collaborative data engineering before,
informed by our previous knowledge from the structured literature review.

Pseudonym Job Role Employer Project Types Data Domains Professional Open Data
E1 Data acquisition Academic publisher Data curation Material science Yes Both
E2 Software engineer Software agency Civic society Transport No Yes
E6 Data engineer Nonprofit organisation Hackathons Transport, Energy, Political No Yes
E8 Executive Software agency Hackathons Geographical, Financial Both Yes
E9 Data engineer Nonprofit organisation Scientific Medical, Biological Yes No

Table 1. Participants in semi-structured interviews

Because our goal was to describe the diversity and not to make statistical inferences, we decided to
select a theoretically diverse sample. We reached out to a variety of contacts that worked on projects
that included data engineering, and selected interview participants based on demographic data and
attributes of the data engineering projects they typically attempt. An overview of participants and
their attributes is shown in Table 1.

For a wide range of insights, we were able to sample perspectives from different job roles working
directly with data, software, or management. Participants are employed in academia, industry
or nonprofit organizations and work on diverse project types from data curation to hackathons.
Typical data domains cover open data like transport or geographical, heavily regulated ones like
medical or financial and complex scientific ones like material science.

Participants mostly work with open data in a non-professional context. However, we decided to
also include projects that included collaborative data engineering on closed data or in professional
contexts to gain additional insights.
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3.2.2 Data Collection. We designed semi-structured interviews to collect qualitative data. We
developed the interview guide according to the steps identified in Kallio et al. [11].

First, we identified the prerequisites for using semi-structured interviews based on the insights
from literature during the SLR. This previous work helped us to conclude that data on roles and
social interactions during collaborations was missing from the literature, but could be answered
by asking practitioners. We also had already identified some challenges to collaborative data
engineering that we could use to create the themes of the interview. Additionally, the data from
the SLR also completed the second phase, retrieving and using previous knowledge.
Based on this knowledge, we developed an initial interview guide that was presented and

discussed in internal testing with other researchers during a peer debriefing session (see Table 2).
While interviewing participants, we always ended the interview with a question about topics we
did not cover or should be asking about. With the feedback from participants, we continuously
revised the interview guide. The final document is included in Appendix A.2.

The interview guide includes the main themes that we wanted to ask about to answer the research
questions. These were:
(1) Demographic data
(2) The concept of collaborative data engineering itself
(3) Social systems in collaborative data engineering (Roles, interactions, and tools)
(4) Challenges to collaborative data engineering (Social, cultural, technical and previously iden-

tified challenges)
Additionally, every theme included some further question prompts to remind the interviewer of

questions to ask. However, if the interview naturally flowed from a topic, we allowed for deviation
from these detailed questions as long as all major themes were covered.

The interviews themselves were conducted electronically, over Zoom. We provided an interview
handout describing research context, the interview process and howwe would manage the resulting
data to every interview participant a few weeks before the interview itself (the handout document
can be read in Appendix A.1). We restated the interview process and important definitions of the
research context before conducting each interview.

After an interview completed, we transcribed the recordings and replaced any personally identi-
fying information with pseudonyms. The resulting transcript was then shared with the interviewee,
asking them to correct any mistakes and provide a final acknowledgment of their consent to the
transcript being used. As a result of interviewee feedback, we fixed some errors in tool names but
made no changes to the content of interviews.

3.2.3 Data Analysis. As in the SLR, we used descriptive data synthesis according to Kitchenham
[12] to analyze the interview transcripts. To do so, we set up data extraction categories:
(1) Social Systems
(a) Roles
(b) Interactions

(2) Challenges to collaborative data engineering
(a) Social / Cultural Challenges
(b) Technical Challenges
(c) Previously Identified Challenges

With these categories in mind, we read through every transcript, highlighting and classifying
sections from it according to the categories. We then combined similar segments into a topic with
a brief description. This way, we arrived at a list of extracted topics and quotes from interview
participants to support them.
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In a final step, we further grouped the identified roles into three categories of project group,
auxiliary roles and data community as we gained more understanding about the differences from
interviews.

3.3 Quality Assurance
We employed peer debriefing sessions [24] to increase the credibility of the results. In these sessions,
we discussed aspects of the research design and results with other researchers that had experience
with the research methods used but were not involved in the topic or execution of the research
itself.

Method Participants Topic
#1 Peer Debriefing 2 Researchers Search Strategy & Results
#2 Member Checking 1 Open data expert SLR results
#3 Peer Debriefing 2 Researchers Identified challenges
#4 Peer Debriefing 2 Researchers Research design, interview study
#5 Peer Debriefing 2 Researchers Interview process

Table 2. Feedback methods used

Participants and topics of the feedback sessions are shown in Table 2.
In the first peer debriefing, we presented the systematic literature review with a focus on the

search strategy and initial results. From the feedback, we adapted our presentation to include
more details about how we arrived at the final set of articles. In a second peer debriefing, we then
discussed the challenges we had identified from the literature.
The follow-up interview study was also discussed in peer debriefings. We first presented our

planned research design, including how it was informed by the previous literature review. In
an additional meeting, we gathered feedback on the interview process itself from experienced
interviewers to ensure we were conducting the interviews appropriately.

We presented the results of the literature review to an open data expert for their feedback about
completeness as a member check [6]. For this, we created a handout document including the
research context and asked if we had identified elements they thought were wrong or missed any
important elements. Their feedback included some new elements, but there were no incorrectly
identified elements. After adding the new elements, the expert confirmed they had no additional
comments.

4 RESULTS
4.1 Elements of collaboration systems for data engineering described in literature
We extracted participants, activities, created artifacts, and tools used during data engineering by
open data users from literature to answer RQ1, which elements of collaboration systems for data
engineering by open data users are described in literature?

4.1.1 Participants. Working with data is a complex activity involving multiple skill sets. Therefore,
participants in collaboration systems for data engineering come from various backgrounds, shown in
Table 3, each contributing their expertise. Unsurprisingly, data scientists are often part of projects
involving data engineering. When working with open data, open data experts can contribute
knowledge about data sources or, together with legal advisors, help navigate the legal framework
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Participants
Businesses Mediators
Citizen Scientists NGOs
Civil Servants Open Data Experts
Data Scientists Organizations
Subject-matter Experts Private Citizens
Government Agencies Researchers
Hackathon Participants Software Developers
Infomediaries Startups/Entrepreneurs
Journalists Students
Legal Advisors

Table 3. Participants in data engineering

for data use. Lastly, making data usable is also an engineering challenge, which means software
developers are an essential part of collaboration systems for data engineering.
Subject-matter experts play an important role in data projects, especially in the more complex

problems that can be found in open science. Often, researchers are part of collaborative data
engineering projects in the role of subject-matter experts. They help collaborators understand the
meaning of data and assess data quality.

Commercial entities also participate, from large businesses that use open data to improve their
existing products to startups that innovate with new applications using only open data. Depending
on the company, participation in collaborative data engineering varies from active contribution to
passive consumption of the final result.

A special position inside of open data ecosystems is taken by intermediate entities called infome-
diaries [31] that are located between open data producers and consumers and add value to data by
processing it. These participants take in raw data and improve it for multiple downstream projects,
a central part of open collaborative data engineering.

Besides commercial use, open data is primarily used in the context of open governments. Actors
from public administration, like civil servants and government agencies, not only publish open
data but also reuse data for their projects. Interested citizens interact with open data as journalists,
as members of NGOs, or as students during Hackathons.

Common to the use cases of open data by students, citizen scientists or hackathon participants
is a low amount of organization and direction, an environment that open collaboration could be
productive in.

4.1.2 Activities. We could identify a large list of activities that are attempted as part of data
engineering by open data users. All activities, as well as larger themes, are shown in Table 4. The
overview includes all activities that were described as part of collaborative data engineering in the
literature, but most projects only include a subset of activities.
At the start of any data-driven project, users must first source a usable data set. To do so, they

perform an iterative cycle of activities related to acquiring, understanding and assessing data.
Activities related to the acquisition of data begin with data discovery, either organically or from

directed search. Users have to extract data and store it in a system that is fit for their use case.
Because data sources are not standardized or have download limits, extracting data often requires
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Acquire Assess Communicate Extend Improve Maintain Understand
Build Infrastructure Ensure Anonymity Ask Publisher Add Metadata Aggregate Archive Analyze
Discover Evaluate Discuss Create Features Clean Document Ask Experts
Extract Preview Find Community Label Combine Refresh Experiment
Read Documentation Measure Availability Find Skilled Users Rate Curate Learn subject-matter knowledge
Search Verify License Give Feedback Translate Enrich Learn Structure
Select Visualize / Plot Data Request Data Link
Store Share Data (Publisher) Normalize
Validate Share Data (Stakeholders) Reformat

Share Information Repair
Structure

Table 4. Activities performed during data engineering by open data users

reading provided documentation, building custom tools to interact with APIs and finding storage
space.
Once data has been acquired, its usability has to be assessed. Dealing with licensing issues,

making sure data is correctly anonymized, and verifying the data source has sufficient availability
are common problems at this stage. Aside from technical and legal issues, data content and structure
has to be understood to assess it usefulness for a project. Users engage in exploratory data analysis,
using tools to preview data content (e.g., by plotting it) or data structure. Subject-matter knowledge
is a requirement for working with more complex data sets and has to be either learned by the data
users themselves or by finding and collaborating with subject-matter experts.
After acquiring, understanding and assessing data, data users process it, either by improving it

or by extending it. During these activities, technical knowledge is required as users change data
formats and structure, normalize values and fix errors. An activity that is challenging but adds a
large amount of value to a data set is linking it with other sources.
Extending data most often takes the form of providing additional metadata, for example by

writing usage reports or rating data sets on open data platforms. From expert feedback, we also
included translating data as an activity, this can take the form of translating structural aspects like
column names or content like the names of cities for open mobility data. If a data set is supposed to
be the basis for machine learning projects, labeling data and creating features are common activities
as well [19].
At the end of a collaborative data engineering process, activities related to the maintenance of

the results, like archiving the resulting data, are required. An important but often neglected activity
is the documentation of a project, learnings about data content and structure and the reasoning
behind data engineering decisions. Some data domains like mobility deal with regularly updating
data (e.g., public transport schedules that are released every few months) so data users must build
infrastructure to refresh source data.
Underlying all these activities is communication with other participants. To date, concrete

communication about a data set mostly flows from data users to data publishers in the form
of questions, feedback or requests for more data. This interaction between data publishers and
consumers is expected and supported by many open data portals. Direct communication among
a larger data community is rarer and is mainly related to searching for other participants with a
missing skill set or subject-matter knowledge.

4.1.3 Tools and Artifacts. We could not identify a standard tool used in collaborative data engi-
neering among open data users. A summary of tools described in the literature is shown in Table 5.
Noteworthy is Open Refine, which was mentioned multiple times.
Tools used by participants in collaborative data engineering range from self-developed using

general-purpose programming languages to existing applications like sheet software or Wikis,
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Tools used
Auth Providers Kaggle
Big Data Processing Tools Notebooks
Blogs / Websites Official Discussion Board
Command Line Tools Open Data Repositories
Data Science Libraries Open Refine
Databases Sheet Software
Domain-Specific Languages Statistical Computing Languages
Domain-Specific Software Translation Software
General Purpose Languages Travis
git Visualization Tools
GitHub Wikis

Table 5. Tools used during data engineering by open data users

depending on the technical skill level of project members. We included custom-made Software
Applications from expert feedback as it was pointed out that collaborators not only develop open-
source software but also share closed-source software applications like validation tools with the
community.

As mentioned for the activities, understanding and assessing data often requires data exploration.
Visualization tools provide a fast way to check data quality and content. More permanent solutions
like automated data pipelines are developed using general-purpose programming languages or
Jupyter notebooks with the help of classical software engineering infrastructure like git and GitHub.
Unlike project forges like GitHub for software engineering, open data portals play nearly no

role in fostering collaboration among a community. They are mentioned often in the literature,
but nearly always only as a data source and not as a platform to connect data projects. Whereas
GitHub is the de facto standard to find software engineering projects that are open to collaboration,
too many unrelated open data portals exist for any one of them to play a similar role.

Documentation of data projects, experience reports with data sets or expert advice is therefore
scattered, and data users have to write blog posts, participate in discussion boards and read publisher
websites.

Created Artifacts
CI Definitions Notebooks
Comments on Data Processed Data
Data Quality Ratings Raw Data
Documentation Software Applications
Feedback-/Experience Reports Source Code
Metadata

Table 6. Created artifacts by open data users during data engineering

Similar to tools, no standard artifact exists that open data users collaborate on. Table 6 shows a
summary of artifacts from the literature, most of which are metadata like comments or software
artifacts to handle data. The processed and improved data itself was created as part of the data
engineering process, but seldom shared with the community. Open data portals often do not enable
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users to contribute any improvements to a data set back to the publisher, and tools like GitHub
that are made to share source code are not well suited for sharing most data set formats.

4.2 Social systems in collaborative data engineering
We have identified roles and interactions from interviews with practitioners that work on data-
driven projects that include collaborative data engineering to answer RQ2 How and in which roles
do participants in collaboration systems for data engineering interact socially? Here, we initially
present an overview of the roles and highlight essential interactions or those unique to collaborative
data engineering in detail. As we were interested in a description of the diversity of roles and
interactions, not every collaborative data engineering effort necessarily includes all roles and
interactions mentioned here.

Project group

Project Manager

Data Engineer Mediator Subject-matter
Expert

Software Developer

Auxiliary roles

StatistitianInfrastructure
Provider Software Developer

Data community

Community Member

Subject-matter
Expert Data Gatherer

Data Publisher

Data Consumer

Connector

Communicator

Fig. 4. Roles in collaborative data engineering as identified in interviews

When summarizing the roles that were described by interview participants, it became clear
that collaborative data engineering interactions happen between three larger groups, as shown in
Figure 4.

At the core, each data-driven project was attempted by members of a project group. This group
is made up of participants that organize around a particular goal and data source, processing and
publishing data towards archiving that goal.

Because of the interdisciplinary nature of data science, data processing inside the project group is
driven by the three roles of data engineer, software developer and subject-matter expert. These roles
provide their respective insights for working with the data, with the data engineer contributing
knowledge about data formats and algorithms, the software developer providing infrastructure or
technical requirements and the subject-matter expert explaining data meaning. Often, especially
in smaller teams or in open data contexts, the role of data engineer and software developer are
combined in a single contributor with a technical background.

Between these roles, a mediator must translate from the technical viewpoint to a subject-matter
viewpoint and vice-versa. Mediation is a core interaction in collaborative data engineering projects,
shown in Figure 5. A contributor assumes the role of a mediator and provides subject-matter experts
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Explain technology

Software Developer

Explain subject-matter
Explain subject-matter

Explain technology

Mediator Explain subject-matter

Subject-matter
ExpertData Engineer

Fig. 5. Mediate during collaborative data engineering

with help in case of technical problems. On the other hand, they must explain the subject-matter
to the other contributors, like software developers and data engineers. Often, the mediator role is
filled by technical members of the team that, over time, learn enough from subject-matter experts
to teach other technical contributors. In some projects, mediators are the subject-matter experts
that get technical feedback from software engineers. As one example, E8 assumed the role of a
mediator because they had a software development background and worked with subject-matter
experts that had no technical experience: “It was the analog equivalents of them. So geographers,
financial experts, but they don’t have a lot of digital experience or can only scratch the thing at the
surface. So there was a big gap between basically working from a really technical side to a really
non-technical side.” On the other hand, E1 saw part of their role in educating the data engineers on
their team about the subject-matter due to their scientific background: “I just put people in touch
with each other’s teams and see if I can translate some of the science to the data people.”

Finally, project teams include a project manager role. In commercial projects, this role does tradi-
tional project management work like defining a list of priorities and planning tasks. In comparison,
open collaborative workflows rely on the self organization of participants. Therefore, the main
contribution of a project manager role to open projects like hackathons is suggesting an idea and
making sure participants align with it. E6, an experienced host of open data hackathons, calls the
role ’idea owner’ and describes it as: “[...] usually the person who pitches the challenge or proposes
that use of that data set at the beginning of the event, but then sticks around and makes sure that
the idea gets worked on.”
Due to their collaborative nature, all data projects we have interviewed participants from are

embedded in a larger data community that is not directly involved in the project but interested in
the same data set or subject. Subject-matter experts can be part of the data community as well, and
only periodically contribute to a collaborative data engineering effort without being part of the
project group, either by finding the project by themselves or by someone from the project group
reaching out to them.

Naturally, data publishers and data consumers of a specific dataset aremembers of this community.
In some projects, data gatherers are also involved if a dataset is created from individually collected
data points. Because all of these roles directly work with the data, they have a shared interest in
collaboratively developing a consistent data schema, as shown in Figure 6. During this activity,
project managers have to, on the one hand, stay in constant contact with data publishers and data
consumers in the community (using connectors) and subject-matter experts and software developers
on the other hand. Data publishers and software developers describe technical, availability or legal
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Provide
subject-matter
requirementsSubject-matter

Expert

Explain technical
limitations

Software Developer

Explain
availability
limitations

Data Publisher

Provide user
requirements

Data Consumer

Connect with
data community

Connector

Publish
schema updates

Project Manager

Fig. 6. Develop data schemas during collaborative data engineering

limitations to what and how data can be used. Inside those parameters, subject-matter experts can
help formulate requirements for data schemas to capture the data domain adequately, while data
consumers describe their projects and what information they are missing in the available data.

Additionally, in a broader sense, a data community is made up of individual community members
that share a common understanding of data semantics and expectations towards data projects in
their space. E6 expresses the concept of a data culture as follows: “I think there is something like
the notion of a data culture. [...] Individual people grow up with more or less expectation around
things like data privacy or just maybe rigor.” Different data cultures can form around the same data
set. Examples in the domain of open government data include the very rigorous, careful approaches
of working with data by federal statistical offices, and the more playful, result-driven projects
attempted by political activists during hackathons.
Bridging the gap between project groups and the larger data community are connectors and

communicators. Whereas communicators describe and share the results of the work of project
groups with the larger community, connectors actively bring together different roles in the social
system.
The role of communicator can be performed by members of the project group itself, especially

during hackathons, as E6 describes: “People who love visualizations and infographics are typically
people who just communicate well, they would describe the the problem, the solution and the steps
to get me to reach it using various media. Social media posts or illustrations [...]”. Also performing
this role are journalists who report about data projects. Because a report based on data is a potential
downstream project for a data set, journalists also help to provide requirements and prioritization of
what to work on. Occasionally, they can even contribute subject-matter expertise as E8 experienced:
“Sometimes the journalists can help interpret the data, because they can help clarify the keys or
what to look at for in the data.”

In contrast to only sharing results with the data community, connectors work to bring together
different entities in the ecosystem. In open collaborative projects, participants need to find each
other to work together. Here, connectors are part of the ecosystem as networking organizations
such as the Open Knowledge Foundation or data hubs like the German GovData.
In professional projects, connectors include data marketers and customer support employees

that gather data use cases from customers. Prioritizing what data to work on and how a final data
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Provide
subject-matter

expertise

Subject-matter
Expert

Gather user
requirements

Connector

Provide
project

requirements

CommunicatorProject Manager

Fig. 7. Prioritize during collaborative data engineering

product should look like is an important interaction for these collaborative data engineering efforts.
Figure 7 shows the different roles that interact during it. E1, who is working on a commercial data
product, describes the need for insight from customers: “[...] everybody has a different need for
that data set or the use case for a particular data set is so diverse. One person just wants it as a
reference. [...] And then there’s the whole AI/ML guys who want to use it to train models. [...] that’s
another thing we have to explore.”. In their data project, these user requirements are gathered
by data marketers. For hackathons with open data, requirements often arise from how the data
is planned to be used by participants like journalists that fill a communicator role. In any case,
subject-matter experts have to share their insight into what data is of high enough quality to be
used and how important it is in the context of the planned use.

Publish work updates
Project Group

Provide help and feedback
Community Member

Connect ConnectConnector

Fig. 8. Public work during collaborative data engineering

Increasingly common in open data projects is the concept of public work (see Figure 8). During
public work, participants share updates about their progress and problems on social media or even
livestream their work on services like TwitchTV. E6 mentions public work from their experience
with open data hackathons: “People engaging in activities which they immediately communicate
through some social media channel. Things like the way some people use LinkedIn or Twitter to
announce very regularly their activities, their projects, their progress reports, all the way to things
like streaming.” This form of working is made possible by connectors that bring together interested
members of the data community and members of a project group that are open to feedback or want
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to increase the visibility of a data product. In the case of livestreaming, this form of working leads
to a new way of gathering fast feedback and help from other contributors. E6 goes on to say: “So
you have a channel where people post commentary. They drop in your channel to say, why are
you doing this and not that?”

Finally, the project group is sometimes supported by auxiliary roles that provide services related
to data engineering but do not participate directly in a data project. In open data contexts, these
auxiliary roles are mostly related to providing infrastructure (like open data portals) or software
developers that contribute open-source tools. In commercial settings, we have also encountered
other, more highly specialized roles. As an example, due to the required rigor in the medical
and biological data space that E9 works in, they are supported by statisticians: “[...] we have a
statistician team. So, we are the data team and we send the data to the statistician team [...] they do
the statistics.”.

4.3 Challenges to collaborative data engineering
In this chapter, we highlight challenges that have either been described in the literature or been
mentioned by interview participants to answer RQ 3, What are challenges to collaboration in data
engineering and why? We report on challenges in three categories, previously identified challenges
from literature, technical challenges from interviews and social challenges from interviews. As with
roles and interactions (see subsection 4.2), the list of challenges highlighted here is not exhaustive
but focuses on challenges that are either essential or unique to collaborative data engineering.

ID Type Title Mentioned by
C1 SLR Need for specialized skills but high barriers to participation E1, E2, E8, E9
C2 SLR Finding and connecting with community members E1, E2, E6, E8
C3 SLR No well-understood collaboration practices E1, E2, E6, E8, E9
C4 SLR No standard tools or artifacts E1, E2, E6, E8
C5 Technical Data representation E1, E2, E6
C6 Technical Inadequate tools E2, E8, E9
C7 Technical Infrastructure for data projects E8
C8 Technical Bad data sources E1, E2, E8, E9
C9 Social Conflicts with data publishers E1, E2, E8
C10 Social Unclear data use cases E1, E2
C11 Social Data semantics E1, E2, E6
C12 Social Missing incentives E1, E6, E8
C13 Social Missing knowledge E1, E2, E6, E8, E9

Table 7. Challenges identified from literature and interviewee experiences

From the structured literature review, we identified four challenges [7], summarized in Table 7
with the type SLR. In all but one of the semi-structured interviews with practitioners, we explicitly
asked for their experiences with the challenges and if they had also experienced them. For one
interview, E9, we did not specifically ask for the challenges due to time constrains and a larger lan-
guage barrier. Instead, we consider their confirmation of a challenge when they described a similar
challenge they experienced themselves. Overall, the practitioners overwhelmingly experienced the
previously identified challenges themselves.
C1, the need for specialized skills but high barriers to entry, could be confirmed by nearly

every interview. Data engineering requires both subject-matter knowledge to understand data and
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technical and data skills to work with it. This effect also explains the roles of data engineer, software
developer and subject-matter expert that we described in subsection 4.2. It is a challenge to find
participants to fulfil all those roles, especially in small teams or open data projects. In a survey
among researchers, Kjærgaard et al. [13] found that only 7% of respondents were comfortable using
RDF-files, meanwhile RDF is a standard data format for semantic web applications. One notable
exception to the confirmation from interviews was E6, who disagreed with the need for specialized
skills described in C1 because they host inclusive hackathons in which participants can try out
unfamiliar roles and still contribute.
The challenge of finding and connecting with community members, C2, was also described

in literature [21]. In this regard, open data projects lag other open collaboration ecosystems like
open-source development or wiki content authoring. Contributing to this challenge is the fact
that data portals are less frequented for data, as E8 describes: “For example, you found a software
project, on GitHub, then it is really easy to collaborate. You can just open issues, fork it, contact the
original maintainers of the project. But when you’re on data portals for example, it is much harder
because they are less frequented. You don’t know who posted the data, maybe it was some kind of
government agency or anything like that. So there is no one who feels responsible.” Additionally,
data portals are focussed on hosting data sets and are missing most social features of other project
forges like GitHub or Wikipedia, making the discovery of other users hard. E8 goes on to elaborate:
“And the users of the data sets are not visible anywhere. So that’s a problem on the data portals, at
least I know. It is actually really hard to get into contact with people that are working on it.”

Well-understood collaboration practices specific to data engineering are missing, as stated in C3.
With hard to discover data communities, this challenge leads to a split between data publishers and
data consumers, with few data consumers working together to improve the overall data for every
project. Contributing to this challenge are missing tools, prescribing a collaborative workflow that
a community can follow. In their interview, E2 notes: “I have the feeling that all the kind of GitHub
contribution model came with git and GitHub together, and Wikipedia came with a wiki and maybe
we need the tool. [...] It will be very hard to define a workflow if you don’t have some tool that
kind of works.” Existing project forges for software are used, but are missing features [4] and do
not enforce a fitting workflow.
Overall, standard tools and artifacts to collaborate on are missing for collaborative data engi-

neering (C4). In open-source software development, participants collaborate on clearly defined
artifacts like libraries and frameworks, shared as source code. Currently, most artifacts that are
created during collaborative data engineering are either metadata or the resulting data itself (see
Table 6), which leads to a mismatch between data artifacts and tools that were made for software as
E2 describes: “[SQLite] won’t work with git, which works well with text files but not very well with
binary files.” Collaborating on data sets is also not a viable strategy when data needs to be regularly
refreshed to stay up-to-date [26] or for domains in which the data is regularly updated. From their
work with open transport data, E2 points out the potential of a standard workflow language that
can be used with traditional software tools: “Maybe there will be at some point some workflow
process language that will be accepted and will be universal enough, and that can be versioned on
GitHub, where you can then have your own version and changing one bit of the process or fork it
and rerun it. [...] You need code, you need data and you need workflows. And you want to be able
to treat each one of the three of them.”

From the interviews, we identified additional technical challenges, summarized in Table 7 with
the type technical. Data representation, C5, is a challenge for any data-driven project, but more so
for collaborative projects. Obvious issues are different syntaxes to represent the same underlying
value, like the use of a comma or a dot to separate decimal numbers and the use of different
units such as Celsius or Fahrenheit for temperature. Typing of values is a related problem, with
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many domain-specific value types, like postal codes, being unclear or lost in data transfer. This is
especially problematic for open data because it is often shared in the form of CSV-files that cannot
express custom value types. In addition, interview participants also experienced problems with
missing standard taxonomies to create a shared understanding of data, for example in new scientific
fields that have many research groups working in them.
Practitioners also highlighted that the tools they are using to work with data are inadequate

(C6). Simple data wrangling tools work with small data sets, but cannot deal with larger amounts
of data. Programming languages are complex and hard to use, especially for subject-matter experts.
Likewise, tools to set up data pipelines are frustrating as E2 explains “So much configuration, so
much code, and so much things I copy pasted and I don’t how it works [...] And this gets very
frustrating. If it’s in tools that you do configure by a kind of programming. And if it’s a graphical
one, you feel frustrated because you spend your time clicking and you don’t know where.” Then,
once a data pipeline is set up, there is little tool support to keep the data pipeline, its executions
and the resulting data in sync. For their projects, E8 set up custom code to keep track of all pipeline
runs and where the resulting data was saved by updating a database. With the need to regularly
update data, this led to a large overhead of custom tool development.
Related to those problems, E8 also pointed out how much harder it is to host infrastructure

for data projects (C7) than it is for fields with more existing standards, like mobile application
development. This includes infrastructure providers for data (e.g., data lakes) but also for backend
code like cloud providers. Even for theoretically simple tasks like hosting code that regularly fetches
data from a source and loads it into a data sink, no common patterns exist that are used across a
data community. Therefore, data engineers write custom solutions that others have to understand
before they can collaborate.

The final technical challenge to collaboration are the bad data sources (C8). These issues include
problems with the data itself, like no documentation or missing units for values that need to be
verified with subject-matter experts, or semi-structured data like text that is hard to use. Challenges
with data sources also extend to how they are made available, for example because of flaky
infrastructure or old technology. E8 describes their experience working with data from a news
publisher: “You basically get access to a FTP servers via really unsecure connections. It’s like in
the Middle Ages [...]”. For data that is regularly updated, like open transport data, an additional
challenge lies in the fact that collaboratively fixing errors in a data set and sharing the corrected
data is of limited use because the next time an update is released, the same errors will be present if
the fixes are not shared and accepted by the data publisher.
Collaborating with data publishers, for example by contributing back fixes for errors, is often

not easy. This challenge is part of the social challenges we have extracted from interviews, shown
as C9 in Table 7. For the open data practitioners we have interviewed, it is a problem to get into
contact with data publishers and if they can, often no one feels responsible. For the larger data
community, this is a challenge to collaboration because important participants from the publisher
side do not contribute, either with knowledge about the data structure or by accepting feedback
from the community. One of the reasons for data publishers not participating in collaboration is a
territorial feeling about the data, a sentiment expressed by E2 as follows: “I published the data so I
know how it should be and the community is wrong.” These feelings are reinforced by fears from
data publishers. Depending on the context, data publishers might fear contributors entering bad
data (in the case of open data collaborations like OpenStreetMap) or fear users misusing data to
harm others, for example by misrepresenting statistical data. Lastly, data publishers that are forced
by law to publish open data, often government agencies, fear the loss of potential business value
that is then captured by commercial entities or startups.
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These unclear use cases for data also create a different challenge, captured in C10, in which
data publishers and potential collaborative date engineering projects are unsure how downstream
consumers will use data and what requirements they will have. Because of this, collaborative data
engineering efforts have no clear way to evaluate if a data processing step is essential to increase
data quality. This leads to costly overhead to reach out to potential consumers or to collaboratively
define data schemas as a community, as described in subsection 4.2. The increasing popularity
of machine learning poses a special challenge in this regard because their data requirements are
unique. As an example given in interviews from the mobility domain, machine learning models can
cope with errors in training data reasonably well, but if a data set with accessibility information
about wheelchair access includes only a few errors it makes for low-quality data for a mobile app
that supports disabled users.

Similar to the technical challenge with data representation described as C5, different impressions
of data semantics are a social challenge identified as C11. This challenge manifests itself as many
viewpoints on data meaning from different data communities. For open science data, it could mean
research communities using lacking standard naming for concepts. Naming issues are also described
in more mundane examples, like long discussions about what constitutes a shelter at a bus stop. In
international data context, simple naming issues like what to call a subway/metro/underground-
train can confuse users. Aside from naming issues, political differences can make collaboration
a challenge as well, often concerning geographical data like borders. Even outside conflicts, E2
describes a situation where the border between Germany, Switzerland, and Austria is not clearly
defined at the Bodensee, leading to complications with the strict requirement for borders to exist in
the data schema of OpenStreetMap.

For collaborative open data projects, missing or misaligned incentives pose a challenge. Especially
because data engineering can be, as multiple interviewees point out, “boring work”. Publishers
of open data are often forced by law to make their data available, which leads to conflicts, as
described in C9. Other domains face similar problems. For scientific data projects, researchers are
rewarded less for curating and maintaining data and have to focus on publishing instead. For open
collaborations by a data community like hackathons, different forms of incentives like certificates
of participation or cryptocurrency are mentioned by interview participants. If a hackathon is run
by activists, it is hard to provide similar rewards.
The feeling of ownership of an artifact like a software application or a wiki article can be an

incentive to collaborate without a monetary reward. But as E6 points out, with data the ownership
typically lies with a data publisher and not the community: “In many collaborative contexts, it can
be difficult to really have a sense of ownership over a data set that is produced by a government or
some kind of external company. It is quite rare that people produce their own data. So it’s rare that
people can invite each other to work on data that they really feel a sense of ownership for.”
Lastly, collaborative data engineering projects suffer greatly from missing knowledge (C13).

Data projects are challenging because of the need for knowledge about data engineering, software
engineering and subject-matter, as identified by three roles in a project group (see subsection 4.2)
and the fourth mediator role. Every interview included a discussion of this challenge. Specific
examples include a lack of knowledge about data pipeline tools by subject-matter experts or
unfamiliarity with data formats. Some projects, like the heavily regulated medical data E9 dealt
with, also have challenges with the missing legal knowledge of contributors. Because the skill
sets needed to work with data are so distinct, it is often challenging for contributors to correctly
assess the level of knowledge of others. From a software developer viewpoint, E8 explains: “Regular
people, don’t how any data format works. You even have to start explaining what a key value store
is. [...] With non programmers you have to first start on this level, which is difficult.”
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Missing knowledge means that participants must rely on learning information either from
subject-matter experts or technical members of a community. If these roles are assumed by few
people, the danger of overburdening them with too many questions exists.

5 DISCUSSION
Our results show, that collaborative data engineering projects are part of a fragmented ecosystem.
The number of stakeholders involved, subject-matter differences and data cultures with their unique
viewpoints and standards make it hard to successfully attempt open collaborative projects with
data. It appears as if the open data ecosystem is developing similarly to open-source software but
lagging years behind.

Increasing open collaborative data engineering projects would have wider implications on data
ecosystems. The ability for data users to share and reuse improved data could lower individual
costs. In turn, this would raise the quality and availability of data for the whole ecosystem. With
easier to use data, individual projects like hackathons would lose less time to data engineering and
could invest more into innovative applications of data.

The availability of high quality, open data sets is especially important with the recent increase in
machine learning and artificial intelligence projects. Machine learning models need large amounts
of machine-readable data for training and evaluation, meaning they are hard to develop outside
commercial contexts. Democratizing access to the underlying data can enable more participants to
develop their own models and evaluate existing ones critically.
Building on the insights described in section 4, we contribute a set of guidelines for successful

collaborative data engineering projects, summarized in Table 8. In accordance with our research
questions, we focus on the social systems and challenges that arise from collaborative work and
less on the inherent technical challenges of individual data engineering. These guidelines provide a
preliminary framework for practitioners to increase the adoption of collaborative data engineering
in their projects. For researchers, these guidelines provide a starting point to extend them into a
more complete theory of collaborative data engineering.
Following these guidelines, we make concrete recommendations to increase the adoption and

success of open collaborative work during data engineering in the context of open data. An overview
of these recommendations is shown in Table 9. Similar to the guidelines, these recommendations
should be understood as preliminary. Policymakers and open-data enthusiasts that want to increase
collaboration in data engineering should take these recommendations into account, but be open to
changing their approach with additional insights.

5.1 Guidelines for Open Collaborative Data Engineering Projects
For all attempts at collaborative data engineering, it is essential to take the realities of data issues
into consideration and not plan with an idealized view. In most contexts, the data will be distributed
over many locations, regularly updated, of varying but often low quality, hard to access and missing
metadata (C5, C8 as described in Table 7). Additionally, especially for open data, data publishers
are usually hard to reach and have misaligned incentives that make them unlikely to contribute or
resolve issues with their data (C9, C12). These challenges have to be considered in the planning of
collaborative data engineering projects, for example by focusing on supporting data users to help
themselves instead of trying to improve the source data directly.
Based on the roles in collaborative data engineering, summarized in Figure 4, the focus of

collaborative data engineering projects should initially be on the project group as its members are
part of every social interaction we have identified. While the project manager and mediator role
can be flexible, different viewpoints arise from the triangle of data engineer, software developer and
subject-matter expert. Any collaborative data engineering project must make sure to be accessible
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ID Guideline Based on
G1 Plan with data problems like distributed sources, updates, low-quality and

limited access to publishers
C5, C8, C9,
C12

G2 Make projects accessible to data engineers, software developers and subject-
matter experts

Social Systems,
C1, C13

G3 Enable collaboration by agreeing on standards, improving project visibility
and curating data

C2, C3, C4, C5,
C7, C8, C12

G4 Support projects with tools, built specifically for collaborative data engi-
neering

C1, C4, C6

Table 8. Guidelines To Enable Open Collaborative Data Engineering

and support members with these backgrounds. If a project group is lacking one of these essential
roles, adding a member that can fill it should become the highest priority (C1).

With a stable project group, open collaboration with a larger data community can be established,
allowing participants to share and re-use artifacts and lowering individual costs. To do so, it is
essential to agree on how to share intermediate work results and collaborative workflows (C3 and
C4). Finding and connecting with other community members will be a challenge (C2) that must be
considered. Potential solutions include improving project and user visibility, providing a robust
search, or supporting community members with connector or communicator roles.
Finally, projects should be supported with tools that are specifically built for collaborative

data engineering (C4, C6). While collaborative data engineering shares many similarities with
open-source software development, the reuse of software engineering workflows and tools for
collaborative data engineering work might, in fact, be a detriment to experimentation because they
are ’good enough’ but not ideal. As described earlier, these tools must be accessible not only to
software developers but also data engineers and subject-matter experts. Because these tools are
mainly created by software developers, care must be taken to include the other viewpoints in their
evaluation as well.

5.2 Recommendations to Increase Open Collaborative Data Engineering in Open Data

ID Recommendation Based on
R1 Define a standard artifact to collaboratively develop data pipelines G1, G2, G3
R2 Adapt proven open collaborative workflows for data engineering G2, G3
R3 Provide a project forge to drive adoption of standards R1, R2, G4
R4 Develop tools that make running data pipelines and hosting data projects easier G4
R5 Support the creation of data communities G3

Table 9. Recommendations to Increase Open Collaborative Data Engineering in Open Data

Shared standards in a community are important for collaborative work. To that end, a standard
artifact to collaboratively develop data pipelines should be defined. This artifact can not be the
improved data itself because in many domains (for example schedules in open transport data) data
sets are regularly updated and re-released, while contacting the data provider is challenging as
described in C9 and C12 (see Table 7). If the cleaned data is shared as collaborative artifact without
being able to fix errors at the source, every time new data is released, additional effort will be
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required to make the same changes again. Instead, the artifact should describe data pipelines that
can be re-executed once the data source changes and apply the previously defined transformations
and improvements again. Various options to model data pipelines exist. However, they are often
commercial, leading to vendor lock-in and slow innovation. Others are GUI tools, like Apache Hop,
that make collaboration complicated. An ideal tool to model data pipelines should be text-based
and open to initially reuse the mature software engineering tooling, like version control systems
and editors, but allow for rapid evolution of an ecosystem of own tools. As discussed for G2, this
artifact must also be accessible for all members of a typical project team. Existing data pipeline
solutions, based on general-purpose programming languages and frameworks like Apache Flink,
can be used by expert software developers but lead to high barriers to participation, especially from
subject-matter experts (C1). A potential collaboration artifact would be a domain-specific language
to model data pipelines that can reuse existing software engineering tooling and is intuitive for
software developers, but can still be understood by data engineers and subject-matter experts due
to its reduced scope and domain-specific concepts.
With this text-based artifact, standard collaboration workflows should be adapted for data

engineering. Especially proven approaches from open-source development can be a starting point
due to the similarity of collaboration artifacts. However, similarly to tool development, the danger
of being stuck with good-enough practices like GitHub’s pull request model might stifle innovation
that is more appropriate for data engineering. Therefore, existing practices should be evaluated and
adapted individually, while ensuring they can be followed by all major roles involved in collaborative
data engineering. With inspiration from open-source development, it will be especially important
to ensure subject-matter experts are able to participate equally, even if they lack experience in
software development.

However, the definition of such artifacts and workflows is not only an academic challenge because
they can not enable open collaboration without community adoption. Suggesting new standards
must therefore be accompanied by well-crafted tools that provide real value to practitioners to
have a realistic chance of being used. In contrast to open-source development, data engineering
lacks a centralized and highly frequented project forge that would enable collaborative projects to
advertise themselves and be discovered. A project forge for collaborative data engineering projects
would be useful in three major ways. First, it can standardize the tools and workflows used in
the community by providing them in an easily accessible way, together with project hosting [20].
Additionally, a project forge can be a hub for the curation of high-quality data projects, unifying
sources spread of many existing data portals. Finally, a project forge can allow community building
by improving the visibility of both data projects and users, reducing challenges like C1 and C2.
Initially, this can be done by implementing a search feature, but other possibilities like matching
users to projects based on skills or interest using AI algorithms could be explored.
In addition to a project forge, a related software implementation should make running data

pipelines and hosting data-driven projects easier. An essential requirement for these tools is to keep
pipeline models, executions and the resulting data in sync. Without this functionality, collaborative
data engineering projects have to invest a large amount of work in building their own solutions,
as described by E8 for challenge C6. Making it easier to execute data pipelines, for example in a
standardized cloud environment, enables more contributors to participate in their collaborative
development because they need less technical equipment and expertise. This is especially relevant
as the skill set needed to build and maintain data pipeline infrastructure at scale is distinct from
other software development skills required during data engineering. As such, even project team
members that can fulfil the software developer role would benefit from the reduced scope of their
responsibilities.
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Finally, the creation of data communities should be actively supported. Fundamentally, this
means creating aligned incentives (in contrast to the missing incentives described in C12) for all
participants in open collaborative data engineering ecosystems. As an example, with easier hosting
for data projects and a centralized project forge based on the recommended tools, it will be possible
to highlight projects that are only possible because of the underlying data. This in turn will reflect
positively on public data providers and create incentives for them to improve the data they publish
and to engage in the community. Making work visible to create incentives is also possible by
supporting connector and communicator roles, as well as increasing the amount of public work
(see 8).

6 LIMITATIONS
The search for our systematic literature review was scoped to Google Scholar and Scopus and only
included peer-reviewed articles in English or German. The depth of the literature pool could be
improved by extending the search to additional languages or including gray literature. However,
we supplemented the data from literature with interviews and explicitly confirmed information
extracted from articles with practitioners.

The sampling of participants in our qualitative interview study imposes some limitations on the
resulting qualitative data. We sampled for theoretical diversity, actively approaching participants
that would provide us with new insights instead of building a statistically representative sample
of the data community. While we consider this choice appropriate for our goals to describe the
diversity of social systems and challenges during open collaborative data engineering, we cannot
make statistical inferences from the data.

Data extraction was performed by descriptive data synthesis, both for the results of the literature
review and for the qualitative interview study. Ideally, we would use additional qualitative data
analysis methods to deepen our understanding of the data and describe the relationships between
participants in data projects and challenges in more depth.

Bias is a possible threat to validity because open data is often published by government agencies.
For this reason, much of the academic literature and practitioners concern themselves with open
government data. As our goal was not to attempt quantitative data synthesis, the thread is less
relevant, but the danger of missing information from other data domains remains. To mitigate
this, we tried to sample practitioner interviews from other data domains and asked for practitioner
feedback (see Table 2) for the results of our academic literature review.
The presented guidelines and recommendations in section 5 are based on insights gained from

the literature and interviews. However, they were not independently evaluated. In combination
with the non-representative sample of interview participants discussed earlier, these contributions
should be understood as preliminary. We took care to point this distinction out and separated their
presentation from the results of the systematic literature review and interview study itself.

7 CONCLUSION
In summary, we aimed to answer three research questions related to open collaboration during data
engineering by open data users:Which elements of collaboration systems for data engineering by open
data users are described in literature?, How and in which roles do participants in collaboration systems
for data engineering interact socially? andWhat are challenges to collaboration in data engineering
and why?

We provided an overview of elements in collaboration systems for data engineering by data users
by performing a systematic literature review. We find data users from heterogeneous backgrounds
that use a variety of tools to process data. The collaborative data engineering processes described
in the literature include a wide range of activities, from technical, like writing scripts to fix errors,
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to social like finding and asking subject-matter experts for advice. While we could identify and
categorize individual activities, we could not find a standard collaborative process that is followed
across all data engineering projects.
To describe the social interactions in data projects in more detail, we performed a qualitative

interview survey with participants. From the interviews, we extracted descriptive data about roles
that contributors fulfil, as well as unique social interactions. The results indicate that the five
roles of data engineer, software developer, subject-matter expert, mediator, and project manager
make up the core of a collaborative data engineering project (for an overview, see Figure 4). We
identified additional roles in the larger data community, as well as supporting roles that contribute
special skills when needed. We describe important interactions between the roles that must happen
to mediate between the different viewpoints, collaboratively define data schemas or prioritize
data. Additionally, we found that the recent trend of public work also applies to collaborative data
engineering projects, especially hackathons.

Based on qualitative data both from literature and interviews, we identified challenges to collab-
orative data engineering. Due to the complex, collaborative work required, these challenges are
both technical and social. Technical challenges relate mostly to bad quality data sources, tools that
are no good fit for data engineering and the complexities of hosting and maintaining data projects.
Social challenges stem from the interactions in the larger data community, especially conflicts
and little shared understanding between data publishers, project members and data consumers.
For individual collaborative data engineering projects, incentives are often misaligned or missing.
Because many specialized skills are needed to work with data, missing technical, subject-matter
or legal knowledge is a central challenge that has to be resolved. A summary of the challenges is
shown in Table 7.

Building on our insights from the results, we described guidelines to follow to make collaborative
data engineering projects successful, such as planning with data problems from the start and
ensuring that projects are accessible to the main project group roles of data engineer, software
developer and subject-matter expert. We point out the importance of agreeing on standards, making
projects discoverable and curating data, as well as providing purpose-built tools instead of just
relying on infrastructure built for collaborative software engineering. To increase adoption of open
collaborative data engineering in open data, we made concrete recommendations. First, to create a
standard collaboration artifact as well as workflows, then building adequate tooling in the form of
a project forge and a cloud environment to execute data pipelines to drive their acceptance. Finally,
the creation of data communities must be actively supported by creating incentives and enabling
connecting social roles. The guidelines and recommendations can be found in Table 8 and Table 9
respectively.
Our contributions are relevant for a variety of audiences. Practitioners that want to introduce

or increase collaboration during data engineering should keep the social systems described in
Figure 4 in mind, be aware of the challenges described in Table 7 and consider following the
guidelines presented in Table 8 to make their project successful. For policymakers and enthusiasts
working with open data, our recommendations (see Table 9) to improve the open data ecosystem
are relevant as well. Lastly, researchers can make use of the overview of activities, artifacts, tools,
and participants (Table 3 - Table 6) and social systems from Figure 4 to understand the domain of
open collaborative data engineering better.
More work is needed to deepen our knowledge about the identified challenges and potential

solutions. While we focused on diversity, additional research is needed to highlight the differences
between data projects, for example between open and closed data, and compare the social systems
they create. The guidelines and recommendations we suggested based on the results should be
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evaluated and extended by applying them to real open collaborative data engineering projects and
observing their impact.
Finally, we would like to extend our work with a larger, quantitative survey among data engi-

neering practitioners to find additional challenges and statistically representative insights.
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A INTERVIEW DOCUMENTS
A.1 Interview Handout

Challenges to Open Collaborative Data
Engineering - Interview Handout
Research Context
This interview is part of a research project about collaboration during data engineering. When
collaborating, multiple people work together to achieve a common goal. During data
engineering, raw data is made available for further use. Examples are adding structure, fixing
errors or writing documentation. Our goal is to help data engineers collaborate, ultimately
providing access to higher quality data for all participants.

We are interested in interviewing people that have attempted or contributed to a data-driven
project (e.g., a written report, software application, or data collection) and collaborated with
others to process data for use. The interview will include questions about the people and tools
you worked with, your experience with data engineering and challenges you might have
encountered.

If you have a question or concern, please contact Philip Heltweg (philip.heltweg@fau.de) at
the Professorship for Open-Source Software, Friedrich-Alexander-Universität
Erlangen-Nürnberg.

Interview Process
These steps are part of the interview process and follow up:

1. The researcher provides this interview handout to set expectations and context for the
interview

2. We decide on a date, time and software for the interview
3. During the interview

a. We start with an informal conversation that is not recorded
b. After clearly stating that recording starts, we start the official interview
c. After clearly stating that recording stops, we finish the conversation

4. The researcher transcribes and pseudonymises the recording
5. The researcher shares the pseudonymised transcription with you
6. After your agreement, the data can be used in upcoming publications related to the

research project

Data Use
During the interview, we collect raw audio- and videodata. From that data, we create a
pseudonymized transcript, using automatic speech recognition services and manual
verification. Information about the pseudonyms is stored in a separate location and never
combined with the transcripts.

After your agreement, we will use the pseudonymized interview transcript for our research
project. To do so, the transcript might be part of qualitative data analysis and be partially
quoted or published in full as part of an academic publication. We will not share information
related to the pseudonyms used or use your data outside of the context of the research project.
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A.2 Interview Guide

Interview Guide

Before the interview
● Remind yourself to be mindful of the participants time, mention end of interview time
● Give a short introduction about the context of the research

○ Define data engineering, collaboration, open collaboration
■ During data engineering, raw data is made available for further use. Examples are adding

structure, fixing errors or writing documentation.
■ When collaborating, multiple people work together to achieve a common goal.
■ People are openly collaborating, if outside people can find and join the project, if decisions

are made based on agreement rather than dictated by hierarchy, and if people can choose their
own processes and work tasks in agreement with others. Examples of open collaboration are
open-source software development or content authoring in wikis.

● State the themes / structure of the upcoming interview

During the interview
● Theme: Demographic data

○ Company, job title, role
○ For past data engineering projects, typical: Data domain, role (hobbyist vs. professional), Country,

open or closed data
● Theme: Collaborative data engineering

○ Do you think it is possible to make data engineering its own activity, separate from data analytics or
machine learning?

○ Do you think data engineering can be split into a generic part that is useful to many projects and a
project-specific part?

○ Do you think this generic part of data engineering can be done in collaboration with others?
● Theme: Collaboration systems in data engineering

○ Who have you collaborated with before during data engineering? What are their roles?
○ How and when did you interact with them?
○ What collaboration and data-engineering tools have you used before?

● Theme: Challenges to open collaborative data engineering
○ Which social or cultural challenges have you faced during collaborative data engineering?

■ Workflows (Is there a standard? Can they be improved for data engineering?)
■ Domain specific challenges?

○ Which technical challenges have you faced during collaborative data engineering?
■ Programming languages (Is there a standard? Can they be improved for data engineering, e.g.

to work with domain experts?)
■ Collaboration tools like GitHub (Is there a standard? Can they be improved for data

engineering, e.g. to work with domain experts?)
○ Have you encountered these previously identified challenges?

■ Need for specialized skills but high barriers to participation
■ Finding and connecting with other community members
■ No standard tools or artifacts
■ No well-understood collaboration practices

● Have we missed any question about collaboration during data engineering that we should have asked?

After the interview
● Disable Zoom recording
● Follow up with transcript
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ABSTRACT
A large part of data science projects is spent on data engineering. Especially in open data contexts, data quality issues are prevalent
and are often tackled by non-professional programmers. We introduce and evaluate Jayvee, a domain-specific language for data
engineering aimed at reducing barriers to building data pipelines. We show that a structured DSL can have positive effects on
speed, ease of use, and quality for data engineering by non-professional developers. For this, we present an empirical quantitative
study, in which we compare the performance of students as proxies for non-professional programmers using Jayvee with Python
and Pandas. We search for reasons for the empirical findings using a follow-up interview study on how using a DSL changes how
non-professional programmers build data pipelines. Participants solve a subset of tasks faster, more easily, and with higher quality
when using Jayvee compared to Python. Interviewees describe tradeoffs regarding the DSL’s more limited features, stricter code
structure, and explicit descriptions. Jayvee is found to be more approachable, which leads to a more guided development flow.
New data engineering languages should provide good tooling and documentation, plan how to visualize intermediate data and
consider new development workflows involving tools like ChatGPT to find adoption.

1 | Introduction

Data is the foundation for many innovative apps and, increas-
ingly, AI applications. To be usable, data must be available in a
format that fits the application and is of high quality. Data engi-
neering, the activity of making data accessible, reliable, and use-
ful for later use, is a large part of any data science project.

This additional work is not only a challenge to the usefulness
of large collections of closed data, for example, in internal data
warehouses [1], but especially for open data—a source of large
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amounts of theoretically usable data with an existing ecosystem
of data publishers, intermediaries, and users [2].

In addition to technical challenges, the expertise of human
subject-matter experts is often required to make complex data
sets available for further use [3]. However, general-purpose pro-
gramming languages (GPLs) with libraries focused on data engi-
neering are complicated and have a steep learning curve for
non-professional programmers. Additionally, they are non-trivial
to set up and operate, especially when dealing with large amounts
of data.
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Instead, various visual programming tools have been suggested as
alternatives with a lower technical barrier to entry. While easier
to use than GPLs, these tools often use proprietary formats that
cannot make use of existing text-based solutions, like line-based
diffing of different versions of a model. As a result, they are diffi-
cult to apply in larger projects and maintain long-term.

In summary, current solutions are either optimized for profes-
sional software engineers who implement data pipelines with
complex GPLs or for subject-matter experts who work with lim-
ited visual programming tools.

A potential middle-ground between GPLs and visual program-
ming tools is domain-specific languages (DSL). A text-based DSL
for building data pipelines could reduce complexity and allow
subject-matter experts to apply their existing experience, while
still allowing the reuse of existing software engineering infras-
tructure like integrated development environments.

An important distinction for text-based DSLs can be made
between internal DSLs that extend an existing host language and
external DSLs that are separate languages that require their own
tooling but provide the most flexibility [4]. Examples of internal
DSLs can include domain-specific frameworks such as Rails for
Ruby, while an example of a well-known external DSL is SQL. In
the context of this study, we use the term DSL to refer to external
DSLs that do not rely on a host language.

The overarching goal of our research is to explore whether an
external DSL can achieve a sweet spot for data engineering by
subject-matter experts and if so, which implementation decisions
are the best. This study makes the first step in this overarch-
ing theme to explore how using a DSL affects data engineering,
mainly by collecting qualitative data from users. For this, we ini-
tially worked intentionally broad, with a focus on qualitative data
from users to build an initial theory of how using a DSL affects
data engineering. Based on the insights from this exploratory
work, we can generate hypotheses to iteratively improve our
understanding of what makes DSLs work best for data engineer-
ing. In future work, we will test the impact of specific features
with controlled experiments.

In this article, as a first step, we explore if a DSL can be a viable
alternative to a GPL, and what effects the use of a DSL has on the
development process and the quality of the final results. Using a
mixed methods research design, consisting of descriptive surveys
followed by a qualitative interview study, we answer the follow-
ing research questions:

Research Question 1: Is using a DSL for data engineering a viable
alternative to a GPL with a data engineering library?

Research Question 2: What is the user’s perception of diffi-
culty and quality of results using a DSL compared to a GPL with
libraries?

Research Question 3: What are the effects of using a DSL for data
engineering compared to a GPL with libraries?

With our research, we make the following contributions:

• We showcase the feasibility of using a DSL for data engineer-
ing with non-professional programmers.

• We evaluate to what extent non-professional programmers
can use a DSL for data engineering.

• We describe the main effects of using a DSL over a GPL with
libraries for data engineering.

• We highlight important challenges for developing new lan-
guages for data engineering that should be considered in
future implementation efforts.

2 | Related Work

An adjacent research field to data engineering with open data is
research into scientific workflows and associated workflow sys-
tems that orchestrate independent scientific tools into data anal-
ysis workflows [5]. Scientific workflows have specific require-
ments, such as high reproducibility or infrastructure indepen-
dence. While Jayvee, the language we introduce and evaluate in
this study, could be used as a tool in a scientific workflow, we
evaluate the effects of using a DSL for data engineering in a more
general setting of improving data sets of any complexity, often
from open data sources, for downstream use and do not cover
later steps in the data science process such as data analysis.

One of the many tools used to define scientific workflows is the
Common Workflow Language (CWL) [6]. The CWL allows scien-
tists to define portable workflows of command-line-based tools
based on container technologies for data analysis. However, the
CWL explicitly mentions workflows that interact with stateful
web services or need scheduling as being out of scope, require-
ments that are common to access open data from data portals or
update data when sources change (such as transport schedules
in mobility data). We, therefore, consider Jayvee and the evalua-
tion of its effects as complementary work with a slightly different
focus on open data sources. The empirical insights on the effects
of using a DSL for data engineering will be applicable to other
workflow specification languages as well.

During data engineering on open data, practitioners mostly rely
on adequate but not well-adapted tools from software engineer-
ing [7]. However, several software artifacts that aim to support
data engineering have been suggested and empirically evaluated.

Liu et al. evaluate Governor, a tool to provide DBMS capabili-
ties to open data portals [8]. Their goal is to support end users
without technical skills (such as journalists) with search, data
understanding, and integration of open data. Users could work
efficiently with the tool, but were missing more data transforma-
tion functions. We consider our work complementary because a
DSL could provide more complex data engineering functionality
while still lowering technical barriers to data engineering.

Data identification, data understanding, and relationship discov-
ery are identified as important problems in data engineering by
Bogatu et al., who present and evaluate Voyager, a tool to support
data scientists in these tasks, with results showing considerable
time reductions [9]. In contrast to Jayvee, Voyager uses algorith-
mic insights into the underlying data and does not aim to enable
manual work by human experts.
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General-purpose languages (GPLs), like Java or C++, enable pro-
grammers to develop applications in any domain. In contrast,
DSLs are less generally applicable but more expressive in the lim-
ited domain they cover. Benefits include increased productivity,
lower maintenance expenses, and enabling a larger pool of con-
tributors compared to GPLs [10]. Widely adopted DSLs are, for
example, HTML for the domain of hypertext web pages, LaTeX
for the domain of typesetting, or SQL for the domain of database
queries.

Kosar et al. conducted a systematic mapping study in 2016 to
report on the state of the research field of domain-specific lan-
guages [11]. While most studies focus on the domain analysis,
design, and implementation of DSLs, studies on validation and
maintenance are rare. do Nascimento et al. performed a system-
atic mapping study in 2012 and found that only approximately a
third of the investigated studies include evaluation and validation
research [12] such as ours.

This study is an empirical evaluation of a DSL in the data engi-
neering domain, going beyond the general evaluation of a DSL
against its requirements. Kolovos et al. list important require-
ments for DSLs, like simplicity and quality, which we focus on
in this study [13].

There is a stream of existing evaluations of DSLs in multiple
domains. For example, Meliá et al. compare text-based versus
graphical notations in the domain of solving software mainte-
nance tasks [14]. In their context, the textual notation won in
terms of efficiency and preference of the participating students.
Instead, we evaluate a textual DSL against a textual GPL. Kosar
et al. compare a DSL with an application library in an exper-
iment with 36 programmers in the domain of graphical user
interface construction [15]. Their findings reveal that XAML
(the DSL) performs significantly better than C# forms (the GPL)
regarding program understanding in all cognitive dimensions.
Johanson and Hasselbring evaluate a DSL for ecosystem simu-
lation specifications as a candidate for a non-technical domain
[16]. They report increased correctness and reduced time spent
per task.

In the domain of model-driven engineering, dedicated model
transformation languages (MTLs) are studied that allow the gen-
eration of multiple artifacts, such as source code or different
views from one model. Höppner et al. conducted an empiri-
cal study with semi-structured interviews among 56 experienced
researchers and practitioners in the field of model transforma-
tions on factors influencing the properties of MTLs [17]. Their
results show that one of the largest barriers to the adoption of
MTLs is the quality of tooling, an experience that is mirrored by
our data as well. Our study adds additional empirical data on
the effects of external DSLs from a different domain (data engi-
neering instead of model transformation) and population (novice
developers instead of experienced practitioners).

Other domains in which DSLs have recently been evaluated
include traffic simulation and type inference rules. In both cases,
the DSL was compared with an appropriate GPL with libraries
using a controlled experiment, with results showing improved
efficiency when working with a DSL. In their work, Hoffmann
et al. evaluate the DSL Athos compared to JSpirit, a library

for Java [18] for work by subject-matter experts. Klanten et al.
describe a controlled experiment comparing the readability of
type inference rules in a DSL with Java [19] The authors also
describe that empirical studies are rare in the field of program-
ming language design. Similarly to these studies, we contribute
additional data in the domain of data engineering to reduce the
lack of empirical findings in the field.

Alongside evaluations of single DSLs, some meta-studies include
evaluations of multiple DSLs. Kosar et al. compare a family of
three controlled experiments in three domains: feature diagrams,
graph descriptions, and graphical user interfaces [20], also with
student participants. In terms of comprehension correctness and
comprehension efficiency, the DSL performed significantly better
than the GPL in all three settings. A later replication study con-
firmed these results, while allowing the use of an IDE to make
the experiment setting more realistic [21]. This study strength-
ens the findings of these overarching ones by providing another
DSL evaluation in the domain of data engineering, which, to the
best of our knowledge, has not been consulted yet for such a
comparison. The data engineering domain might be especially
interesting, as the borders between non-programmers engaging
in data engineering activities and software developers are fluent.
This introduces special challenges like the need to collaborate on
a shared artifact with vastly different viewpoints and experience
levels with software development.

3 | Jayvee Examples

Our research goal is to test whether an external DSL is bet-
ter than using a GPL with libraries for data engineering. To
this end, we chose to implement a DSL that does not extend
a host language to be able to test our hypotheses and collect
qualitative data.

Because it is domain-specific, programs in the DSL can be struc-
tured according to the pipes and filters architecture [22, 23].
These programs can be represented as directed graphs, making
them a good basis for visual programming tools. Their structure
aligns naturally with the visualization of pipelines by boxes and
arrows and the mental model that non-professional programmers
use to reason about data pipelines.

We implemented a domain-specific language called Jayvee to
model data pipelines, structured with pipes and filters as
first-class programming constructs. The project is available as
open source under the AGPL-3.0-only license on GitHub1. The
language itself is implemented as an external DSL, based on
a context-free grammar using the Langium2grammar language.
Langium provides TypeScript representations of the semantic
model of Jayvee and a parser to instantiate an abstract syntax tree
(AST) from Jayvee models. Because Jayvee can not re-use tooling
of a host language, we have additionally implemented a language
server using the language server protocol and a VSCode extension
based on it. Jayvee’s execution semantics are defined by a ref-
erence interpreter implementation based on the generated AST
interfaces.

Jayvee aligns as closely as possible with the mental model of data
pipelines as a directed acyclical graph of connected processing

3 of 20



steps, similar to the well-known pipes and filters architectural
pattern used for data processing.

Thus, Jayvee defines the following core concepts, each marked
with a keyword in the language:

Blocks (keyword block): Blocks are the building blocks of
Jayvee, and each represents a processing step on the data. In the
pipes-and-filters pattern, those blocks are the filters. We chose the
term “block” because we felt the term filter would not represent
the breadth of the intended computational work. Each block can
be referenced from other language elements by a user-provided
name. The behavior of a block is specified by the block’s type,
which refers to a built-in element after theoftype keyword. The
body of the block, wrapped in curly braces, allows users to further
configure the block’s behavior by assigning values to properties,
depending on the block type. For example, theCarDataCSVEx-
tractor in Listing 1 defines an extractor block for HTTP data
that downloads a file from a given URL. All available block types
are listed in Jayvee’s documentation3.

Pipes (syntax: ->): Pipes are connectors between blocks and indi-
cate a sequential data flow from the first to the second block, both
referenced by name. Instead of defining pipes on only pairs of
blocks, users can also define chains of pipes that link a sequence
of blocks with an arbitrary length.

Pipelines (keyword pipeline): Pipelines are the central
abstraction element, bracketing blocks and pipes, each contain-
ing a sequence of pipes between blocks in its body (indicated
by curly braces). Such a sequence of pipes describes the data
flow from source blocks (without an input) through downstream
transformation blocks (with inputs and outputs) until it exits the
pipeline in a sink block (without an output). Pipelines can con-
tain block definitions, but blocks can also be defined outside a
pipeline.

pipeline CarDataPipeline {
CarDataCSVExtractor

-> CarDataInterpreter
-> CarDataSQLiteLoader;

block CarDataCSVExtractor oftype CSVExtractor
url: "https://example.org/data.csv";
enclosing: ’"’;

}
block CarDataInterpreter oftype TableInterpreter {

header: true;
columns: [

"name" oftype text,
∕∕ ... Further value type assignments

];
}
block CarDataSQLiteLoader oftype SQLiteLoader {

table: "Cars";
file: "./cars.db";

}
}

LISTING 1: Example pipeline structure definition in Jayvee

Listing 1 gives an example of a minimal pipeline. The presented
pipeline extracts a CSV file about cars from an HTTP source,

assigns value types to its columns, and loads it into an SQLite
database. By syntactically separating the definition of the pipeline
structure (in Listing 1, lines 2–4) from the details of property
assignments in blocks, Jayvee provides a high-level overview of
every step that is executed in a pipeline.

In comparison to Python with libraries such as Pandas, the explic-
itly modeled blocks and pipes lead to models with a consistently
enforced structure and a clear order of steps.

Consider one of the ways that users could choose to download a
GTFS file and extract data about stops from it in Python, shown
in Listing 2.
import pandas as pd
import urllib.request
from zipfile import ZipFile

urllib.request.urlretrieve
("https://example.org/GTFS.zip", "data.zip")
ZipFile("data.zip").extract("stops.txt")

df = pd.read_csv("stops.txt")
// ... Further processing

LISTING 2: Downloading and accessing stops in a GTFS data set
using Python

A roughly equivalent Jayvee pipeline is shown in Listing 3. Note
how an overview of the pipeline content and order is provided by
lines 2–4, before a reader looks at further details of the blocks.

pipeline StopsPipeline {
GTFSFeedExtractor

-> StopsFilePicker
-> StopsCSVInterpreter
∕∕ ... Further processing

block GTFSFeedExtractor oftype GTFSExtractor {
url: "https://example.org/GTFS.zip";

}
block StopsFilePicker oftype FilePicker {
path: "/stops.txt";

}
block StopsCSVInterpreter oftype CSVFileInterpreter {
enclosing: ’"’;

}
}

LISTING 3: Downloading and accessing stops in a GTFS data set
using Jayvee

Additional concepts realized in Jayvee include user-defined value
types to filter and validate data and data transformations based
on a limited expression language. Please refer to the Jayvee doc-
umentation4for a detailed overview.

4 | Research Design

We chose a mixed methods approach [24] to answer our research
questions on whether using a DSL for data engineering is a viable
alternative to a GPL with a data engineering library (RQ1), how
the user’s perception of difficulty and quality of the results differs
between them (RQ2) and what effects the use of a DSL for data
engineering has compared to a GPL (RQ3). We planned to first
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FIGURE 1 | Overview of the research design.

quantitatively test hypotheses and then follow up with qualitative
interviews to suggest causal connections.

This research design is well-suited to the exploratory nature of
this work, providing an initial insight into the effects of using
a domain-specific language that can be extended with follow-up
experiments. By employing different research methods, the weak-
nesses of individual methods can be mitigated, and a more com-
plete picture of the impact of DSLs on data engineering work can
be attained.

We consider students taking this course a good proxy for open
data practitioners and therefore chose to base the initial empir-
ical study of Jayvee on them [25]. Similar to the students, open
data practitioners often have basic experience in programming
but come from a wide range of backgrounds, from hobbyists, over
statisticians to subject-matter experts [3].

This study was completed as part of a university course on
advanced methods of data engineering, mainly taken by master’s
students who study data engineering, AI, or computer science,
over two semesters. The course included five data engineering
tasks based on real open data sets, using Jayvee and Python.

Initially, we gathered quantitative data after each task, using a
descriptive survey to answer RQ1 and RQ2. Based on the sur-
vey insights, we extended and verified the results with interviews
after the course had concluded and participants had finished all
tasks. This incremental design allowed us to have very focused
interviews, answering causality questions that arose from the sur-
veys, and describing the effects of using a DSL over a GPL with
libraries to answer RQ3. We employ data and investigator triangu-
lation by gathering quantitative and qualitative data and analyz-
ing it with multiple researchers, as well as presenting our results

in peer debriefing sessions to make our results more robust [26,
27]. An overview of the research design is shown in Figure 1.

At the start of each semester, we measured every student’s general
programming experience and previous experience with Python
and Jayvee using a required online questionnaire with previously
validated questions according to [28].

Jayvee was introduced with one lecture, and students were pro-
vided with the language documentation. During the semester,
students solved five graded exercises based on real data sets
from the German national access point for transport data,
the Mobilithek5. The exercises revolved around building ETL
pipelines that extract data from an online source, potentially
transform it, and load it into a local file sink. The tasks became
more difficult over time, introducing students gradually to the
domain of data engineering.

The largest amount of open data is provided in tabular data for-
mats, such as CSV or XLS [29]. Available datasets are often small,
with the vast majority being under 10 MB in size [30]. Chal-
lenges when improving these datasets include the inability to
contact data publishers to correct mistakes and regular releases of
updated datasets like transport schedules, making one-time data
engineering directly changing downloaded datasets less useful.
Instead, data users must implement their own error-correcting
code and ideally be able to rerun it on updated data sources reg-
ularly [3]. Accordingly, the designed exercises were based on real
open data sets and targeted the niche of one-time batch process-
ing of tabular data, aligned with the current focus of the DSL.
While this use case does not capture the complete domain of
data engineering, it is representative of a large percentage of chal-
lenges in open data contexts.
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TABLE 1 | Task summaries.

No Task summary

1 Extract a CSV dataset from an HTTP source and assign fitting data types to each column. Save the data to a SQLite database.
2 Extract a CSV dataset from an HTTP source. Transform data shape. Validate data, as defined by categories, integer ranges,

and regex patterns. Remove all rows that contain invalid values. Choose fitting data types and save the data to SQLite.
3 Extract a CSV dataset from an HTTP source. Fix invalid format due to included metadata. Handle uncommon encoding to

preserve German umlaut characters. Transform data shape by dropping multiple, not adjacent columns. Validate data,
handling a special value type of numeric data with leading zeros. Remove any rows containing invalid data. Choose fitting

data types and save the data to SQLite.
4 Extract a ZIP file from an HTTP source. Pick one CSV file from the multiple files in the source. Transform the data shape by

renaming and dropping columns. Transform data values from Celsius to Fahrenheit. Choose fitting data types and save the
data to SQLite.

5 Extract a GTFS file (an open format for transit data in one ZIP file with multiple CSV files) from an HTTP source. Pick one
file from the archive. Transform the data shape by dropping columns. Filter the data to only keep rows related to one ID.

Validate data values according to integer ranges and keep German umlaut characters intact. Choose fitting data types and
save the data to SQLite.

A summary of the tasks is provided in Table 1. The exact exercise
descriptions can be found in the accompanying data release.

Students were randomly assigned to two groups of equal size
and alternated the language they had to solve each exercise in
between Python 3.11 (with pandas 1.5.3) and Jayvee versions
0.0.15, 0.0.16, 0.1.0, and 0.2.0. While the used version of Jayvee
changed several times, only a few syntax changes were made, so
the usability of the language stayed consistent for the students.

After each exercise, we gathered qualitative and quantitative data
using a descriptive online survey developed according to Kitchen-
ham and Pfleeger [31] (“Descriptive Surveys” in Figure 1). The
surveys were clearly communicated as optional, with no effect
on grades, and included an explicit opt-in to allow the use for
publication purposes. The survey software was configured to
anonymize all responses, which was also visible to participants.

The questionnaire contained quantitative questions about time
spent (“How many hours did you spend to solve the exercise?”,
numeric), impressions of difficulty (“How difficult was it to solve
the exercise using your programming language?”, 5-point Likert
scale) and quality of the data pipeline (“How would you rate
the quality of the resulting data pipeline?”, 5-point Likert scale).
Additionally, we gathered qualitative data in preparation for the
follow-up interview study by asking about problems (“What prob-
lems with the programming language did you encounter during this
exercise?”, free text) and suggestions for improvements (“What
language features or libraries would have made solving the exercise
easier?”, free text). The full survey for exercise 1 can be found in
the data release. All other surveys followed the same pattern.

Based on statistical analysis of quantitative survey data, we
designed a qualitative survey with semi-structured interviews
according to Jansen [32] (step “Semi-structured Interviews” in
Figure 1) to better understand the effects of using a DSL instead
of a GPL with libraries and perceptions of difficulty and qual-
ity of results. We employed convenience sampling, interviewing
all students who volunteered for an interview after the semester
concluded and grades were already announced. Students were

informed about the interview context, process, and questions
with a letter to participants beforehand.

The interviews were semi-structured [33] with the main topics
being ease of use, quality of results, and challenges as experienced
depending on the participant’s use of Jayvee or Python. Every
interview was concluded with an open-topic question to give par-
ticipants space to include any insight they considered important.
Interviews were performed by two of the authors independently,
based on a shared interview guide. After each interview, the audio
was transcribed using local software and manually refined to
ensure the text was correct. The full letter to participants and the
interview guide, including all questions, can be found in the data
release.

In a final step, all qualitative data (free text fields from the online
surveys and interview transcripts) was analyzed using inductive
thematic analysis according to Braun and Clarke [34] (“Qual-
itative Data Analysis” in Figure 1). First, we familiarized our-
selves with the data by reading the primary material actively
and noting the first coding ideas. Then, we generated the ini-
tial codes by annotating data segments with preliminary names.
After open coding, we searched for themes by considering how
codes can be combined in different ways to depict a cohesive
feature of the data. After the first iteration, we reviewed the
themes to clearly distinguish between them and refactor ambigu-
ous ones. Finally, we defined and named the final themes based
on their content. The software MaxQDA6 supported our coding
and theme-building process to ensure the traceability of themes
and codes back to their origin.

To ensure quality, we regularly requested feedback about ele-
ments of the study from other researchers, as summarized in
Table 2. We mainly utilized peer debriefings [27] with authors
and other researchers who were familiar with the methods used
or the domain of data engineering. Furthermore, we presented
intermediate results at an internal PhD summit to two research
groups consisting of researchers mainly working in the field of
software engineering.
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TABLE 2 | Feedback methods used during the study.

Method Participants Topic

#1 Peer debriefing 2 researchers Post-exercise survey
#2 Peer debriefing 3 researchers Interview guide
#3 Presentation 2 research groups Intermediate results
#4 Peer debriefing 3 researchers Open coding of interviews
#5 Peer debriefing 2 researchers Themes from interviews

FIGURE 2 | Results regarding student’s previous experience from the course entry survey.

TABLE 3 | Sample size, median and Mann–Whitney U and p-value for previous population experience for 𝐻𝐸𝑥𝑝

𝐴
.

Experience 𝒏1, 𝒏2 𝑴𝒅𝒏1, 𝑴𝒅𝒏2 𝑼 𝒑 (two-sided)

Programming 110, 113 7, 7 6224.0 0.986
Python 110, 113 4, 4 6198.0 0.971
Jayvee 110, 113 1, 1 6547.5 0.223
Jayvee vs. Python 223, 223 4, 1 48398.0 1.406e-74*

*𝑝 ≤ 0.05.

5 | Results

5.1 | Descriptive Surveys

5.1.1 | Population Description

We gathered quantitative data about previous experience and par-
ticipants’ impressions of time needed, ease of use, and quality of
results while solving five exercises alternating between Python
with libraries and Jayvee using online surveys as described in
Section 4.

We chose students from a course on data engineering because
we consider them good proxies for practitioners working with
open data. The population consisted of 223 students, mainly in
master’s studies in computer science, data science, and artificial
intelligence, of which 208 completed the course. Their responses
to the course entry survey are shown in Figure 2. In addition to
the histogram, the kernel-density plots show the distributions of
experience in the different groups. Kernel-density plots were cho-
sen as visualization to make it easier to see non-normality, as
recommended by [35]. Median programming experience was 7
(of 10), median comparison to classmates 3, and median experi-
ence in Python and Jayvee at 4 and 1 (all of 5), respectively.

5.1.2 | Previous Experience

We evaluated whether there were statistically significant differ-
ences in previous experience between groups. For the statistical
analysis, we used pingouin 0.5.4 [36].

We tested the response distributions for normality using the
Shapiro-Wilk test [37] and verified that all were non-normal
at 𝛼 = 0.05. Accordingly, we chose the non-parametric
Mann–Whitney U test because it is appropriate for the ordi-
nal data of the response options [38, 39]. We decided on the
standard significance level of 𝛼 = 0.05.

To ensure previous experience is no confounding factor regard-
ing performance on the tasks, we tested that no statistically
significant difference exists between groups regarding previous
experience in programming, Python, or Jayvee. We also com-
pared previous experience in Jayvee with previous experience in
Python across all students. Table 3 summarizes the results. To
detect any difference, we chose a two-sided test with the alternate
hypothesis:

𝐻
𝐸𝑥𝑝

𝐴
: There exists a significant difference between the previous

experience.
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Based on the data, there is no statistically significant difference
between groups regarding previous programming, Python, or
Jayvee experience. Both student groups were significantly more
experienced in Python than in Jayvee. From the visualizations in
Figure 2, it is clear that students have much more previous expe-
rience with Python than Jayvee (as is expected because Jayvee is
introduced as a new language).

5.1.3 | Impressions of Speed, Difficulty, and Quality

After every exercise, we gathered student impressions on the
speed, difficulty, and quality of the resulting pipeline, as
described in Section 4. Individual response rates for each of the
five surveys were 95 responses (42.6%), 61 (27.35%), 25 (11.21%),
35 (15.7%), and 33 (14.8%).

We report an overview of the responses for every dimension of
speed, difficulty, and quality and test for statistically significant
differences individually for each exercise at a significance level of

𝛼 = 0.05. We removed 15 outlier responses to time according to
the standard 1.5 times IQR method.

The Mann–Whitney U test [38] was used because the data is
largely non-normal and ordinal. With the smaller sample size for
individual exercises, the reduced power of non-parametric tests is
a concern. As we are interested in finding out if the use of Jayvee
has positive effects on speed, difficulty, and quality compared to
Python, we chose one-sided tests to increase the chance of detect-
ing statistically significant effects.

Regarding speed, the alternative hypothesis is:

𝐻
𝑆𝑝𝑒𝑒𝑑

𝐴
: The time needed to solve the exercise is significantly lower

using Jayvee compared to using Python.

Responses are shown in Figure 3, as with the course entry survey,
we used kernel-density plots as recommended by [35] to show
the distribution of time needed to complete the exercises. More
detailed data for each exercise are shown in Table 4.

FIGURE 3 | Distribution of time spent per exercise, depending on the language used (lower is better). White bars represent 𝑄1 and 𝑄3, the black
bar denotes 𝑄2.

TABLE 4 | Sample size, median and Mann–Whitney U and p-value for time spent on exercises for 𝐻𝑆𝑝𝑒𝑒𝑑

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (less)

Ex1 45, 47 2.0, 2.0 1159.5 0.794
Ex2 28, 24 2.0, 3.0 243.0 0.042*
Ex3 17, 8 3.0, 3.0 72.0 0.606
Ex4 18, 15 2.0, 2.5 113.0 0.202
Ex5 16, 16 2.0, 1.0 162.5 0.915

*𝑝 ≤ 0.05.
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Regarding time, students were significantly faster completing
exercise 2 with Jayvee than with Python. These results could indi-
cate that a DSL can make routine data engineering tasks, as often
found in open data sources, easier as the exercise mainly requires
basic data validation and transformations. However, while not
statistically significant, it seems noteworthy from Figure 3 that
the median time needed for exercise 5 (handling GTFS files and
filtering by id) was higher in Jayvee than in Python. From inter-
views, we understand that while dealing with ZIP files is easier in
Jayvee than Python, filtering data by an ID is not well-supported
as of now.

Students’ impressions of difficulty and quality of result were
answered on 5-point Likert scales and are plotted as diverging
stacked bar charts [40, 41]. To calculate the median, we mapped
them to numbers from 1 (Very easy/Very low) to 5 (Very hard/Very
high).

Responses to the perceived difficulty of the exercises are plotted
in Figure 4, and details are shown in Table 5. For difficulty, the
alternative hypothesis is:

𝐻
𝐷𝑖𝑓𝑓

𝐴
: The difficulty of solving the exercise is significantly lower

using Jayvee compared to using Python.

Exercise 3 is a notable outlier because only a few students
who used Python responded. In contrast, more students who
used Jayvee answered and reported a high perceived difficulty
in Jayvee. In addition, the free text feedback highlighted miss-
ing features in Jayvee for the deleting of multiple, not adja-
cent columns that made the exercise on changing data structure
hard. We noted this feedback and included it in our follow-up
interviews.

We found that students had significantly less difficulty solving
exercise 4 using Jayvee than Python. From later interviews, it
became clear that students struggled with the non-standard for-
mat of the CSV data for exercise 4, where multiple measurements
for one device are concatenated in one row. When using Pandas
to load the CSV into a dataframe, a multi-index is automatically
created, which is complicated to remove. These problems show
that, while often helpful, automation can introduce challenges,
and a careful balance between hidden logic and explicit model-
ing has to be found. The interviews confirmed that this trade-off

FIGURE 4 | Impressions of the difficulty of completing the exercise, depending on the language used (lower is better).

TABLE 5 | Sample size, median and Mann–Whitney U and p-value for the difficulty of exercises for 𝐻𝐷𝑖𝑓𝑓

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (less)

Ex1 47, 48 2.0, 2.0 1086.5 0.372
Ex2 33, 28 2.0, 3.0 397.5 0.158
Ex3 17, 8 3.0, 3.0 93.0 0.943
Ex4 19, 16 2.0, 3.0 102.0 0.040*
Ex5 16, 17 2.5, 3.0 141.0 0.584

*𝑝 ≤ 0.05.
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played a major role in the exercise’s perceived ease when solved
with Jayvee.

Similarly, responses about the quality of the resulting pipeline are
shown in Figure 5, and details can be found in Table 6. The alter-
native hypothesis for quality is:

𝐻
𝑄𝑢𝑎𝑙

𝐴
: The quality of results is significantly higher when using

Jayvee compared to using Python.

We found statistically significant differences between Jayvee and
Python with libraries regarding impressions of the quality of the
resulting data pipeline for exercise 1. It is visible from Figure 5
that this difference primarily is caused by some students consid-
ering the quality of the Python as low. Here, the large amount
of hidden logic that comes from using Pandas might have led to
the impression of less control over the data pipeline logic, as dis-
cussed in later interviews.

In summary, the data shows that no significant difference
exists regarding previous experience with programming, Python,
or Jayvee between the two groups that completed the data

engineering tasks. Between languages, participants had signifi-
cantly more experience with Python than Jayvee.

Nevertheless, individual exercises were completed with statisti-
cally significant improvements regarding reported speed, diffi-
culty, or quality of result for Jayvee. This indicates that students
were able to learn Jayvee to an adequate level quickly and use it
successfully to complete data engineering tasks on real open data
sets. Significant improvements could be found for challenges that
align well with the currently implemented feature set of Jayvee.

These results show that using a DSL like Jayvee is a viable alter-
native to a GPL with libraries for data engineering tasks (answer-
ing RQ 1) as long as the feature set of the DSL is expansive
enough. We noticed a spike in perceived difficulty during exercise
3 and planned the follow-up interview study to investigate causal
relationships.

5.2 | Interview Study

We conducted exit interviews with volunteers to explore possible
explanations for the quantitative survey results and extend them
with a description of the effects of using a DSL over a GPL with

FIGURE 5 | Impressions of the quality of the resulting pipeline, depending on the language used (higher is better).

TABLE 6 | Sample size, median and Mann–Whitney U and p-value for quality of exercise results for 𝐻𝑄𝑢𝑎𝑙

𝐴
.

Exercise 𝒏𝒋𝒗, 𝒏𝒑𝒚 𝑴𝒅𝒏𝒋𝒗, 𝑴𝒅𝒏𝒑𝒚 𝑼 𝒑 (greater)

Ex1 47, 48 4.0, 3.0 1377.0 0.021*
Ex2 33, 28 3.0, 3.0 515.0 0.200
Ex3 17, 8 3.0, 4.0 47.5 0.911
Ex4 19, 16 4.0, 4.0 122.5 0.873
Ex5 16, 17 4.0, 4.0 107.5 0.884

*𝑝 ≤ 0.05.
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libraries to create data pipelines. The transcribed interviews and
free-text answers from post-exercise surveys were analyzed using
thematic analysis according to Braun and Clarke [34] as described
in Section 4. Because the participants’ impressions could be influ-
enced by their previous experience, we conducted a course exit
survey, asking for self-assessments of their experience in pro-
gramming, Python, and Jayvee again after completing the data
engineering course. The results are shown in Table 7 to provide
additional context to participants’ quotes.

The resulting themes from the interviews were grouped into three
higher-level themes, as summarized with the thematic map in
Figure 6:

• Participants’ impressions of speed, difficulty, and quality of
their exercises in Jayvee and Python. This topic most closely

TABLE 7 | Experience of interview participants after completing the
data engineering course.

Participant
Programming

(of 10)
Python

(of 5)
Jayvee
(of 5)

S0 8 4 5
S2 7 4 3
S3 6 3 2
S5 9 5 4
S7 7 3 3
S8 8 3 3
S10 9 4 4
S11 7 2 4

relates to Jayvee itself and expands on the results of the quan-
titative data to answer RQ1 and RQ2.

• Effects of using a DSL over a GPL with libraries consists of
themes relating to the general effects of using a DSL instead
of a GPL on challenges, workflows, and artifacts like source
code created by participants, directly related to RQ3.

• Considerations for a new data engineering language include
themes that do not directly compare using a DSL with a GPL.
Instead, it summarizes lessons learned when developing a
new language in the domain of data engineering.

5.2.1 | Speed

Comparisons of implementation speed between Python and
Jayvee were rarely made, with Python mostly being preferred if
they did. Participants noted that Jayvee is fast to use for problems
that fit its domain well, but can be complicated for more com-
plex data sets or tasks outside its feature set. This aligns with the
results of the post-task surveys that showed a statistically signif-
icant difference between the time needed to complete a simple
data pipeline setup in Jayvee, but indicated that an exercise with
challenges outside the feature set of Jayvee was slower to solve.

Execution performance was not considered a problem, even
though Jayvee is considerably less optimized than Python. The
missing concerns about execution speed were remarkable on
their own. However, the data engineering tasks focused on our
use case of batch processing smaller datasets, as often found in
open data contexts. We interpret this as a sign that execution
performance is less relevant to users’ perceptions once an accept-
able baseline is met in this specific context only. We assume that

FIGURE 6 | Thematic map from thematic analysis of students’ interviews and survey responses.
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in domains with larger datasets, the differences in optimization
between Jayvee and Python would introduce challenges.

5.2.2 | Difficulty

Generally, students considered Jayvee easy to use and fast and
easy to learn. Contributing to this experience was especially the
limited scope of the DSL, which means there are fewer options to
learn. As S2 puts it: “But for me, it was a bit confusing first in pan-
das because there are so many options. So I think if you do it the
first-time, it’s easier in Jayvee.” A similar view is expressed by S11:
“[ . . . ] you compare Python, which has a lot of functionality, with
Jayvee with limited functionality. The problem is the more you
customize, the more complicated it gets.” Additionally, students
pointed out that previous experience in data engineering made it
easy to get started with Jayvee, meaning previous domain knowl-
edge can be leveraged to lower the barrier of entry to get started
with implementation.

Specific to the exercises, it became clear from the surveys that
exercise 3 was unusually difficult to solve in Jayvee, and we took
note to follow up in the interviews. Students explained that the
difficulty was due to missing features for working with uncon-
nected columns in a datasheet, this issue is discussed in more
detail in Section 5.2.4.

Regarding the lower difficulty of solving exercise 4 in Jayvee, it
became clear that loading data into dataframes with Python/Pan-
das can lead to complications stemming from hidden assump-
tions (described in more detail in Section 5.2.8). Additionally,
working with ZIP files was identified as easier in Jayvee than in
Python, showing the potential of a DSL to support a limited num-
ber of highly relevant file types in the domain it covers well and
to enable their use.

5.2.3 | Quality

As for any software artifact, the quality of data pipelines has
multiple dimensions. Overall, students evaluated the quality of
data pipelines written in Jayvee positively, but mainly focused on
understandability. Students found data pipelines in Jayvee easier
to read than Python, especially for non-programmers. S0 points
out: “Even if someone who does not know anything about pro-
gramming languages would read this data pipeline, they would
understand [ . . . ]. They would automatically understand what’s
going on.”

The main reason that was identified was that pipelines written
in Jayvee allow readers to get a good overview. The pipes and fil-
ters structure enforces creating an explicit hierarchy or sequence
of what steps are executed in what order: “What made the qual-
ity good is that you have a good overview of what exact task is
happening after which, like there is kind of a hierarchy. It starts
with the first block, then the second block, and they have specific
names and so on, so you have a way [ . . . ] better overview than
Python because everything has a hierarchy.”, (S3).

Students also described how this enforced structure pro-
vided guidelines and reminders on what to consider while

implementing their data pipelines, leading to a higher-quality
final result. This is especially notable in light of exercise 1 show-
ing significant improvements in perceived quality because Jayvee
enforces the explicit assignment of value types for the extracted
data, while Python with Pandas encourages users to rely solely on
automated assignments that might change if the underlying data
changes.

Further effects of the changed development workflow are also
discussed in more detail in Section 5.2.7.

5.2.4 | Limited Feature Coverage

Limited feature coverage can be caused by both missing features
that have yet to be implemented and features that might not have
a place in a DSL at all. A DSL can be much easier to use for the
limited use cases it covers but suffers from being difficult to use
outside of them, as S11 mentions: “[ . . . ] the main advantage of
Jayvee is if you have an easy use case, you can write a pipeline
down really fast. I think if it gets complex, then you have to look
to find your own workaround.”

Regarding not yet implemented features, students experienced
this issue with exercise 3, which required changing the data struc-
ture by deleting multiple, not adjacent columns—while Jayvee
only supports deleting single or adjacent columns as of now.
Accordingly, we received negative feedback about the missing
features, and exercise 3 was perceived as considerably harder
than the others (see Figure 4).

Aside from not yet implemented features, students with back-
grounds as software developers pointed out that it is unclear how
to handle cross-cutting concerns for data pipelines like monitor-
ing or testing in Jayvee. A Python script might send a Slack mes-
sage for monitoring or logging an intermediate result to Kafka,
and it was unclear how to approach these challenges in Jayvee.
These requirements do exist for the operation of data pipelines
as software artifacts, but they are not part of the domain of data
engineering itself. For any DSL, it is a question of whether these
cross-cutting concerns should be part of the language design
itself and, if so, to what extent. One potential solution to the
cross-cutting concerns and extendability of a DSL would be to
enable the execution of GPL code, an option that we heavily dis-
cussed internally and assumed would feature prominently in the
interviews. Surprisingly, this suggestion was only made by one of
the interview participants.

5.2.5 | Increased Approachability

The limited feature set of a DSL strongly affects its approacha-
bility in the two dimensions of programming experience domain
knowledge.

Regarding needed programming experience, participants
reported a strong divide between Jayvee’s smaller and all-in-one
feature set and the mature library ecosystem of Python. Having
all functionality as part of the language allows for one central,
compact source of information in the form of online documen-
tation, which was generally preferred: “it’s better as you have
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one central source of information and you don’t have that much
where you don’t find what you need.”, (S11).

At the same time, many possible libraries and implementation
approaches can exist in a GPL like Python that lead to fragmen-
tation in communities and sources of information that require
more experience to navigate. Especially for Python, libraries are
complex and have to be learned like a separate language. Students
mentioned they knew how to use, for example, Pandas instead
of how to program in Python itself and having trouble under-
standing code from other libraries. Researching fitting libraries
was described as time intensive and requires expert knowledge
of Python and its libraries, for example by S11: “[ . . . ] my main
criticism about Python, is you have to know which library you
use. If you don’t, then you have a lot of work to do. [ . . . ] you can
write very good and very compact code and a few lines and get
much, but you have to know what you’re doing.”

In the same quote, the positive side of the effect of programming
experience is mentioned: Experienced programmers can leverage
their knowledge into using a GPL with libraries well and write
short and performant code that solves a problem elegantly. In
this sense, a DSL has a lower skill floor, that is, can be used by
novice programmers with less previous programming knowledge
to solve a problem, but also a lower skill ceiling for professional
programmers.

Domain knowledge greatly influences the approachability of a
DSL compared to a GPL. Domain experts can reuse their exist-
ing knowledge to understand DSL code, and students drew the
comparison of Jayvee code to data pipelines multiple times.

Another comparison was made to spreadsheet software like Excel
or Google Sheets, for example, by S7: “[ . . . ] when I use Jayvee, I
can think [of] the data pipeline, like I am using Excel. Yes, I am
using Excel and then I can think like that and use this to cre-
ate a pipeline [ . . . ] but when I use Python, I must think I am a
developer or I am a data engineer.” When asked why they had
this impression, students pointed to the cell selection syntax that
is modeled after spreadsheet software (e.g., ‘A1-A3’ to select the
first row and first to the third column, instead of index-based
access in Python with Pandas) and to the fact that Jayvee splits
working on data shape (using 2D string data structures called
‘Sheets’) from assigning value types instead of combining both
in dataframes.

This similarity to spreadsheet software is relevant because some
students reported that their previous experience with data engi-
neering was not from programming but massaging data in,
for example, Excel. For other domains with mainly smaller,
sheet-based datasets (like many open data domains), this could
allow subject-matter experts to translate their existing experience
with spreadsheet software into familiarity with Jayvee, similar to
the students.

Moreover, working with Jayvee also had a positive effect on
related skills, like data pipeline architectures, and the knowledge
could also be transferred to Python. S2 explains: “It’s now more
clear how to structure a data pipeline. [ . . . ] And I think after pro-
gramming in Jayvee, I saw in switching to Python, I saw more the
structure of the Python code.”. Similarly, S5 adapted their Python

code after getting exposed to the pipes and filters approach of
Jayvee: “I actually explored your block and pipe concept [ . . . ] I
tried to write my project on this concept. So I tried to write this
block and pipe in Python as a class.”.

5.2.6 | Different Code Structure

The effects of using a DSL over a GPL with libraries on code
structure are mainly caused by the strong structure of small,
connected, and named blocks of logic that Jayvee enforces. This
structure is compared to Python code, written in good style with
named functions as described by S11: “In Python, I also tried to
modularize my code. [ . . . ] What you do in Jayvee with pipes is,
in general, what I would say is a good method to modularize
your code. What I also would expect in another programming
language.” Because this style is essentially enforced by the DSL,
implementation in Jayvee is described as less flexible but more
structured than Python.

With inexperienced programmers or scripts that should ‘just run,’
data pipelines in more flexible languages can be difficult to main-
tain as S11 goes on: “I think we often see ugly Python code that
just runs, but that’s not very good maintainable in the end. It’s not
very abstract written. It just should run.” Of course, the tradeoff
for enforced structure is that implementation can take longer if
all that is needed is a one-off script.

In addition to the difference in structure, students also experi-
enced an effect of how dense Python code can be compared to
Jayvee blocks. One line of code, for example, opening a remote
CSV file using read_csv in Pandas, can lead to the execution
of complex logic that has the potential for many different types
of errors (in this example, from network issues opening a remote
file to parsing errors because of ill-formatted CSV). Because of
this density, students described Python code as difficult to debug,
as it was unclear where an error occurred and which of the many
options to adapt.

In contrast, Jayvee’s pipes and filters architecture creates smaller
units of code (in blocks) that belong together. This positively
affected debugging, making it easier to locate the source of an
error. In addition, by enforcing the colocation of related code, it
was easier to understand the whole context of a section of a data
pipeline. S3 describes the difference to Python: “It’s grouped [in
Jayvee]. In Python, you could write in the first line, have your
dataset variable, and then in line 15 finally work with it to delete
rows and so on [ . . . ]”.

5.2.7 | Guided Development Workflow

The different development workflow of students when creat-
ing data pipelines followed from their approach to improving a
dataset: They worked from the source data by narrowing (e.g., by
removing columns and rows or restricting value types) and did
not consider working backward from a goal state they wanted
to achieve. In fact, Jayvee includes a block that selects columns
from a dataset based on an allowlist approach that was described
as confusing because students did not understand how to delete
columns with it.
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Descriptions of the implementation process in Python were uni-
form: Students optionally started by outlining their approach
with comments and wrote imperative code to achieve their goal
first, then refactored their script as needed. The implementation
process in Jayvee was described less uniformly, though most stu-
dents defined blocks first and connected them to a pipeline in a
final step.

However, students highlighted that the structure that the pipes
and filters architecture enforces helped them by providing a
guideline of what to do and an order to do it in. S10 describes the
process as: “But here [in Jayvee] you have to extract data, then
you have to call the interpreted file [ . . . ]. There were protocols
you have to follow first, then you can transform the data.”.

In addition to providing guidelines for the structure of the
data pipelines, students also experienced the individual blocks
as reminders of which steps needed to be implemented in
their pipeline, as summarized by S0: “the very streamlined
approach of Jayvee that leads you through the steps basi-
cally [ . . . ] it allows you to always think of, maybe I should
do some validation here. Maybe I should put some con-
straints on the data.”. These reminders changed the develop-
ment workflow because they forced developers to think about,
for example, assigning value types explicitly to columns of data
that might be automatically assigned by type inference in libraries
like Pandas.

5.2.8 | Magic Requires Trust

Hidden logic that was described as “magic” in Python/Pandas
versus the explicit definitions in Jayvee introduced a tradeoff
between magic and trust towards the data pipelines and their
results. S2 expresses the feeling as: “If it [Jayvee] compiled, I got
most of the things I programmed. If it compiled I got the data I
wanted [ . . . ] but compared to Python there were no big issues
if it compiled. I think it was less like magic. In Python you use a
function, it’s magic in the background. And in Jayvee, it was more
like, I know what happened.”. The tradeoff described by the par-
ticipants was that more automated functionality (or ‘magic’) also
means less trust in the correctness of the output data.

The reasons for this effect are that magic can (and does) go
wrong but does not produce an error during the execution of the
pipeline but only results in an unexpected result. In addition to
the time needed to implement a data pipeline, participants reg-
ularly needed to verify that the output was what they expected
until they were satisfied. An additional effect is that it is diffi-
cult to fix if the ‘magic’ goes wrong. This can occur, for example,
with unusually formatted CSV data that leads to Pandas creating
a multi-index when creating a dataframe. When this happens, it
is much harder to work around the automation than to just not
use any automation at all, especially with a library as complicated
as Pandas.

The downside of more explicit definitions was identified as more
verbose code and slower implementation speed. With the pipes
and filters architecture, if the individual steps are too small,
they will reduce how fast a pipeline can be created. A potential
solution would be compositions of often used functionality, as

suggested by S8: “Sometimes for the stuff you would expect peo-
ple to do very often, an aggregate would have been easier.”

5.2.9 | Easier Reuse / Collaboration

Lastly, participants described how using a DSL affected the reuse
of and collaboration on pipeline code, with the pipes and filters
architecture identified as supporting collaboration and reuse of
code. S8 describes this as: “You could reuse the existing pipelines
really well because you had most often needed the same steps for
input and output. So if I want to ingest some stuff, I can reuse
some blocks [ . . . ]”. Of course, reusing code in blocks is similar
to extracting parts of an imperative data pipeline into functions
and reusing those in Python. However, the flexibility of Python
as a GPL with many libraries was described as a challenge to
reuse and collaborate because collaborators might use different
implementations or libraries that do not work with each other.
Additionally, knowledge barriers exist if other developers use dif-
ferent libraries from the ones the participant has experience with.

The use of user-defined value types instead of if-statements for
data validation had an additional, positive effect on reuse, as S10
explains: “If you want to follow the constraint in Python, we have
to introduce if statements, but here [in Jayvee] you have to cre-
ate your own data type and you can reuse it. So that was a plus
point for Jayvee [ . . . ]”. Using appropriate value types, defined by
subject-matter experts, to document and validate data can be a
strength of a domain-specific language. An important considera-
tion is the ease of use to create, use, and share these value types
so that they are preferred over filtering values with if statements.

5.2.10 | Developer Experience

Regarding considerations for a new data engineering language,
participants commented on the developer experience of Jayvee
as a new language. While a few participants pointed out that the
IDE support could be improved by better autocompletion, over-
all feedback regarding the provided extension for VSCode was
sparse or, in some cases, even positive. Providing good IDE sup-
port out of the box by implementing a new language using a tool
like Langium proved to be a strength of Jayvee. However, students
pointed out that they would have liked file templates and scaffold-
ing for what is considered a good code style in Jayvee to improve
the IDE experience further.

Challenges with tooling experienced by participants include ver-
sion confusion between documentation, interpreter, and VSCode
extension, as well as difficulty debugging Jayvee code. With a
fast-changing new language, it is of high importance to estab-
lish clear error messages for version mismatches or an automated
way to update to new versions early. During the exercises, we
made one new release of Jayvee that introduced confusion, as S2
describes: “it showed the error on Visual Studio, but it worked
if I ran it on the command line”. Other participants had similar
issues with mismatched versions between the different tools.

A large challenge experienced when implementing data pipelines
in Jayvee was difficulty debugging. Participants asked for clearer
error messages and requested a debugging tool. While Jayvee
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does provide basic console debugging outputs using a command
line flag, initially students did not find out about this optional
parameter. We recommend enabling debug output by default
(and providing an opt-out if not needed) and carefully consider-
ing their error messages. Regarding error messages, an additional
concern is that the smaller community of a new language makes
searching for explanations of error messages more complicated.

5.2.11 | Importance of Documentation

Fewer community resources raise the importance of documenta-
tion. We provided documentation in the form of a website that
documents core concepts and details such as block descriptions.
While the documentation was generally appreciated by students,
we learned that including it with the IDE support would have
improved the experience. S0 points out: “one minus point com-
pared to Python is that Python has all this documentation inte-
grated into the IDEs. So I just hover over some library and I get
some information on it in the IDE and don’t have to navigate
somewhere.”. Their sentiment was generally shared by partici-
pants, who reported not liking to read the documentation itself
and preferring smaller, targeted documentation to their use case
directly in the IDE.

In addition to the way the documentation is provided, content
and structure are the most important qualities. Regarding struc-
ture, related content should be interlinked instead of just present-
ing a list of language concepts (like blocks). For content, aside
from the basic syntax definition, good documentation mainly
needs examples and has to ensure those examples are complete.
S2 describes their problems with incomplete examples in Python
documentation “[ . . . ] then the example stopped at some point
and it took a lot of time for me to get from the point that the
example stopped to my own implementation [ . . . ]”, pointing out
that having to work with incomplete examples can be slow and
frustrating. Other content requests included tutorials for com-
mon use cases and more documentation for error messages.

5.2.12 | Use of Chatgpt

The increased use of AI tools like ChatGPT to assist with pro-
gramming shows how new technology can introduce new lan-
guage requirements. Some students reported using ChatGPT for
research (“How can I develop this? Then ChatGPT will tell you.”,
S7), to generate starting solutions (“So ChatGPT also recom-
mends some solution.”, S5) or even as a debugging tool (“[ . . . ] we
are not getting that clear errors from that. And I tried to search
[ . . . ] on ChatGPT as a tool”, S10).

Because Jayvee is a new language, ChatGPT does not provide
any usable answers for questions about it—in large contrast to
mature languages like Python, which are well-supported. While
the use of ChatGPT might not be an important consideration in
a classroom or academic context, developers of new languages
should consider how they can support development with code
generation or LLM-based AI tools in the future.

5.2.13 | Relevance of Code and Data

Lastly, a topic of consideration unique to data engineering is the
relevance of data in addition to source code while implementing

a data pipeline. In the context of data pipelines, code is only rele-
vant in combination with the data it manipulates. Students strug-
gled to work with Jayvee because it did not support looking at
the intermediate data between each step of a data pipeline. Sug-
gested solutions include aprint statement or supporting the use
of Jayvee in Notebooks, a common environment to develop data
pipelines in Python.

In this regard, the automated type inference for columns in Pan-
das dataframes was also pointed out as helpful because it pro-
vides hints about the underlying data. New languages in the
data engineering domain should consider this requirement and
make it as easy as possible to visualize the data flowing through
a data pipeline while implementing it, ideally with data sum-
maries or automated type inference instead of showing the raw
data only.

6 | Discussion

To the best of our knowledge, the empirical insights presented in
this work are among the first to explore how working with a DSL
based on pipes and filter concepts effects data engineering. We
therefore captured the diversity of effects of using a DSL, instead
of deeply exploring one specific aspect or feature. As a result, we
consider the insights presented here important, but as a start of a
succession of multiple studies that investigate individual effects
in more detail.

The chosen population of master students related to computer
science, AI, and data science is a good proxy for members of open
data communities who have some previous exposure to program-
ming but are not professional software engineers. As a result,
we assume that the results obtained will generalize well to the
work of practitioners in open data contexts who do not have a
background in software engineering. Still, an important research
opportunity exists in gathering more empirical data about how
open data practitioners work with data and especially how their
success is affected by different tools.

However, more in-depth work is needed to learn what effect indi-
vidual DSL features, like the pipes and filter architecture chosen
by Jayvee, have on the work with the DSL and if they are the
best choice. To strengthen the generalizability of the findings,
more narrow comparisons of individual implementation deci-
sions with comparable features in GPLs are needed.

Nonetheless, the results indicate that it is possible to quickly learn
a new DSL for data engineering and use it to build data pipelines
with little previous experience. The main reason for this effect is
the reduced complexity and scope of a focused DSL in compar-
ison to a GPL with libraries. Tasks outside the DSL’s feature set
can become challenging or even impossible to solve. For this rea-
son, it will be important to carefully plan the scope of the DSL
to cover its domain without introducing too much complexity
again.

In the open data context, batch processing small files with tabular
data covers a large part of existing data sources [29, 30]. However,
to be able to improve all data sources, further types of data and
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modes of operation will need to be introduced. Improving human
performance in building high-quality data pipelines is one impor-
tant part of building tools. For smaller data sets, execution per-
formance is less relevant. With a DSL as structured as Jayvee,
implementers have to write more readable code which leads to
higher-quality results, especially for novice programmers. Expert
software engineers might still want to work with a GPL with
libraries to be more flexible, but a DSL can enable subject-matter
experts to contribute as well.

A theme that emerged from interviews was the general chal-
lenges when introducing a new language for data engineering,
such as the need for a good debugger or the importance of doc-
umentation. The feedback shows that designing and implement-
ing a new language is not only an academic challenge, but must
be supported by a surrounding ecosystem if there should be any
hope of serious adoption.

This mirrors the experience from other external DSLs, such as
model transformation languages, as discussed in Section 2. The
quality of the ecosystem and tooling that surrounds a language
is essential to its use by practitioners, with editors, debuggers,
and validation or analysis tools described as essentials [17]. In
our data, we also find problems with missing debuggers. How-
ever, editors are rarely mentioned as an issue and sometimes even
highlighted positively. The reason is probably that most partici-
pants used the VSCode plugin we provided, the development of
which was fairly straightforward because it relies on the autogen-
erated support for the language server protocol (LSP) provided by
Langium.

Nonetheless, it remains an open question whether implement-
ing an external DSL is the best approach to take. By building an
internal DSL based on a popular host language, such as Python,
the existing tooling of the host language could be reused. Mod-
ern GPLs have improved considerably compared to older versions
and lower the productivity gap between DSLs and GPLs even for
domain-specific tasks, as investigated by Höppner et al. [42] for
Java in the domain of model transformations. In their study, the
domain-specific requirement of tracing was the major influence
on whether a DSL reduced complexity. For data engineering, it
would be important to investigate if similar processes exist that
can introduce a large overhead to implement with GPLs but could
be automatically handled by a DSL.

New ways of programming, such as using AI support from tools
like ChatGPT, are rapidly changing the way novice programmers
work. The way LLMs and other AI tools can interact with a lan-
guage should be actively planned. Structured DSLs might have an
advantage over GPLs in this regard because they are more limited
and therefore easier to reason about.

Finally, with collaborative data engineering already being a
growing practice [7, 43], reducing entry barriers for partic-
ipants who are not software engineers can be a stepping
stone toward a higher amount of collaboration in open data
engineering.

7 | Limitations

As a mixed-methods study, multiple viewpoints are relevant
to set the results into context. We discuss the limitations and
mitigations we took for the quantitative data gathered in descrip-
tive surveys according to the well-known framework of threats
to validity as discussed in Wohlin et al. [39]. For the qualitative
results from the interview study, we use the trustworthiness crite-
ria described by Guba of credibility, transferability, dependability,
and confirmability [44].

However, while we present potential limitations from both view-
points, employing data and method triangulation by using a
mixed-method research design strengthens the results by allow-
ing one method to reduce the weaknesses of the other.

7.1 | Threats to Validity

We evaluate potential threads to validity regarding the quantita-
tive results of the descriptive surveys according to the classifica-
tion presented in Wohlin et al. [39].

Threats to conclusion validity are challenges to drawing the cor-
rect conclusions about relationships between the treatment and
results. The measures we have taken for our analysis reflect
the subjective experience of the participants and are not objec-
tive, automated measurements and must be interpreted in that
context. To reflect this, we have taken care to label references
to the measures as participants’ impressions instead of objec-
tive truths. Combined with the additional context provided by
the interview study, we consider these insights still appropriate
for the exploratory nature of this study; however, more rigorous
follow-up studies in more controlled settings are needed to con-
firm our measurements.

An additional threat lies in the potential heterogeneity of the par-
ticipants as students, especially since they come from different
master’s degrees. However, the variance in degrees provides a
more realistic setting and allows us to discuss the effect of using
a DSL with insights from various backgrounds. To reduce the
impact of this threat, we’ve compared the previous experience of
participants with a course entry survey (shown in Figure 2) and
found no statistically significant difference between groups.

Because the authors of this study are also involved in creating
the DSL that was investigated as treatment, bias and searching
for positive results is a clear threat to conclusion validity. To mit-
igate this, we defined the complete research design as well as
hypotheses ahead of data collection and used standard research
designs and statistical tests. We committed to and reported the
full, partially negative results of all hypothesis tests. Nonetheless,
subconscious bias remains a threat to conclusion validity. There-
fore, we have published an accompanying data release and invite
replication by independent researchers.

Internal validity describes the extent to which a design can miti-
gate outside influences on the outcome that are unknown to the
researcher, such as bias, apart from the treatment. Because partic-
ipants did solve the exercises in their own programming environ-
ments, outside influences aside from the programming language
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are a concern. We chose this approach because of the exploratory
nature of the research and to increase the generalizability of the
results by allowing participants to use the tools they would for a
real task. As a consequence, additional research in a more strict
setting, like controlled experiments, would be needed to increase
the rigor of the results.

The selection of volunteers out of a class of students might influ-
ence the results because volunteers are generally more motivated
to solve new tasks than the general population. Additionally, stu-
dents might be biased toward responses in favor of Jayvee if they
suspected a positive influence on their grades. We mitigated this
threat by using anonymized surveys while clearly communicat-
ing to the students that we would not analyze the data before
grades were published.

Construct validity is concerned with how well the research con-
struct represents the underlying concept or theory under evalu-
ation. Mono-method bias might be a concern for the descriptive
survey results because only one measurement was taken for each
construct. In the larger context of the complete study, this con-
cern is mitigated by the additional context provided by qualitative
feedback from the mixed-method design.

A social threat to construct validity presents itself in the fact that
it was reasonably easy to guess the hypotheses under test because
participants were aware of the questions regarding speed, dif-
ficulty, and quality after answering the first survey and knew
that other students were using a different language to solve the
exercises. However, with the anonymous and optional surveys,
there was no pressure on participants to conform or skew their
answers to either side.

External validity describes the ability to generalize the results of
a design to different settings, such as from data among students
to industry. Using students as participants is a threat to exter-
nal validity and limits how much the insights can be generalized.
This threat is mitigated by the fact that the student population for
this study was from the masters level and, therefore, more experi-
enced. When using students as an approximation, it is important
to clearly understand which population is being represented [25].
We chose students because they are non-professional program-
mers with limited experience in creating data pipelines, so they
are similar to subject-matter experts working with data in indus-
try. We consider them good proxies for this population, and we
expect the results to generalize well to this limited population. In
contrast, we caution against generalizing the results to other con-
texts, such as professional software engineers or subject-matter
experts without any previous exposure to programming.

7.2 | Trustworthiness Criteria

We discuss the qualitative results from the interview study
according to the trustworthiness criteria described by Guba [44]
of credibility, transferability, dependability, and confirmability.

Our sampling strategy presents a limitation to credibility, as
both the online surveys after exercises and the interviews were
opt-in and voluntary, potentially leading to a bias of participants
who enjoyed working with Jayvee or faced comparatively few

challenges. To counteract this, two of the authors spent whole
semesters in prolonged engagement while teaching the students
and directly experienced their questions about the exercises. We
mitigated the risk of attracting students who wanted to please us
to improve their grades by making the exercise surveys anony-
mous and executing the interviews after the students received
their grades. Furthermore, we used data and method triangu-
lation by gathering quantitative data about student experiences
with the data engineering tasks first and then following up with
qualitative data from interviews to confirm and extend the find-
ings. We limited the influence of our presence and behavior on
the interviewees by sticking to a predefined interview guide and
keeping a neutral tone. We applied thematic analysis as a sys-
tematic data analysis approach and mitigated potential confirma-
tion bias by conducting a peer debriefing session with researchers
from another university.

Transferability, the degree to which the results can be transferred
to other contexts, is limited by only evaluating the use of one
specific DSL. We acknowledge that more studies are needed to
confirm more general insights. Thus, we limited statements about
results to Jayvee or placed appropriate disclaimers when we made
inferences about DSLs in general.

The use of students as participants means the study is not
directly transferable to professional contexts. However, we con-
sider the suitability of students as a proxy for open data practi-
tioners to be high because most open data practitioners are also
non-professional programmers with some previous experience in
data engineering.

The exercises were deliberately chosen to represent basic data
engineering tasks in both languages: data extraction from the
web as single files or via compressed zip archives; data cleaning
by removing invalid values and filtering columns; transforming
values; and loading the data into a sink. Generalizations beyond
this scope for more complex data engineering tasks like combin-
ing data of different sources cannot be drawn without further
research. We also provided thick descriptions of the identified
themes, coupled with direct quotes from the interviews, so that
future transfers to other contexts are supported.

Regarding dependability, our goal was to report as much of the
research process and data as possible, so the research context
is clear. We have to limit access to some data, like the original
interviews, due to confidentiality agreements. We have made the
complete data and code that were used in the writing of this
paper available during the review process, and cited extensively
from the interviews to support our conclusions in the qualitative
data analysis. In addition, we sought to increase dependability
with regular external feedback for individual parts of the research
and the presentation of all intermediate results and the research
design to wider audiences (see Table 2).

We established the confirmability of the findings through regular
peer debriefings and discussions among the authors, in addition
to data- and method triangulation. We mitigated the risk of selec-
tive observations during the interviews by using an internally
reviewed interview guide. Nevertheless, because the authors have
also implemented Jayvee, we have to acknowledge our own bias.
We consulted external feedback in a peer debriefing session with
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reviewers from another university to reduce the risk of a biased
viewpoint for analysis. We welcome independent future work to
verify our findings.

8 | Conclusions and Future Work

To summarize, we introduced and empirically evaluated a
domain-specific language for the creation of data pipelines by
comparing it with a general-purpose programming language with
libraries. To answer if the use of a DSL has potential during data
engineering, we asked Is using a DSL for data engineering a viable
alternative to a GPL with a data engineering library? and What
is the user’s perception of difficulty and quality of results using a
DSL compared to a GPL with libraries? During the period of two
semesters, two cohorts of students built typical data pipelines for
real-world tabular open data. Data gathered in after-task surveys
shows that, even though participants have statistically signifi-
cantly less experience in Jayvee than in Python, Jayvee provides
some significant differences in greater speed, lower difficulty, and
higher quality of the resulting pipeline in specific exercises. We
therefore conclude that a DSL with a pipes and filter structure can
be a viable alternative to a GPL with libraries for data engineering
for novice programmers.

Extending the quantitative results, we describe causal relation-
ships to answer What are the effects of using a DSL for data engi-
neering compared to a GPL with libraries?, by extracting com-
mon topics from participants’ interview transcripts using the-
matic analysis.

We find the more strictly enforced source code structure of a
DSL to be a major effect. On the one hand, perceived pipeline
quality is higher when implemented with a DSL, especially for
novice programmers who might otherwise struggle to struc-
ture their GPL code appropriately. Additionally, a consistent
structure acts as a helpful guideline during implementation.
Specific design choices, such as using blocks and validating
data using user-defined value types instead of if statements,
enable code reuse and better collaboration. On the other hand,
reduced flexibility means pipelines can take longer to imple-
ment because one-off script-style implementations are no longer
possible. Functionality outside the feature scope of the DSL or
cross-cutting concerns such as monitoring are difficult to imple-
ment without a GPL. Using a DSL for data engineering is there-
fore advisable when implementing a data pipeline that is sup-
posed to be of high quality and operated long-term. For one-off
data cleaning tasks or requirements outside the scope of the DSL,
a GPL should be preferred.

In this context, the decision between an internal and external
DSL has to be made. While building an external DSL provides
the largest amount of control and potential to perfectly capture
the domain, it is also a large programming effort. Tool availability
(such as editors and debuggers) as well as tool quality are chal-
lenges to external DSLs that impact internal DSLs less because
they can reuse existing tooling of the host language. Writing good
documentation is required for both internal and external DSLs,
and should include complete examples and be available inside
the editor. Developers of DSLs must keep this in mind and plan
their workload accordingly. However, in our experience, modern

language development tools such as Langium make it possible to
provide good editor support using the language server protocol
with relatively low overhead and make implementing external
DSLs possible even with small teams. Due to the nature of the
LSP as an open protocol, the first plugins for Jayvee for other edi-
tors, such as neovim are already being developed. We conclude
from this that tooling is an essential area that should be consid-
ered and planned for when implementing a new DSL. Whenever
possible, developers should rely on open protocols and provide
their own plugins for popular IDEs.

The recent rise in AI tools to support development has impor-
tant effects on the use of DSLs for data engineering as well.
Especially non-professional programmers use new technology
like ChatGPT to support them during development, and future
languages must take these changed requirements into account.
Other important workflows in the domain of data engineering
that language developers should keep in mind include Notebook
programming, which enables users to tinker with a pipeline while
being able to see source code and data at the same time.

When implemented with a DSL, the output of data pipelines is
trusted as being correct more than for GPLs. Potential reasons
for this are the more consistent structure, together with less hid-
den logic (less ‘magic’) and more explicit definitions. Combined,
these lead to an increased understanding of what happens dur-
ing pipeline execution; however, detailed insight would require
additional data.

An opportunity for DSLs in data engineering is their ability
to allow users to use knowledge outside of software develop-
ment. This makes the DSL more approachable, especially for
non-professional programmers, by requiring less previous experi-
ence to evaluate libraries or learn language concepts. In the case
of data engineering, previous experience with sheet software is
both very common and relevant. By using domain concepts like
cell selection syntax that follows the syntax of sheet software like
Excel, entry barriers for non-professional programmers could be
reduced. While we have found evidence for this effect in the inter-
views, further work is required to find out the extent of this effect.

Additional research, such as more empirical studies with open
data practitioners and other non-professional programmers, is
required to better generalize the findings presented in this study.
While we consider students a close proxy for hobbyist partici-
pants in data engineering for open data, it is important to verify
this assumption and extend the insights to professionals in open
data contexts.

In future work, we plan to evaluate individual features of a
DSL for data engineering in detail in controlled experiments.
More rigorous, quantitative evaluations of individual features
will strengthen the insights from this initial, qualitative valida-
tion of the effect of DSLs in data engineering. By investigating
individual features, future implementation of DSLs can support
data engineering efforts more effectively.
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ABSTRACT

In many application domains, domain-specific languages can allow domain experts to contribute to
collaborative projects more correctly and efficiently. To do so, they must be able to understand pro-
gram structure from reading existing source code. With high-quality data becoming an increasingly
important resource, the creation of data pipelines is an important application domain for domain-
specific languages.
We execute a mixed-method study consisting of a controlled experiment and a follow-up descriptive
survey among the participants to understand the effects of a domain-specific language on bottom-up
program understanding and generate hypotheses for future research.
During the experiment, participants need the same time to solve program structure comprehension
tasks, but are significantly more correct when using the domain-specific language. In the descriptive
survey, participants describe reasons related to the programming language itself, such as a better
pipeline overview, more enforced code structure, and a closer alignment to the mental model of a
data pipeline. In addition, human factors such as less required programming experience and the
ability to reuse experience from other data engineering tools are discussed.
Based on these results, domain-specific languages are a promising tool for creating data pipelines
that can increase correct understanding of program structure and lower barriers to entry for domain
experts. Open questions exist to make more informed implementation decisions for domain-specific
languages for data pipelines in the future.

Keywords program comprehension · data pipelines · data engineering · domain-specific languages · mixed-methods
study · open data
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1 Introduction

Domain-specific languages (DSLs) can be a useful alternative to general-purpose programming languages (GPLs) in
many application domains. By focussing on one domain, they can have a reduced scope and re-use glossary and
concepts from the application domain, making them easier to learn and more efficient to program for domain experts
(Kosar et al., 2018; Johanson and Hasselbring, 2017). However, because DSLs are a specialized tool, they have to be
carefully evaluated to determine whether they provide enough benefits to make their adoption a good choice.

When working on non-trivial software applications, developers must first understand the program structure from
source code. Only then can they make changes to extend existing implementations or fix bugs. Program compre-
hension, in general, is estimated to be the dominant activity while programming, with more than 50% of time spent
(Roberto Minelli and Lanza, 2015; Xia et al., 2018). Therefore, the effects of a DSL on program structure comprehen-
sion are essential for the usefulness of a DSL in an application domain.

The evaluation of DSLs generally has to be domain-specific (Kosar et al., 2018). Increasingly, high-quality data, and
with it data engineering, is of large importance in industry because many innovative apps and AI applications rely on
access to data. Sources for data sets vary from company internal data to open data, with open data mainly published
by governments but also by some private entities.

Depending on the type of data, creating an automated data pipeline is a major part of data engineering. An example
is regularly changing data, such as schedules released as open transport data, that should be ingested and improved
automatically with updated releases.

In complex domains, data-engineers must collaborate with subject-matter experts to understand the meaning of data.
A common challenge during these collaborations is that subject-matter experts lack programming experience, which
complicates it to find a shared collaboration artifact with professional programmers (Heltweg and Riehle, 2023).

Domain-specific languages can be a useful middle-ground, that enables subject-matter experts to contribute directly
to the creation of data pipelines, as previously shown in other domains (Johanson and Hasselbring, 2017; Lopes et al.,
2021).

DSLs can be grounded in the formal and informal glossary of domain experts, such as sketches (Wile, 2004). A
common mental model for a data pipeline is a graph of processing steps connected by pipes, known from visual
programming. A DSL can provide an explicit syntax and semantics to express this data pipeline structure with the
pipes and filters architecture.

In previous explorative work, we found using a domain-specific language based on this architecture had positive effects
on speed, quality of the solution and perceived difficulty when solving data engineering exercises on real life open data
sets (Heltweg et al., 2025).

Building on this high-level validation, we aim to understand how domain-specific languages contribute to improved
performance by subject-matter experts and what language features are important in more detail. To do so, we conduct
a series of empirical evaluations using quantitative and qualitative methods. Previous research shows that program-
ming language research lacks empirical studies, instead focusing on solution proposals (do Nascimento et al., 2012).
However, empirical user studies to evaluate usability are essential tools that can lead to insights that would not have
been gained otherwise (Buse et al., 2011; Barišić et al., 2018).

When contributing to a collaborative data engineering project, the first thing a subject-matter expert will need to do is
read and understand the intention behind data pipeline source code. To start, we therefore focus on bottom-up program
comprehension, the process of inferring the intentions behind an implementation from reading source code (Wyrich
et al., 2023); we do so in the domain of building data pipelines by non-professional programmers (subject-matter
experts).

In the context of this mixed-methods study, we compare data pipelines implemented in a DSL using an explicit pipes
and filters architecture (Jayvee) to imperative scripts in a GPL with libraries for data engineering (Python with Pandas).
We performed an initial controlled experiment to gather quantitative data on task performance in terms of time and
correctness. In a follow-up survey, we look for causal influences for the experiment outcomes..

With the results, we answer the following research questions:

Research Question 1: Do data pipelines implemented in Jayvee change bottom-up program structure comprehension
compared to Python/Pandas for non-professional programmers...

a: regarding speed?

b: regarding correctness?

2
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c: regarding the perceived difficulty?

Research Question 2: What reasons exist for effects on program comprehension for data pipelines implemented in
Jayvee compared to Python/Pandas for non-professional programmers?

In this article, we contribute:

1. A mixed-methods approach, combining a controlled experiment with a descriptive survey, to evaluate the
effects of DSLs in the domain of data pipeline modelling.

2. Quantitative data, based on a controlled experiment, on how strongly the use of a DSL in the domain of data
pipeline modelling can influence pipeline structure understanding, contributing to the growing literature on
domain-specific languages and motivating their use in data engineering.

3. Explanations for these effects from participant surveys to guide future practitioners or researchers that imple-
ment DSLs for data engineering.

3
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2 Related Work

Empirical research into the effects of domain-specific languages has been performed across multiple domains. Kosar
et al. have used controlled experiments to compare DSLs with GPLs and libraries. Initially, in the context of GUI
programming, they compared the DSL XAML with C# Forms, with XAML performing better for answering questions
on provided source code (Kosar et al., 2010).

With a similar approach, Kosar et al. (2012) extended the insights to the domains of feature diagrams and graphical
descriptions, again comparing a DSL with a GPL and an appropriate library. While the previous experiments were
performed on paper, a replication study in Kosar et al. (2018) allowed the use of IDEs. In all studies, participants
performed more accurate and efficient in program comprehension tasks using a DSL than a GPL with libraries.

Similar to our work, Kosar et al. have evaluated the use of DSLs for different domains using experiments and note
that because DSLs are domain-specific, they must be evaluated for each domain. Our goal is to extend their work
with the domain of creating data pipelines for data engineering. In addition to a purely quantitative comparison of
performance, we also provide qualitative insights into potential reasons for different performance.

Other DSLs with similar structure, either for data pipelines or using blocks, have been proposed. Cingolani et al. (2015)
present an external DSL for the creation of data pipelines in the domain of biological data called BigDataScript. They
similarly plan to support subject-matter experts, but do so by replicating script-style programming and abstracting
from the underlying architecture. In contrast to our work, they demonstrate the independence towards architecture,
robustness, and scalability of the language implementation technically but do not evaluate it empirically.

PACE is an external DSL for continuous integration pipelines with a block structure that compiles to JSON, presented
in Fonseca et al. (2020). In a controlled experiment, participants are tasked with pipeline creation and extension
while thinking aloud, comparing PACE with their previous system of manually creating JSON configs with the results
showing an improvement using PACE. We use a similar mixed-methods research design, however, in a very different
context (understanding data pipelines by non-professional developers instead of creation of CI pipelines in an industrial
setting).

In their PhD thesis, Misale (2017) designed and developed PiCo, a DSL based on pipes and the data flow computational
model. They demonstrate the capability of their design and evaluate the performance of the implementation using case
studies and experiments with Flink and Spark. In comparison, our work provides an empirical evaluation of code
comprehension instead.

As with our study, students are commonly used as participants in controlled experiments, which can provide useful
data if their use as a proxy for a specific type of developer is appropriate (Falessi et al., 2018).

Lopes et al. compared a text-based DSL with a graphical tool in a different domain (entity-relationship modeling)
with students (Lopes et al., 2021). Their results are aligned with ours, showing that a textual approach using a DSL is
possible with a slight advantage in quality but no difference in effort. A similar controlled experiment on readability
(speed and correctness) of type inference rules shown in a DSL or Java implementation is described in Klanten et al.
(2024). The authors point out that research into programming language design lacks empirical studies, a research gap
our work contributes to reducing.

Hoffmann et al. evaluated Athos, a DSL that targets subject-matter experts in the domain of vehicle routing and traffic
simulation, compared to JSpirit (Java with libraries) (Hoffmann et al., 2022). As with the previous studies, the DSL
improved efficiency. In addition, participants reported improved user satisfaction when using Athos. Even with the
planned end users being subject-matter experts, the authors rely on students as proxies for subject-matter experts.

Similar to these studies, our work uses students as participants because we consider them a good approximation for
practitioners that had first programming experiences but are not professional developers (such as subject-matter experts
that have to do data engineering).

Empirical evaluations of DSLs with subject-matter experts are rare. An example is Johanson and Hasselbring (2017)
in which ecologists use the Sprat Ecosystem DSL and the GPL C++ to solve program comprehension tasks related
to ecosystem simulations. Participants are subject-matter experts from a non-technical domain (marine science) with
only moderate previous programming experience. Time to task completion and correctness were measured, with the
tasks being solved in less time and with higher correctness using the DSL. The context of our research are also subject-
matter experts and not technical users. We extend the insights gathered in this study by investigating a different domain
(the creation of data pipelines).
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3 Methods

We used a mixed method research design (Johnson et al., 2007), combining quantitative data from a controlled ex-
periment according to Ko et al. (2015) and a descriptive survey according to Kitchenham and Pfleeger (2008) with
qualitative data from free-text responses to the same survey. We chose thematic analysis according to Braun and
Clarke (2012) to extract common themes from the survey responses. An overview of the complete research design is
shown in Figure 1.

Data Analysis

Data Collection

Controlled Experiment
(Ch. 2.1)

Descriptive Survey
(Ch. 2.2)

Free
Text

Answers

Time
on

Task
Correctness Perceived

Difficulty

Thematic Analysis
(Ch. 3.4)

Hypotheses Tests (Ch. 3.2)
Descriptive Statistics (Ch. 3.3)

Participants

Figure 1: Overview of the mixed method research design, split into data collection and data analysis.

The combination of these methods allows us to validate our hypotheses in a rigorous manner and uncover potential
causal relationships that strengthen the insights and enable us to generate further hypotheses to test in future work.
Additionally, the qualitative responses also touch other topics of program comprehension in addition to program
structure, allowing us to describe a wider diversity of effects regarding RQ2.

3.1 Jayvee, a Domain-Specific Language for Data Pipelines

Jayvee is a DSL for data engineering following the well-known pipes and filters architecture described in Garlan and
Shaw (1993) and Shaw and Garlan (1995). The language is designed to align as closely as possible with the mental
model of data pipelines as directed acyclical graphs of processing steps, thereby making it easier for subject-matter
experts to use than traditional GPLs.

The main elements of a Jayvee pipeline model is a top level pipeline, consisting of multiple blocks, each repre-
senting a processing step. The inputs and outputs of these blocks are connected using pipes. Blocks have an oftype
relationship with blocktypes, which defines the input and output types of the block as well as its properties that can
be configured.
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Jayvee is an external DSL that is not embedded in a host programming language but has its own syntax and semantics.
The syntax is implemented using a context free grammar language provided by Langium1 while a TypeScript based
interpreter acts as a reference implementation for the language semantics.

Listing 1 shows an example of a data pipeline implemented in Jayvee. The pipeline consists of three blocks, each
performing a step in the data processing. At the top of the pipeline definition (line 2-4), the pipeline structure is defined
by connecting the blocks using the pipe syntax ->.

1 pipeline CarDataPipeline {
2 CarDataCSVExtractor
3 -> CarDataInterpreter
4 -> CarDataSQLiteLoader;
5
6 block CarDataCSVExtractor oftype CSVExtractor
7 url: "https :// example.org/data.csv";
8 enclosing: ’"’;
9 }

10 block CarDataInterpreter oftype TableInterpreter {
11 header: true;
12 columns: [
13 "name" oftype text ,
14 // ... further assignments
15 ];
16 }
17 block CarDataSQLiteLoader oftype SQLiteLoader {
18 table: "Cars";
19 file: "./cars.db";
20 }
21 }

Listing 1: Data pipeline extracting CSV data and writing it to a SQLite database, written in Jayvee.

Jayvee includes more advanced concepts such as user-defined value types and a standard library of prebuilt, domain-
specific blocks. The language is open source and available on GitHub2, additional documentation is hosted at https:
//jvalue.github.io/jayvee.

3.2 Controlled Experiment

We follow the guidelines on reporting experiments described in Wohlin et al. (2012), originally by Jedlitschka and
Pfahl (2005). We first provide informal information about research goals and the context of the experiment, and then
report details of the experimental design. The experiment execution and resulting data is reported in section 4.

We followed the Goal/Question/Metric template to define the research objective of the controlled experiment (Wohlin
et al., 2012; Basili and Rombach, 1988):

1. Analyze a DSL and a GPL with a specific data engineering library
2. for the purpose of their effect on bottom-up program structure comprehension for data pipelines
3. with respect to speed and correctness
4. from the point of view of researchers
5. in the context of a university course with masters level students learning data science (as proxies for non-

professional programmers).

Our goal was to understand the influence of a DSL on professionals of non-programming disciplines that work with
data as part of their jobs. Some examples include data scientists or subject-matter experts, e.g., in biology, that
analyze data. Representatives from this population have base programming skills from working with data, but are not
professional software engineers.

The experiment was conducted with student participants in person, over two days in computer labs provided by the
university. During the experiment, participants solved two program structure understanding tasks by reading source
code of a pipeline and recreating the data pipeline structure afterward.

We use a concrete example task as an overview before describing the experiment design in detail in the following
sections. Figure 2 is a screenshot of a task view in the web-based experiment tool the participants used. On the
left-hand side, under Pipeline Code the source code of a data pipeline is shown. This data pipeline was implemented

1https://langium.org/
2https://github.com/jvalue/jayvee
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either in Jayvee or Python/Pandas, depending on the treatment group. On the right-hand side, under Pipeline Steps,
participants had to recreate the data pipeline structure by dragging steps from the list of Unused Steps into the Steps in
Data Pipeline and bringing them into the correct order. Once they were satisfied with their solution, they could submit
it using the Submit Solution button and attempt the next task.

Figure 2: The experiment tool during task 2 in Python/Pandas. Pipeline source code is shown on the left, the recreation
using ordered steps on the right.

3.2.1 Goals, hypotheses, and variables

We defined one independent variable, the programming language PL used to implement a data pipeline, either Jayvee
(JV ) or Python/Pandas (PY ).

From the research objectives, we chose time to task completion and correctness as dependent variables. The combina-
tion of time and correctness is the most common for comprehension tasks (Wyrich et al., 2023).

Time to completion describes the time between seeing the source code and submitting a solution. At the start of
each task, the source code of the data pipeline was hidden so participants could read the available steps they had to
categorize and order. We started the time measurement once participants revealed the source code by pressing a button.
The time is directly measured in milliseconds by the experiment software and defined as follows:

7
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time(PL) : time of submission for task in PL − time of source code reveal (1)

Correctness is an indirect variable that is calculated from the submitted solution by the participant.

For each task, n potential steps are available for participants to choose from. A subset of these available steps is
present in the pipeline, in a specific order. Using the drag and drop interface, participants can categorize steps into
Steps in Data Pipeline or used steps and Unused Steps and decide on an order of steps inside these categories.

To define the correctness of a solution S, we consider two dimensions: Has the participant correctly understood which
steps exist in the pipeline source code and have they understood the order in which they are executed?

Regarding existence, we count the number of steps that have been categorized correctly, either steps that exist in the
pipeline and have been categorized as used or steps that do not exist in the pipeline and have been categorized as
unused. Because each step can only be assigned to one category, the maximum number of correctly categorized steps
is equal to n.

Regarding order, we count the number of swaps needed to bring the steps that the participants categorized as used
into the correct order, ignoring incorrectly categorized steps. As a sorting algorithm, we chose selection sort because
it requires the minimal number of swaps to sort. We chose to handle the order of steps by sorting instead of comparing
with a reference solution because a small error in ordering could mean all following steps are also in the wrong
position, which would lead to a large penalty for small errors. In contrast, if the correct order can be reestablished with
few swaps, the penalty is more appropriate.

In combination, we can define correctness as follows:

correctness(PL) :

#correctly categorized steps − #swaps needed for correct order
n

(2)

Based on this definition, correctness is a numeric value [0, 1]. For example, if a task has 10 available steps, and the
participant categorized 9 of them correctly and in the right order, the correctness would be 0.9. If a participant instead
categorized all steps correctly, but two swaps were needed to bring the used ones into the correct order, the correctness
would be 0.8.

Hypotheses were defined based on the goal to describe effects on speed and correctness.

For speed, we defined H0,1 as "Non-professional programmers need the same time to understand the structure of a
data pipeline model when implemented in Jayvee compared to Python/Pandas." with the alternative hypothesis H1,1,
"Non-professional programmers do not need the same time to understand the structure of a data pipeline model when
implemented in Jayvee compared to Python/Pandas.". More formally:

H0,1 : time(JV ) = time(PY )

H1,1 : time(JV ) ̸= time(PY )
(3)

Regarding correctness, we defined H0,2 as "Non-professional programmers understand the structure of a data pipeline
model equally correct when implemented in Jayvee compared to Python/Pandas." with the alternative hypothesis
H1,2, "Non-professional programmers can understand the structure of a data pipeline model not equally correct when
implemented in Jayvee compared to Python/Pandas.". More formally:

H0,2 : correctness(JV ) = correctness(PY )

H1,2 : correctness(JV ) ̸= correctness(PY )
(4)

3.2.2 Experiment Design

We chose a factorial crossover design according to Vegas et al. (2016) which is a within-subjects design in which each
participant is assigned to every treatment exactly once. Crossover designs are well understood and commonly used for
software engineering experiments (Wyrich et al., 2023).

The participants completed two tasks reading a data pipeline, implemented in either Jayvee or Python/Pandas and
recreating it using a drag and drop interface. We defined two periods (solving task 1 and task 2) and two sequences
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AB and BA, see Table 1. Participants were randomly assigned to either sequence without experimenter input, based on
a call to JavaScript Math.random when they opened the experiment tool. One experiment session included both periods.

Table 1: Factorial crossover design of the controlled experiment according to Vegas et al. (2016)

Period
Sequence Task 1 Task 2

AB Jayvee Python/Pandas
BA Python/Pandas Jayvee

3.2.3 Participants

The experiment was executed during a masters level course on data engineering and working with open data, offered
to students largely studying data science and artificial intelligence as well as some students from computer science and
information systems. Because the participants are students and the vast majority of them study degree programs that
mainly work with data in a theoretical fashion rather than teach software engineering, they have limited experience
programming but have worked on data engineering before. We considered this population an appropriate proxy, as
discussed in Falessi et al. (2018), for data practitioners that have some experience with programming but are not
professional software engineers.

During the course, students were introduced to Jayvee in two lectures and were encouraged to use Python with Pandas
for an individual data science project. The course requires the completion of five data engineering exercises in Jayvee
and Python/Pandas, with students switching languages after each exercise. In all lectures that referenced programming
challenges, we used examples in Jayvee and Python/Pandas. While we mentioned alternative libraries, we always used
Python in combination with Pandas during the module.

We employed convenience sampling from this population by offered students to voluntarily participate in the exper-
iment in place of completing the third homework exercise. Doing so would count as passing the exercise, and enter
them into a raffle to win two gift cards of EUR 20 each. If they chose to complete the exercise as normal, they
experienced no negative effects, e.g., their grade was unaffected.

3.2.4 Objects, Instrumentation, and Data Collection Procedure

Participants were asked to complete two bottom-up code comprehension tasks in which they had to read the provided
source code of a data pipeline and recreate the structure using a drag and drop interface. They completed one task
reading a pipeline implemented in Jayvee and one with a pipeline implemented in Python/Pandas, depending on their
sequence assignment. Both tasks used a web-based experiment tool (see Figure 2 for a task screen example) and
followed the same sequence:

1. Participants were shown the available steps, categorized as unused, while the pipeline source code was hidden.
2. After reading the available steps, participants reveal the pipeline source code using a button press (time

measurement starts).
3. Participants drag and drop steps into the Steps in Data Pipeline category and bring them in the correct order

as they understand the pipeline.
4. When they are satisfied with their solution, participants click on "Submit Solution" (time measurement stops).
5. They are taken to a pause screen where they can start the next task whenever they feel ready.

In addition to time measurements, the experiment tool automatically saved the submitted solution so that correctness
could be calculated in the analysis phase. After both tasks, the participants were asked to complete a follow-up survey.
The exact version of the tool used by participants can be found online 3.

Both languages were shown as text without syntax highlighting. Two researchers were in the room for every exper-
iment run to monitor the screens of participants and ensure silence. This made sure that participants did not interact
with each other or search for solutions on the internet.

For the tasks, we implemented equivalent data pipelines in Jayvee 0.1.0 and Python 3.11 with Pandas 2.0, based on
real open data sources.

1. Task 1 is a pipeline that downloads a ZIP-file, extracts it and selects a file as CSV. It then translates some
columns names to English, selects a subset of columns and saves the data to a SQLite-database.

9
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2. Task 2 is a pipeline that downloads a file, interprets it as CSV and validates that data in one column are
geographic coordinates between -90 and 90. It adds a new column with boolean data, based on another
column. Finally, it saves the data to SQLite.

We aligned the code structure as much as possible by implementing each step similarly in Jayvee and script-style
Python/Pandas. As an example, Figure 3 compares the source code to extract a CSV file for task 1 in both languages.
The example shows the more verbose syntax of Jayvee, utilizing blocks to model processing steps, compared to
Python/Pandas. The appendix (section 7) includes a further comparison of source code used in task 2 (Figure 7).

1 HttpDataSource
2 ->TextInterpreter
3 ->CSVFileInterpreter
4 //... further blocks
5
6 block HttpDataSource oftype HttpExtractor {
7 url: ’https :// geo.sv.rostock.de/download/opendata/

rettungswachen/rettungswachen.csv’;
8 }
9

10 block TextInterpreter oftype TextFileInterpreter {}
11
12 block CSVFileInterpreter oftype CSVInterpreter {
13 delimiter: ’,’;
14 enclosing: ’"’;
15 }

1 import pandas as pd
2
3 fileName = ’https :// geo.sv.rostock.de/

download/opendata/rettungswachen/
rettungswachen.csv’

4
5 data = pd.read_csv(fileName , delimiter=’,

’, decimal=’,’)

Figure 3: Comparison of source code excerpts to extract data from a CSV source, shown for task 1 in Jayvee and
Python/Pandas.

We conducted two pilot tests to ensure the data pipeline implementations and the accompanying step descriptions
are appropriate and clear. First, we shared the tasks with other researchers that were neither involved in Jayvee
development nor the experiment itself. Later, we invited students from previous semesters to take the full experiment
remotely while we watched their screen and asked for their feedback afterward. Based on the feedback of both pilot
groups, we made minor code and wording adjustments and gained the expectation that the tasks could reasonably be
completed in 10 minutes each.

We defined an experiment procedure so multiple experimenters could guide the participants through the following
process:

1. Read and acknowledge informed consent information.
2. Open allowed documentation in tabs.
3. Provide an overview about the experiment process, how tasks work and what the experiment measures. Com-

municate that we expect the experiment to last for roughly 30 minutes and will announce times at 10 minutes
and 20 minutes.

4. Solve an initial example task with pseudocode together with participants to familiarize them with the tool.
5. Answer any final questions before asking the participants to start their tasks and no longer interacting with

them.
6. Participants complete both tasks and the follow-up survey.
7. Finally, thank the participants and ask them not to share the experiment setup with other participants.

Because we asked participants to submit their own solutions, variations can occur between participants that choose
to be faster or more correct, depending on their confidence (Ko et al., 2015). To reduce this effect, we asked the
participants to favor correctness over speed if in doubt.

The full source code of both tasks, the experiment procedure and the informed consent handout can be found in the
replication package 3.

3All links can be found in the Data Availability Statement (section 7).
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3.3 Descriptive Survey

We designed a cross-sectional, descriptive survey according to Kitchenham and Pfleeger (2008) to assess how partici-
pants perceived the difficulty of understanding the data pipeline from Jayvee code compared to Python/Pandas.

As part of the survey, participants completed an online questionnaire after completing the experiment, with two agree-
ment questions How difficult was it to understand the data pipeline written in Jayvee? and How difficult was it to
understand the data pipeline written in Python?. Answers could be given on a 5-point Likert scale. We assigned
numbers from 1 (Very easy) to 5 (Very hard) to be able to calculate medians and defined difficulty(PL) as the median
of the answers for JV and PY respectively.

To answer RQ 1c: Do data pipelines implemented in Jayvee change bottom-up program structure comprehension
compared to Python/Pandas for non-professional programmers regarding perceived difficulty, we defined H0,3 as
"Non-professional programmers do not perceive a data pipeline model as easier or harder to understand when imple-
mented in Jayvee compared to Python/Pandas." with the alternative hypothesis H1,3, "Non-professional programmers
do perceive a data pipeline model as easier or harder to understand when implemented in Jayvee compared to Python/-
Pandas.". More formally:

H0,3 : difficulty(JV ) = difficulty(PY )

H1,3 : difficulty(JV ) ̸= difficulty(PY )
(5)

In addition, participants were provided free-text input fields for the questions What makes data pipelines written in
Jayvee difficult/easy to understand?, What makes data pipelines written in Python difficult/easy to understand?, and
What are the differences between Jayvee and Python that influence how easy / hard it is to understand data pipelines?.

To analyze this qualitative data, we chose thematic analysis according to Braun and Clarke (2012). Because we had no
preconceived theory but wanted to understand causal relationships for the experiment results, we chose an inductive
approach, letting the themes emerge from the data.

During the thematic analysis, we first familiarized ourselves with the data by reading all survey responses in detail.

Afterward, we created codes from the data and constructed a codebook by grouping related codes into themes. Our goal
was the creation of a codebook that is clear and themes that can be consistently understood by multiple readers. We
therefore worked in iterations, with multiple authors applying the codebook to responses independently and discussing
any differences in coding that emerged from unclear descriptions to improve the clarity of themes.

For each iteration:

1. We selected a subset of the responses at random
2. The first author coded the subset of responses and afterward updated the codebook with new insights
3. The updated codebook was shared with another author, who used the codebook to code the same subset of

responses
4. The authors met to qualitatively discuss any differences in coding and the clarity of the codebook and the

codebook was updated according to the discussion
5. The first author used the updated codebook to re-code all previous responses

Because our goal was to explore the diversity of reasons for the effects on program comprehension, we chose theoret-
ical saturation as a guideline to judge the maturity of our codebook, meaning no or few new insights are gained from
analyzing additional data (Bowen, 2008). We counted codes that were assigned to each survey response, as well as any
codebook changes (newly created, deleted, moved or updated codes and themes). We consider theoretical saturation
to be reached when codebook changes are rare (indicating that the codebook is stable), but codes are still assigned to
new responses (indicating that the codebook is relevant to the topic of the response).
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4 Results

4.1 Participant Sample

Our sample consisted of 57 volunteers from a masters level course about advanced methods of data engineering
that was completed by 98 students. Students mainly came from master’s degree programs in artificial intelligence,
data science and computer science. At the start of the semester, we used an online survey with previously validated
questions by Feigenspan et al. (2012) to measure previous experience in programming generally and Python and Jayvee
specifically. Median programming experience was 7 (of 10), median comparison to classmates 3, median experience
in Python 4 and median experience in Jayvee 1 (all of 5). At the end of the semester, we repeated the survey and the
median experience of course participants in Jayvee had increased to 3 (n = 77). A detailed overview of the course
entry survey results can be found in Figure 8 (section 7).

After the course entry survey, all participants heard two lectures on Jayvee programming and solved one data engi-
neering exercise in Jayvee as part of the training for the experiment.

Of these 57 participants, 29 were randomly assigned to sequence AB and 28 to sequence BA.

4.2 Hypotheses tests

We used Python 3.11 with Pingouin 0.5.5 (Vallat, 2018) for the statistical analysis of the data. We consider tests at the
standard α = .05 to be statistically significant.

For each participant, we calculated time on task and correctness as described in subsubsection 3.2.1.

Initially, we performed a Shapiro-Wilk test (Shapiro and Wilk, 1965) to check if the variables were distributed nor-
mally. At α = .05, both variables were non-normal. As a result, we chose the Wilcoxon signed-rank test (Wilcoxon,
1945) as non-parametric alternative to a paired t-test because it is appropriate for paired data from the crossover
experiment (Wohlin et al., 2012; Vegas et al., 2016).

Variable distributions are plotted as kernel-density-plots to give an overview and make it easy to see non-normality
(Kitchenham et al., 2017).

We report effect sizes based on the matched pairs rank-biserial correlation (RBC) as an appropriate measure of effect
size for the Wilcoxon signed-rank test used for the experiment data (Kerby, 2014). As a correlation, it is equal to the
difference between proportions of favorable and unfavorable evidence, with 0 meaning no effect and positive values
indicating support for H1. In addition to RBC, we also report CLES as a more intuitive measure of effect size, first
introduced by McGraw and Wong (1992), but based on the generalization by Vargha and Delaney (2000) to allow non-
normal and ordinal data such as the survey responses on a Likert scale. We interpret CLES based on the guidelines in
Vargha and Delaney (2000) as either small (≥ .56), medium (≥ .64) or large (≥ .71).

4.2.1 Hypothesis 1: Speed

The null hypothesis we defined for speed was H0,1: "Non-professional programmers need the same time to understand
the structure of a data pipeline model when implemented in Jayvee compared to Python/Pandas." We therefore chose
a two-sided Wilcoxon signed-rank test, with the results shown in Table 2.

Table 2: Wilcoxon signed-rank test for H0,1 : time(JV ) = time(PY )

n MdnJV MdnPY W-val alternative p-val RBC CLES

57 252.37 234.23 750 two-sided .546 .093 .52

We have no reason to reject the null hypothesis and accept H0,1: "Non-professional programmers need the same time
to understand the structure of a data pipeline model when implemented in Jayvee compared to Python/Pandas." Based
on the data and the underlying distribution (see Figure 9 in section 7), it is reasonable to conclude that the use of
programming language had no significant effect on time to completion in either direction.

4.2.2 Hypothesis 2: Correctness

The distribution of correctness for Jayvee and Python/Pandas is plotted in Figure 4.
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Figure 4: Kernel-density-plot of correctness of solution for Jayvee compared to Python/Pandas.

The null hypothesis we defined for speed was H0,2: "Non-professional programmers understand the structure of a
data pipeline model equally correct when implemented in Jayvee compared to Python/Pandas.". We therefore chose a
two-sided Wilcoxon signed-rank test, with the results shown in Table 3.

Table 3: Wilcoxon signed-rank test for H0,2 : correctness(JV ) = correctness(PY )

n MdnJV MdnPY W-val alternative p-val RBC CLES

57 1.0 .92 183 two-sided .002* .55 .67

* p ≤ .05

We have reason to reject the null hypothesis and instead adopt H1,2: "Non-professional programmers can understand
the structure of a data pipeline model not equally correct when implemented in Jayvee compared to Python/Pandas.".
The CLES indicates a medium effect size. From the distribution shown in Figure 4 it is clear that participants achieved
significantly higher correctness when completing the experiment using Jayvee code compared to Python/Pandas. We
consider this result of practical relevance because a large improvement of correctness when interpreting data pipelines
will lead to significant reduced errors when working with them.

4.3 Descriptive Survey

The follow-up descriptive survey was filled out by 56 participants. Their impressions of difficulty for understanding
the data pipelines in Jayvee and Python/Pandas were answered on a 5-point Likert scale. The exact distribution of the
answers can be found in Figure 10 (section 7).
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After calculating medians as described in subsection 3.3, we again chose the non-parametric Wilcoxon signed-rank
test because the data is paired and the differences in ordinal data from Likert scales can be ranked (Wohlin et al., 2012).
The null hypothesis we defined for speed was H0,3: "Non-professional programmers do not perceive a data pipeline
model as easier or harder to understand when implemented in Jayvee compared to Python/Pandas.", we therefore
chose a two-sided test, with the results shown in Table 4.

Table 4: Wilcoxon signed-rank test for perceived difficulty of using Jayvee compared to Python/Pandas, H0,3 :
difficulty(JV ) = difficulty(PY ).

n MdnJV MdnPY W-val alternative p-val RBC CLES

56 2.0 2.0 380.5 two-sided .153 -.23 .41

We have no reason to reject the null hypothesis and adopt H0,3: "Non-professional programmers do not perceive a
data pipeline model as easier or harder to understand when implemented in Jayvee compared to Python/Pandas."

4.4 Qualitative Survey Responses

In order to identify reasons for the observed effects to answer RQ2: What reasons exist for effects on bottom-up
program comprehension for data pipelines implemented in Jayvee compared to Python/Pandas for non-professional
programmers?, we used thematic analysis according to Braun and Clarke (2012).

To complement the quantitative data analysis of experiment results in our mixed-methods design, we collected quali-
tative responses to describe causal effects that might have influenced participants’ task performance to open up future
research directions and new hypotheses to explore. Our goal was to capture the diversity of effects that participants
described rather than make additional statistical claims, so we included any relevant insight.

As described in section 3, we worked iteratively and tracked code assignments as well as codebook changes and chose
theoretical saturation to judge the maturity of our theory (Bowen, 2008). Figure 5 shows the cumulative sum of code
assignments compared to codebook changes during the thematic analysis, with every iteration highlighted by a vertical
red line.
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Code Assigments and Codebook Changes During Thematic Analysis
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Figure 5: Code assignments compared to codebook changes during thematic analysis, showing codebook changes
being rare after the third iteration, while codes were consistently applied to new responses.

We measured inter-rater reliability using Cohen’s Kappa κ by two authors using the codebook to code new responses
after every iteration. While κ fluctuated due to the rising complexity of the codebook and the increasing number of
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codes, it consistently showed "substantial" agreement between the coding authors (κ1 = .79, κ2 = .74, κ3 = .64,
κ4 = .68) (Landis and Koch, 1977).

While codebook changes are frequent initially, they become much less frequent after the third iteration. Note that the
high amount of codebook changes directly before the end of an iteration is due to the adaptations that are made after
the qualitative discussion by the authors after coding a subset of responses. With changes being very rare during the
fourth iteration, we considered theoretical saturation to be reached and are confident our codebook encapsulates the
content of the survey responses well.

We present the results of our thematic analysis according to Braun and Clarke (2012) as a collection of themes with
thick descriptions. Beyond the themes that directly relate to the research questions, we also gained further insights
on the role of documentation and language ecosystems. However, here we include the subset of themes that directly
relate to the results from the controlled experiment. Please refer to the replication package for the full codebook with
all themes and extended descriptions of codes, including additional quotes from participants 3.

Figure 6 shows the themes that emerged from coding, with six themes related to the programming language and three
themes involving human factors.

HU: Human Factors

PL2: Code Structure

PL1: Pipeline Overview

PL3: Transparency

PL4: Amount of Options

PL5: Syntax

PL6: Language Elements

HU1: Required Experience

HU2: Applicable Experience

HU3: Naming

PL: Programming Language

Figure 6: Overview of the codebook with two categories of themes, one related to the programming language directly
and additional human factors.

In the rest of the chapter, we describe the themes in detail and highlight representative quotes from the surveys to give
a vivid impression of the major topics in each theme.

4.4.1 PL1: Pipeline Overview:

Jayvee splits block definitions and the wiring-up of a pipeline by connecting blocks into separate code locations (in
the example Jayvee model Listing 1, block definitions start in line 6 while the overview is created in lines 2-4). This
provides an overview of the pipeline without showing any implementation details apart from the block name.

In contrast to Jayvee with its strictly enforced structure, this overview does not always exist in procedural Python
scripts that are executed from top to bottom, such as the data pipelines in the experiment. The use of Pandas does also
not enforce such a structure.
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A major effect of this overview is that participants can ignore code that is not immediately needed to understand
the data pipeline. This in turn improves speed for a high-level understanding because less code has to be read as
described by S18: “The pipeline gives a very quick overview over what happens. When the blocks are named clearly
everything can be seen on one quick view.”

However, if an in-depth understanding of the implementation details is actually important to understand the data
pipeline, the effect of a centralized overview on speed and understanding can potentially be negative. A few partici-
pants described a negative effect on both speed and understanding due to the additional navigation needed to read all
source code. For example, S40 answered: “(Jayvee is difficult to understand...) due to the code structure/layout, need
to go back & forth to search for the specific function.”

The centralized overview improved understanding of data flow and order of execution. Especially in the domain
of data engineering, the combination of being able to know how the underlying data that is manipulated by a program
is changed as well as in what order source code is executed is important. For example, S37 wrote, “(...) since we
have a syntax that very well shows the actual flow of the pipeline (via the block -> block -> ... syntax), it also easily
understandable what blocks are executed in which order.”

Summary: A data pipeline overview can be separated from implementation details in source code. The en-
forced structure of Jayvee means this overview always exists, while this is not true for Python/Pandas.

• Ignoring not needed code improves speed and understanding. However, additional navigation can
mean the effect becomes negative if reading details are required.

• The existing overview improves understanding of data flow and order of execution.

4.4.2 PL2: Code Structure

Code structure refers to both the way source code is structured, as well as the amount of structure that is enforced by the
language. The most significant difference in the way code is structured is the use of the pipes and filters architecture,
with connected blocks in Jayvee compared to the script-style implementation in Python/Pandas.

Regarding the amount of enforced structure, Jayvee is much stricter than Python/Pandas. As a general-purpose pro-
gramming language, Python must allow for more flexibility to enable developers to implement a wider range of
programs. In contrast, as a domain-specific language, Jayvee can enforce a structure that is very close to the domain
of data pipelines.

This consistently enforced structure enables most survey participants to understand Jayvee better, e.g., S29: “Big dif-
ference is the structure which Jayvee kind of enforces and developer can easily recognize.” The improved recognition
of the structure due to how consistently it is applied is a major element of the positive effect on understanding.

The use of blocks to structure data pipeline code is highlighted as a positive influence on pipeline understanding,
especially for non-professional programmers. For example, S8 likens the experience of using blocks to using LEGO:
“The best part in Jayvee is block type coding, it is similar to LEGO and you can easily remember, read and write your
code.”

Of course, a similar code structure can be achieved using Python with functions or classes but the increased flexibility
means that it is not enforced and often not done as S26 points out: “The concept of blocks: You can manually create
this in Python, but hardly anybody will do this.”

Lastly, the encapsulation of related code is described by participants as making it easier to understand the data
pipeline. S44 writes: “Jayvee is much easier to understand because every step is divided into blocks the block types
are very easy to understand. A single operation is performed in one block, which makes it easy to comprehend.”
Importantly, encapsulated code must be sliced so that only a single operation is done in one unit, or participants
consider it a detractor for understanding.
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Summary: Code structure refers to the way source code is organized. Different languages enforce a more or
less consistent structure.

• Stricter enforcement of structure improves understanding and increases learning effects from other
data pipelines.

• Consistent structure allows readers to quickly find expected elements, such as the data pipeline
overview.

• Using blocks is a positive influence on pipeline understanding and aligns with the mental model of
data pipelines.

• Encapsulation of related code makes it easier to understand data pipelines, as long as a single operation
is performed in each section.

4.4.3 PL3: Transparency

Transparency relates to how deeply participants can understand the operations performed in the data pipeline by just
reading the source code. Differences can come from how visible implementation details are, depending on the level
of abstraction a language aims for. Additionally, how much functionality can be expressed in few lines of code (which
we call density of functionality) affects transparency in the sense that with high density of functionality less low-level
operations are expressed in source code.

Python/Pandas was identified as having a much higher density of functionality than Jayvee. Regarding the effects,
participants had mixed impressions. On one side, being able to express a lot of logic in a few lines of code makes
each individual line of code harder to understand, potentially decreasing correctness as S30 explains: “Python makes
it possible to have a lot of functionality in just a few lines, which can make it hard to read if you have not written it
yourself.”

The tradeoff is that pipeline models in a less expressive language must consist of more source code which is slower to
read. S0 mentions this concern: “Especially in a large pipeline a file might get really big because of all the definitions
(especially unnecessary empty block definitions).”. However, because the data pipeline models in our experiment were
comparatively small, the majority of participants did not describe this problem.

One way to achieve a high density of functionality is to implement a high degree of automatic decisions and many
operations in one unit of code. As an example, loading data with read_csv() can use various sources and automatically
chooses structure and data types based on the underlying data that cannot be inferred from the source code alone.
Additionally, the structure of the output can potentially change without any change in the source code if the input data
changes.

Increased automation by grouping many operations in one unit of code makes data pipelines harder to understand and
decreases correctness. Often, library methods of Pandas are singled out by participants for this kind of complexity,
with S0 remarking: “Difficult: The methods sometimes do many things at once (example: load to a sqlite file and au-
tomatically choose data types).” S26 describes a similar experience: “Functions like pd.read_csv are hard to understand,
as they can read a DF from so many sources (in Jayvee you have one datasource specified).”

Instead of increased automation, the inability to see all implementation details was identified as a negative effect
on the ability to understand the data pipeline by participants. This effect was mostly found in Jayvee, with examples
including the TableTransformer block that takes input columns and output columns as properties, for which participants
were unsure if it keeps or removes the input columns.

Summary: Transparency relates to how well participants can understand every operation performed in a data
pipeline based on the source code alone.

• High density of functionality, many operations per line of code, is a challenge to understanding for
small data pipelines. However, reading larger data pipelines will be slow and potentially error-prone
with lower density of functionality.

• Increased automation makes data pipelines harder to understand and decreases comprehension cor-
rectness.

• Hidden implementation details can negatively affect the understanding of data pipelines.
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4.4.4 PL4: Amount of Options

A common theme in the survey responses was the large number of options to implement functionality in Python/Pandas
and the comparatively few options in Jayvee. For example, to download a CSV file, Python programmers could use
the standard library with urllib or use Pandas read_csv() with nearly equivalent outcomes. DSLs can focus on a few
core features and only provide one solutions for these.

The effect of many competing options was described as a detriment to understanding by participants such as S49:
“In Python, there are many varieties and different options, libraries etc, it is harder for non-experienced to grasp the
essence.” As they describe, these challenges impact mostly non-professional programmers or programmers unfamiliar
with the language itself.

External libraries exacerbate this effect, adding additional ways to solve problems with potentially multiple libraries
that solve the same set of problems. Moreover, every library has its own mental model of the problem space with their
own glossary, code styles and documentation. S0 writes: “In Jayvee everything (all blocks) are from the same source,
while in Python there are many libraries with different method styles and documentation.”

External libraries also evolve independently of the main language and each other. This means developers must keep
up with changes from different sources to keep their understanding of source code up-to-date, or risk interpreting new
library code wrongly.

Despite the challenges that external libraries introduce, their availability has obvious upsides, e.g., less work to imple-
ment common functionality. Managing the scope of language features and how external libraries are used is therefore
a tradeoff that depends on the experience level of the main users of the language.

Summary: The amount of options to implement the same functionality varies greatly between languages, with
GPLs having to be more flexible than DSLs. External libraries add additional approaches.

• Many competing options to solving the same problem are a challenge to understanding data pipelines,
mainly for less experienced readers.

• External libraries increase the amount of available options and have different mental models and glos-
saries. However, aside from their negative effect on understanding, external libraries reduce required
work to implement data pipelines.

4.4.5 PL5: Syntax

Participants sometimes commented on the syntax differences of the languages as reasons for their performance. Both
languages were described as human-readable, sometimes as being like English text or pseudocode. Human-like
language syntax was generally linked to making it easier to understand the data pipeline, e.g., by S31: “Jayvee has a
very human-like language, almost like pseudocode which can be immediately understood even by non programmers
in my opinion as long as they have a basic theoretic knowledge about pipelines.”

While Python is well known for its closeness to pseudocode, Jayvee uses considerably more special characters and
an uncommon structure. We attribute the positive comments on Jayvee’s human-like syntax largely to the use of a
glossary that is close to the problem domain, e.g., the use of domain entities such as pipeline as part of the syntax.
Reusing a glossary that is familiar to domain experts allows them to more easily understand the meaning of data
pipeline code.

In contrast, encountering unfamiliar syntax is described as a challenge to understanding data pipelines from code.
This was mostly an issue for participants solving tasks in Jayvee as they had less previous experience with the language.
However, some participants described similar problems with the syntax used by libraries in Python, for example,
Pandas creating new columns in a Dataframe with an assignment operator instead of a function call.

Summary: Language syntax is discussed by participants, but largely in regard to personal preference for more
familiar languages like Python.

• Human-readable syntax makes it easy to understand a data pipeline. Both Python and Jayvee are
described as human-readable languages.

• Unfamiliar syntax has a negative effect on understanding. New languages and unfamiliar external
libraries can introduce this effect.
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4.4.6 PL6: Language Elements

Language elements have a large influence on understanding of data pipeline code. GPLs such as Python must by
necessity also provide general-purpose language elements, such as classes or functions, that can be used to build
systems for any use case. In contrast, DSLs can express domain concepts such as pipelines, blocks and pipes, or value
types directly as language elements.

The use of domain-specific language elements is described as making it easier to understand the data pipeline by
participants. The explicit blocks and pipes structure that is enforced by Jayvee aligns closely with how users visualize
data pipelines. Readers can then directly build their mental model of the data pipeline from the similar representation
in the source code.

Other language elements negatively impacted understanding with some participants mentioning that Jayvee language
elements are unusual and need to be learned (in contrast to Pythons language elements that are largely known from
other GPLs).

An example are value types based on constraints, as S51 points out: “I found the Jayvee code structure a bit difficult
to understand, mostly the constraints and value type.” A possible explanation could be that value types and constraints
align less obviously than blocks and pipes with the visual model of a data pipeline.

For Python, the use of advanced programming concepts was mentioned as a problem participants faced understand-
ing the experiment tasks. Concrete examples are described by S12: “Some functions like lambda, list comprehension
and implicit operations are not intuitive and require documentation and comments to understand.” Advanced program-
ming elements have to be used carefully and sparingly if the goal is to create a data pipeline that can be understood by
relative junior programmers.

Summary: Python must provide general-purpose language elements such as classes and functions, while DSLs
can introduce domain concepts such as pipes and blocks.

• Using blocks as domain-specific language elements improves pipeline understanding and is intuitive
because it aligns with the visual model of a data pipeline.

• Unusual language elements such as value types based on constraints are a challenge to pipeline un-
derstanding.

• Advanced programming concepts like lambdas or list comprehension make pipeline understanding
harder, especially for programmers without previous experience in the language.

4.4.7 HU1: Required Experience

Understanding data pipeline code is influenced by the previous experience of the reader. Depending on the tool used
to implement the data pipeline, more or less experience might be needed. Further, the type of experience also matters.
Subject-matter experts are often experts in the data they are working with, but might not have extensive software
engineering experience.

The need for previous experience with programming to understand Python/Pandas code is mentioned by multiple
participants in their surveys. As a GPL, Python must have many features and allow for a maximum amount of flex-
ibility, which makes it inherently complex. Furthermore, more knowledge of programming is involved because the
concepts expressed in the language cannot be domain-specific but have to be generic (e.g., classes and functions).
S34 expresses the difference: “I think the difference might have mostly to do with how much experience one has in
programming; I think that Python might require quite some knowledge to get used to, while Jayvee is a bit easier to
understand even as a person with not much programming experience.”

The more flexible a language is, the more experience and discipline is needed to stick to good practices and write
code that is easy to understand. With the ease of writing script-style Python code, it is not uncommon for developers
to implement prototypes in Python that later on get promoted to production code without a rewrite, creating hard to
understand data pipelines.

19



Can a DSL improve program structure comprehension of data pipelines? PREPRINT

Summary: Required experience refers to the amount of experience required to understand a data pipeline from
source code. For reading source code, the main required experience is previous programming.

• Previous experience with programming is needed to understand Python because of the use of generic
programming concepts. In contrast, Jayvee is easier to understand for non-programmers because it is
using domain-specific concepts.

• More flexibility means more experience is needed to follow good habits and make code easily readable.

4.4.8 HU2: Applicable Experience

How closely a language aligns with the mental model of data pipelines is important to reuse experience outside
of software engineering. Participants describe Jayvee’s blocks and pipes structure as intuitive because it mirrors how
they think about data pipelines. This positively affects understanding, e.g., S35 explains why Jayvee pipelines are easy
to understand: “Jayvee code steps are directly mapped to the data engineering pipeline lifecycle.”

However, the close match to the mental model must be carefully maintained; otherwise it can lead to confusions. One
such mismatch were the interpretation blocks in Jayvee (such as the TextFileInterpreter) to convert binary data to text
data. Participants were confused about what the interpretation blocks did because the level of abstraction was lower
than what they expected.

A special case of applicable experience is building up knowledge from previous experience with the same tool. High
flexibility means even similar pipelines can look very different. A challenge with the low enforced structure of
Python/Pandas is that learning effects from creating or reading other data pipelines are reduced. S29 summarizes
the challenge as “No structure, every pipeline is a new pipeline.” This effect is worsened by the amount of different
libraries that can be used to solve common problems, meaning experienced in one library does not necessarily apply
to data pipelines that use a different library.

Summary: Being able to reuse experience from other sources, such as working with spreadsheets, means data
pipelines can be understood by a wider range of readers. Often, subject-matter experts might lack programming
experience but have previous domain experience.

• Alignment of code to the mental model of data pipelines improves understanding, even without pro-
gramming experience. However, creating the expected abstraction level is important or readers are
confused.

• Learning effects are reduced when similar pipelines can look different in source code due to high
flexibility.

4.4.9 HU3: Naming

Good names improve understanding, especially for non-professionals. However, as Phil Karlton said “There are
only two hard things in Computer Science: cache invalidation and naming things.” 4

Generally, participants describe names in Jayvee as easy to understand, probably because they are close to the termi-
nology of the domain of data pipelines. In contrast, survey answers mention Python and Pandas as having inconsistent
and sometimes confusing naming, potentially because of the generality required by being a GPL and due to the use of
external libraries with an inconsistent glossary.

Well named processing steps, both for language elements and user-defined names, have multiple positive effects.
Speed is improved by being able to skim source code and clear names make it easier to understand the data pipeline
as a whole, S18 writes: “When the blocks are named clearly everything can be seen on one quick view. That makes
the pipeline easier to understand.”

Good names must follow a consistent approach, which in turn improves understanding. This is a challenge for a GPL
like Python because much of the domain-specific functionality comes from external libraries such as Pandas that have
different glossaries and approaches to capturing the domain.

Lastly, under the assumption that names are chosen well, the quantity of naming opportunities is important as well,
with a higher quantity of names making it easier to understand a data pipeline. Script-style data pipeline implemen-
tation give few opportunities for good naming of steps, meaning developers must resort to comments if they want

4https://martinfowler.com/bliki/TwoHardThings.html
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to communicate reasoning. Due to named blocks, Jayvee provides more naming opportunities, both for language
elements and user provided names that explain the intent behind the use of a block.

Summary: Naming of elements in a pipeline has a major effect on how easy the resulting source code is to
understand.

• Good names improve understanding by allowing readers to skim the source code and get an overview
of the whole pipeline.

• Consistent naming has a positive effect on understanding. External libraries with their own glossary
can make naming less consistent.

• The quantity of human-provided names is important to communicate intend, with a positive effect on
understanding if the names are chosen well.
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5 Discussion

Based on the results, a DSL based on a pipes and filters structure can be a valuable tool to build data pipelines with
subject-matter experts. Participants with a non-professional programmer background can understand data pipeline
source code more correctly, but not faster or more easily.

A possible explanation for the similar speed is that the participants had considerably more previous experience with
Python/Pandas than with Jayvee, which likely influenced how fast they were able to understand the data pipelines
in favor of Python/Pandas. This will not be an uncommon situation however, because a new DSL always presents
a learning challenge, while many practitioners might already have worked with Python and Pandas. However, the
fact that participants were still able to complete the tasks with Jayvee in a similar time indicates that learning a new
DSL can be done in limited time and provide other benefits like improved correctness, even for non-professional
programmers.

Additionally, Jayvee is considerably more verbose than Python/Pandas, and therefore took participants longer to read
before they could solve the tasks. In the context of open data, the tasks were representative of real-life challenges and
based on real open data sets. Most open data sets are small, mostly under 10 MB and published in tabular formats
such as CSV (Umbrich et al., 2015; Mitlohner et al., 2016). However, for larger scale data pipelines, e.g. in industrial
settings a more expressive syntax is needed. For these situations, we expect that the difference in speed for program
understanding would increase in favor of Python/Pandas due to Jayvee’s verbosity and structure.

Similarly, more complex tasks could require functionality outside the limited feature set of Jayvee. In previous studies,
we have found that in these situations perceived implementation difficulty increases sharply, and it stands to reason
that program understanding would decrease as well (Heltweg et al., 2025).

During the experiment, both Jayvee and Python/Pandas source code was displayed as text, without syntax highlighting
or the use of an IDE. We chose to not provide an IDE because the maturity of tool support for Python/Pandas and
Jayvee differs significantly and would have introduced a confounding factor. In similar work, replication studies
of experiments with the addition of IDE support have shown that correctness improves for all treatments, but the
relative differences between them remain consistent (Kosar et al., 2018). Therefore, we expect that the results of our
experiment would not change significantly with the addition of IDE support.

The code structure of the Python/Pandas data pipelines might have an effect on the results. We chose to use script-style
implementations in Python with Pandas, as they are common in practice for smaller data pipelines As discussed in
subsubsection 4.4.2, classes and functions can be used in Python to create a structure similar to Jayvee which would
reduce the effects of using a DSL.

With regard to task design, we chose to focus on comprehension tasks of data pipeline structure as a first step. Alter-
native task goals, such as locating errors or predicting the output of a data pipeline could be used in future work. We
consider the comprehension of data pipeline structure as a necessary prerequisite for these tasks. From the qualitative
feedback, we expect that the results would be similar for correctness, with Jayvee being more verbose and prescriptive
with less functionality. Especially the exact structure of data pipeline output was often unclear to participants due to
the automated Dataframe structure creation when loading a data set with Pandas.

Of course, program understanding is only one part of the software development process and other tasks such as
extending existing programs or code creation would likely show very different results. We expect implementations in
Jayvee to be slower due to the increased verbosity and more strict structure, but additional studies are needed to verify
these assumptions.

5.1 Learnings for Language Designers

Multiple design decisions are contributing factors to the improved performance and can provide guidelines for future
developers of DSLs.

Representing a data pipeline with blocks and pipes as first class language elements seems to be a good choice. It is
described as intuitive and clear, especially because it clearly aligns with the mental model of data pipelines as the
reader visualizes them.

A data pipeline overview that is represented directly in the syntax of the source code and separated from the imple-
mentation details is consistently highlighted as an important positive influence. In addition, the strongly enforced
structure of a data pipeline program means readers can quickly orient themselves in the source code and learn with
every pipeline they read.
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The effect of well-named language elements was considerable, indicating that names are a major influence on data
pipeline understanding and especially to provide context to implementation decisions. Consequently, language de-
signers should pay attention to not only using a consistent glossary to name language elements, but also to providing
opportunities for developers to use many descriptive names. As an example, by encapsulating functionality into named
blocks, data pipelines implemented in Jayvee have a greater minimum amount of named elements than script-style im-
plementations in Python/Pandas. Because this structure is strict, even non-professional programmers are guided to
describe the steps they implement in any given pipeline.

Regarding complexity, providing multiple options that achieve the same goal, both in syntax as well in approaches
to solve a problem, has been discussed as a barrier to understanding by participants. Because of this, introducing
additional syntax or syntactic sugar to make one specific use-case easier should always be seen as a tradeoff between
the expressiveness of the language versus the added complexity.
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6 Limitations

As a mixed-method study, multiple sets of limitations are potentially relevant to correctly evaluate the results. We
evaluate limitations and ways to mitigate them in regard to the quantitative data from the subsection 3.2 and the survey
questions, based on threats to validity described in Wohlin et al. (2012). Trustworthiness criteria according to Guba
(1981) are used for the follow-up qualitative work with answers from the descriptive survey (subsection 3.3).

While we present more than one set of limitations in this chapter, it is important to highlight that the mixed-method
approach of this study (with data- and method-triangulation) allows the individual methods to partially make up for
the weaknesses of the other. This means the overall research design contributes as a mitigating factor for some of the
discussed limitations.

6.1 Threats to Validity

We describe potential threads to validity according to the framework presented in Wohlin et al. (2012).

Conclusion Validity

Threats to conclusion validity are challenges to understanding the correct relationships between the treatment and
results of an experiment.

The DSL that was investigated as treatment is in large parts designed and implemented by the authors of this study,
therefor bias and searching for positive results is a clear threat to conclusion validity. In an attempt to reduce its impact,
we defined the research design as well as hypotheses to analyze ahead of data collection, based on indicators found in
previous work (Heltweg et al., 2025) and used standard research designs and statistical tests. Additionally, we reported
effect sizes and the results of all hypotheses tests, including ones without statistically significant results such as time
spent on task. During data collection, we followed an experiment procedure document to reduce the introduction of
individual bias when guiding participants through the experiment. In addition, participants purely interacted with an
automated experiment tool that implemented the treatment and took measurements impartially without interaction by
the researchers. Nonetheless, subconscious bias remains as a threat to conclusion validity. Therefore, we have shared
the experiment tool3 to allow for thorough review and independent replication.

Normally, the heterogeneity of students as participants also provides a challenge. However, the use of a crossover
experiment design mitigates this concern because they measure differences in comparison to the participants’ average
and not between participant groups (Vegas et al., 2016).

Internal Validity

Internal validity describes the extent to which influences outside the control of the researcher, apart from the treatment,
influence the results of the experiment.

If the tools or tasks used for the experiment were of low quality, they could introduce external factors to the results.
In order to reduce these influences, we tested the tool and task implementations in multiple sandbox tests with other
researchers and in pilot experiments with individual students from earlier semesters and adjusted them based on feed-
back, as suggested by Ko et al. (2015).

Before the experiment runs, one of two researchers explained the experiment procedure to participants and answered
questions. Differences in communication style could introduce a threat to internal validity. We mitigated this by
preparing an experiment procedure document that was followed by both researchers. In addition, due to the crossover
design, every experiment cohort that was instructed by one researcher completed tasks with both treatments and the
experiment results depend on the delta in their individual performance, not between groups. Nonetheless, the use of
multiple researchers to instruct the participants could have influenced the results between groups.

By selecting volunteers out of a class of students, the results may be influenced if participants think positive responses
in regard to Jayvee would have a positive influence on their grade. We therefor clearly communicated to students that
data would be anonymized and participation or performance in the experiment would have no effect on their grade.

The differences in previous experience with Jayvee compared to Python/Pandas also introduces a threat to internal
validity. We mitigated this by introducing Jayvee with two lectures and at least one practical exercise before the
experiment. We also collected and reported the previous experience of participants with both languages to allow for
a better contextualizing of the results at the start and end of the semester, but not directly before the experiment. It is
likely that the differences in previous experience with the languages influenced the results, especially regarding speed
and perceived difficulty. However, we consider the results interesting, because due to its popularity, data practitioners
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often have previous experience in Python/Pandas and not in new DSLs. We consider our study as a first step to
establish initial insights. In further work, replication studies with more balanced previous experience would be needed
to confirm the results.

Crossover designs introduce the threat of carryover and familiarization effects, in which the administration of one
treatment might influence others. It must be explicitly discussed as a threat to internal validity according to Vegas
et al. (2016). We minimized carryover during the experiment design time in multiple ways. First, by randomly
assigning participants to different treatment orders. Second, to reduce the effect of increasing familiarity with the
experiment tool itself influencing later task performance, we added an initial task using pseudocode and placeholder
step names before applying the real treatments. Lastly, we added a stage of hidden source code, so participants could
read the available steps in the pipeline first to reduce the effect of recognizing some steps from the previous task.

Regardless of these measurements, we must recognize that carryover could still be an influencing factor on the results
and aim for future replication with between-subject designs.

Construct Validity

Construct validity is concerned with the appropriateness of the experiment construct to measure the underlying concept
or theory and the ability to generalize the result of the experiment to it.

The dependent variables in the experiment were clearly defined and measured programmatically. Time and correct-
ness are the most common measures used in bottom-up code comprehension experiments (Wyrich et al., 2023). The
concrete definition of correctness for a data pipeline that we used is not previously validated; however, we consider it
appropriate because it covers the correct understanding of both selection and the order of steps.

Because only one measurement was taken for each construct, mono-method bias is a concern for the controlled exper-
iment part of this study. This limitation is mitigated by the fact that additional insights about the underlying concepts
are drawn from qualitative data as part of the mixed-method design. Nonetheless, additional experiments with more
measurements should be done in future work to strengthen the quantitative results.

External Validity

External validity is the ability to generalize the results, e.g., to an industry context.

We chose Masters level students as proxies for a population of subject-matter experts working with data in industry,
that are non-professional programmers. When drawing conclusions from the results of this study, it is important to
contextualize them with this limited population in mind (Falessi et al., 2018). Using students allows us to gather more
data points, establish a trend and prepare future studies with practitioners (Tichy, 2000). Additional experiments,
replicating the same setup, with real subject-matter experts from industry would be needed, but we expect the results
to generalize well. Other populations, such as professional programmers from industry, would very likely encounter
different challenges and the results of this study should not be taken as indication for their experience.

Because we allowed students to voluntarily opt in to the experiment, only 57 of the 98 students that completed the
course participated. We consider this number to be high enough to be representative of the population, however it is
possible that less invested students did choose to skip the experiment.

6.2 Trustworthiness criteria

For the descriptive survey, we use the trustworthiness criteria of credibility, transferability, dependability, and con-
firmability (Guba, 1981).

Credibility

Our goal was to establish credibility, how well the findings represent the real effects, with various types of triangula-
tion in the mixed-methods research design (Thurmond, 2001). By combining the quantitative data from a controlled
experiment with the qualitative data of the descriptive surveys, we establish method and data triangulation. In addition,
large parts of the qualitative data were coded by multiple researchers as a form of investigator triangulation.

The opt-in, voluntary nature of the experiment introduces a potential bias in the participant selection for more moti-
vated students. We mitigated this effect but clearly stating that participation would have no effect on course grades,
both verbally and in the experiment handout we provided to participants.
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Transferability

Transferability, how well the results apply to other contexts, has to be discussed from multiple angles. First, the use of
students as participants is problematic when attempting to generalize to professionals in industry, additional context is
provided in the discussion regarding the external validity of the experiment that also applies to the qualitative part of
the study.

Second, the responses of participants must be seen in the context of one specific DSL, Jayvee, and might not transfer
to other DSLs. The descriptions of themes should be seen under this aspect, and additional research with different
DSLs is needed to make sure the findings transfer to other languages.

Lastly, the data pipelines that participants had to understand during the experiment were relatively small (but based on
real-world open data sets). How well the results transfer to larger scale data pipelines is unclear. When appropriate,
we discussed the potential trade-offs regarding small and large data pipelines in the descriptions of the themes (e.g.,
regarding density of functionality).

To increase transferability, we provided thick descriptions of the themes and extensive quotes from participants in
support (as well as an additional, extended description of the themes 3). Future researchers can use this additional
context to evaluate the research results in additional contexts.

Dependability

For dependability, making sure the findings are consistent and can be repeated, we reported the research design in
detail and provided as much data as possible. In addition, the complete survey question export and code used to
analyze the data is available.

Confirmability

Confirmability, how well the findings represent the objective reality and are not influenced by researcher bias, is
challenged by the involvement of the authors in the implementation of Jayvee. Because this introduces a risk of
bias, we took steps to introduce additional data and method triangulation by prefacing the survey with a controlled
experiment with automated measurements that is less subjective to researcher bias. Regardless of the mitigations
employed, we have to acknowledge our own bias and would welcome replication by neutral parties. To enable other
researchers to confirm our findings, we have established an audit trail by describing the research design in detail and
providing as much data used during the analysis as possible. Thick descriptions of the themes and direct quotes from
the survey also give additional context to the findings.
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7 Conclusion

In this mixed-methods study, we have asked two research questions: First, do data pipelines implemented in Jayvee
change bottom-up program structure comprehension compared to Python/Pandas for non-professional programmers
regarding speed, correctness and perceived difficulty? and second, what reasons exist for effects on bottom-up program
comprehension for data pipelines implemented in Jayvee compared to Python/Pandas for non-professional program-
mers?

To do so, we have executed a controlled experiment with 57 volunteers students comparing their performance on data
pipeline understanding tasks implemented in Jayvee and Python with Pandas. In addition, participants could provide
qualitative feedback in a post-experiment survey that we then analyzed using qualitative data analysis.

Based on the experiment data, participants are neither faster, nor consider it easier to understand a data pipeline
implemented in Jayvee compared to Python/Pandas (Figure 9, Table 2). However, participants can understand a data
pipeline significantly more correctly (Figure 4, Table 3).

Qualitative analysis of participant feedback revealed a variety of possible reasons for these effects, summarized in
Figure 6. Data pipelines in the experiment were based on real-life open data sets, but relatively small and further
studies would be needed to verify that these effects generalize to larger and more complex data pipelines.

Predictably, most effects are grounded in the difference between programming languages themselves. Participants
highlight the pipeline overview provided by Jayvee as a major positive influence on understandability. This overview
is enforced due to the more rigid structure of Jayvee programs that make them easier to understand than Python/Pandas
scripts. How deeply participants could understand the data pipeline, the transparency of source code, had mixed
effects, with high density of functionality and increasing automation making a pipeline harder to understand but
faster to read. Similarly, the amount of available options, especially with the introduction of external libraries, is
a challenge to understandability but reduces the work needed to implement pipelines in the first place. Unfamiliar
syntax was an additional problem for some participants, even if both Jayvee and Python were described as human-like
languages. Lastly, provided language elements are a factor in the different outcomes because, as a domain-specific
language, Jayvee could include language elements that were intuitive to understand in a data pipeline context while
some participants struggled with advanced programming concepts like lambdas in Python.

In addition to the effects of the programming languages themselves, we also identified several human effects. First,
the previous experience required to understand data pipelines from source code differs between the approaches. Par-
ticipants identify previous programming experience as a necessary precursor to understanding data pipelines written
in Python/Pandas, while they consider pipelines written in Jayvee to be approachable by novices. Second, the imple-
mentation language effects which previous experience is applicable to understanding a data pipeline. If the abstraction
level is maintained well, a domain-specific language like Jayvee allows readers to reuse previous experience from data
engineering with other tools like visual modeling software. Finally, depending on the reader, well-chosen, descriptive
names have a large influence on how understandable data pipeline source code is. Languages with a wide library
ecosystem like Python with Pandas face challenges to keep a consistent glossary between different authors. Addition-
ally, the strict structure of Jayvee with extensive possibilities for user-provided names allowed future readers to infer
additional information.

Besides the effects that are often described and have a clear influence, open questions remain. For example, the
best abstraction level of a domain-specific language for data pipelines is unclear and might depend on the intended
audience. Additionally, a good tradeoff between the reuse of work with a library ecosystem versus the complexity
it introduces warrants further studies. Density of functionality shows a similar tradeoff between short to write and
expressive code versus harder to understand pipelines. With more research, it might be possible to identify the reasons
for the largest negative effects and avoid them in future language design.

In summary, domain-specific languages such as Jayvee have the potential to be more correct in the domain of data
pipeline modeling. These effects are especially strong for non-professional programmers, such as subject-matter
experts in other domains. A variety of reasons for these effects exists, largely based on the programming language
itself or on the type of reader that tries to understand the source code. However, the exact effect of many reasons is
still an open question that needs further research to develop a comprehensive theory of domain-specific languages for
data pipeline modeling.

In future work, we intend to explore more narrow features of domain-specific languages for data engineering, such as
value types or selection syntax for tabular data, with additional controlled experiments.
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Appendix

7.1 Task Examples

1 constraint GeographicCoordinateScale on decimal: value >=
-90 and value <= 90;

2
3 valuetype GeographicCoordinate oftype decimal {
4 constraints: [GeographicCoordinateScale ];
5 }
6
7 block ValuetypeValidator oftype TableInterpreter {
8 header: true;
9 columns :[

10 ’uuid’ oftype text ,
11 ’latitude ’ oftype GeographicCoordinate ,
12 ’longitude ’ oftype GeographicCoordinate ,
13 ’bezeichnung ’ oftype text ,
14 ’traeger_bezeichnung ’ oftype text ,
15 ’traeger_art ’ oftype text ,
16 ’website ’ oftype text ,
17 ];
18 }

1 data = data[[
2 ’uuid’,
3 ’latitude ’,
4 ’longitude ’,
5 ’bezeichnung ’,
6 ’traeger_bezeichnung ’,
7 ’traeger_art ’,
8 ’website ’,
9 ]]

10
11 data = data.astype ({
12 ’uuid’: str ,
13 ’latitude ’: float ,
14 ’longitude ’: float ,
15 ’bezeichnung ’: str ,
16 ’traeger_bezeichnung ’: str ,
17 ’traeger_art ’: str ,
18 ’website ’: str ,
19 })
20
21 data = data[data[’latitude ’].apply(lambda

input: input >= -90 and input <=
90)]

22 data = data[data[’longitude ’].apply(
lambda input: input >= -90 and input
<= 90)]

Figure 7: Comparison of source code to filter and apply a schema to data, shown for task 2 in Jayvee and Python/Pan-
das.

7.2 Extended Result Data
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Figure 8: Previous experience of experiment participants.
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Figure 9: Kernel-density-plot of time on task for Jayvee compared to Python/Pandas.
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Figure 10: Diverging stacked bar charts according to Robbins et al. (2011) and Heiberger and Robbins (2014) for
perceived difficulty of using Jayvee compared to Python/Pandas.*
* One outlier participant (S25) considered using Jayvee hard (and Python/Pandas easy) due to their lack of previous experience with Jayvee and did not provide more details, writing: “(Jayvee) is
new so I think it was not easy to understand or read.”
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ABSTRACT

Selecting a subset of cells is a common task in data engineering, for example, to remove errors
or select only specific parts of a table. Multiple approaches to express this selection exist. One
option is numeric indexing, commonly found in general programming languages, where a tuple of
numbers identifies the cell. Alternatively, the separate dimensions can be referred to using different
enumeration schemes like "A1" for the first cell, commonly found in software such as spreadsheet
systems.
In a large-scale controlled experiment with student participants as proxy for data practitioners, we
compare the two options with respect to speed and correctness of reading and writing code.
The results show that, when reading code, participants make less mistakes using spreadsheet-style
syntax. Additionally, when writing code, they make fewer mistakes and are faster when using
spreadsheet syntax compared to numeric syntax.
From this, a domain-specific syntax, such as spreadsheet syntax for data engineering, appears to
be a promising alternative to explore in future tools to support practitioners without a software
engineering background.

Keywords domain-specific languages, data engineering, programming syntax, controlled experiment, empirical study

1 Introduction

A common challenge in data engineering is working with unstructured, two-dimensional data as it can be found in
CSV files or spreadsheet software. Especially data sets based on exports from spreadsheets made for human readers
have to be wrangled without the easy-to-use format that would allow for the selection of cells by column names or
other structured tools.

In these cases, data is organized for human readers to consume rather than machines. Often, values are distributed in a
2D data structure to place them in a 2D space when displayed as part of a sheet. While these data sets are technically
machine-readable, they have to undergo extensive data engineering work before they are available in a format that is
easily importable into, e.g., a Pandas dataframe.

General-purpose programming languages (GPLs) can be used to manipulate this data, e.g., to select a subsection of
it or remove errors. However, the syntax used in most GPLs has its origin in the numeric and often zero-indexed
access of array structures. To select cells using this syntax, programmers refer to columns and rows by numbers or
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numeric ranges with the distinction between both being mostly by position. For example, Pandas/Python cell selection
is performed by the axis of the underlying dataframe so that df.iloc[0, 1] selects the cell in the first row (on index 0)
and second column (on index 1).

While this syntax is familiar to professional software engineers, practitioners from adjacent fields that also work with
two-dimensional (2D) data often use spreadsheet software to manipulate cells visually. Popular tools such as Microsoft
Excel or Google Sheets show numbers as the reference to rows and characters to refer to columns, thereby syntactically
separating the indexing dimensions. Therefore, the equivalent reference string to the Python/Pandas example above
would be B1. In this syntax, columns are expressed as characters (B for the second column) while references to rows
stay numeric, but their index starts more naturally at one instead of zero.

With these different syntactical approaches, data practitioners with a background in using spreadsheet software to
manipulate and clean their datasets can struggle when reading or writing code using numeric indexing. Mistakenly
switching the order of row and column references or forgetting about zero-indexing can lead to crashes or subtle errors
in the resulting datasets.

As an alternative, domain-specific languages (DSLs) have been shown to be a potential middle ground between GPLs
and visual tools, enabling domain experts to efficiently contribute in a wide range of domains outside of data engi-
neering [16, 10], as well as when building data pipelines [5]. They do so by re-using concepts and conventions from
the domain they cover. It stands to reason that addressing cells in unstructured 2D data sets could be easier for data
practitioners using spreadsheet syntax rather than numeric indexing.

In this study, we conduct a controlled experiment to test this hypothesis and provide a basis for further research. Based
on quantitative data from a large group of student participants, we compare the use of spreadsheet-style syntax in a
DSL for data engineering with the numeric syntax of Pandas, an industry-standard data engineering library for Python.

Our goal is to answer the following research questions:

Research Question 1: Does spreadsheet-style syntax have an effect on bottom-up program comprehension of cell
selection in unstructured 2D data by data practitioners compared to numeric syntax...

a: regarding speed?

b: regarding correctness?

Research Question 2: Does spreadsheet-style syntax have an effect on code creation for cell selection in unstructured
2D data by data practitioners compared to numeric syntax...

a: regarding speed?

b: regarding correctness?

With this study, we contribute:

1. The results of hypothesis tests in a controlled experiment on the effects of using spreadsheet-style syntax
instead of numeric syntax for cell selection, providing a foundation for future studies towards the ideal syntax
for DSLs in data engineering.

2. A detailed description and accompanying code release of an experiment instrument to run controlled experi-
ments for cell selection that enables reproduction and re-execution of the experiment with data professionals.

This article is organized as follows:

First, we provide a short overview of related studies in section 2, then we present the research design in section 3, fol-
lowed by the results in section 4. We provide additional context and insights in the discussion in section 5. Limitations
to the results are presented in section 6 before a summary of the insights and future work in section 7.

2 Related Work

Empirical studies of programming language design, such as different syntax, with users are generally rare, even though
they can lead to a deeper understanding that can not otherwise be achieved [2].

The relatively low amount of controlled experiments is a challenge in the wider field of software engineering research
as well [14, 23].

The benefits of using domain concepts with DSLs have been investigated in a series of controlled experiments and
replication studies by Kosar et al. They compare DSLs with GPLs and domain-appropriate libraries in a variety of

2
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domains from GUI programming to feature diagrams [15, 17, 16]. The domain-specific concepts allow participants to
work more accurate and efficient, both with and without IDE support.

However, based on their experience they point out that the evaluation of DSLs and their features is domain-specific
and should be done for each domain. To the best of our knowledge, our study is the first contribution to this effort for
cell selection in data engineering.

Hoisl et al. [6] compare notation for scenario-based testing (two text-based and one diagrammatic) and find the more
natural-language based one to outperform others, including a structured language. Their work is an indication that
task outcomes can be improved by syntax that is more familiar to the participants that we test in a separate domain.

How deeply domain concepts should be part of a DSL was previously studied by Häser et al. [7] for behavior driven
development who compared a simple DSL with a DSL that was enriched with domain concepts. They find that
participants can complete tasks significantly quicker with the DSL that includes domain concepts without an effect on
quality.

Recently, Klanten et al. [13] have evaluated a similar approach to using domain-specific syntax (a domain-specific
syntax for type inference rules compared to an implementation in Java) with positive effects for speed and correctness.

Similar to these studies, our experiments contributes additional data towards the study of optimal DSL features in a
specific domain, in this case with regards to cell selection syntax in data engineering.

3 Research Design

We gathered quantitative data using a controlled experiment with human participants. To do so, we first defined a
plan for the experiment that we refined iteratively with pilot experiments with other researchers. Then, we executed
the experiment in-person during multiple sessions on one day. Finally, we analyzed the data using standard statistical
methods.

The following structure is adapted from the proposed guidelines for reporting controlled experiments as suggested in
Wohlin et al. [25], adapted from Jedlitschka and Pfahl [9].

3.1 Problem Statement

Working with otherwise unstructured 2D data is a common task in data engineering, for example when handling data
from CSV files. When the data is formatted like a table with a clear header row, column names can be used to select
subsets. However, often header data is missing or complex, multi-line headers based on exports from human-readable
sheets make simple indexing by column names impossible. In those cases, subsets of data need to be selected first to
be extracted, deleted, or transformed in follow-up steps. Different ways to manipulate these data structures exist:

|

1. General-purpose programming languages with libraries, such as Python and Pandas, using numeric indexing
like iloc, e.g., df.iloc[1:5, 2:4]

2. Domain-specific spreadsheet software like Microsoft Excel or Google Docs and their syntax, e.g., A1:B10

While the numeric indexing might be familiar to software developers and especially users of Python/Pandas,
spreadsheet-software is widely used by subject-matter experts and data practitioners in data engineering. For a domain-
specific language for data engineering that aims to enable subject-matter experts to contribute, it is unclear whether
using numeric indexing or spreadsheet-software formula syntax is the better choice to select subsets of 2D data struc-
tures.

3.2 Research Objectives

We follow the Goal/Question/Metric template [25, 1] to define the research objective:

• Analyze two cell selection syntaxes

• for the purpose of their effect on bottom-up program comprehension and code creation for cell selection

• with respect to speed and correctness

• from the point of view of researchers

3
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• in the context of a university course with masters level students learning data science (as proxies for data
practitioners)

3.3 Context

The context of the experiment is a master’s level course teaching advanced methods of data engineering. Students
were largely from master’s degrees in artificial intelligence and data science. Controlled experiments with students
allow for the initial evaluation of hypotheses that can be extended by experiments with practitioners in future research
if they are a conscious choice as a representative of a population [3, 20].

We consider this cohort of students as an appropriate proxy for our target population of data practitioners that are used
to working with data as part of their job but do not have a professional programming background. Similar to them,
students from artificial intelligence and data science have heard lectures on statistics and theoretical algorithms but
lack experience in professional software development. From previous work with a similar cohort of students, we know
that they also use spreadsheet software to work with data in addition to writing scripts [5].

The participants learned an open-source domain-specific language called Jayvee [5] using spreadsheet-style cell se-
lection syntax during the course. They did so by listening to introductory lectures and completing data engineering
exercises while implementing a self-directed data science project in Python.

3.4 Experimental Design

3.4.1 Goals, Hypotheses, Parameters, and Variables

We derived two goals from the research objectives.

Goal 1: Understand if the use of spreadsheet-software cell selection syntax has an effect on bottom-up program
comprehension (pc) compared to numeric indexing in regard to

a. speed

b. correctness

Goal 2: Understand if the use of spreadsheet-software cell selection syntax has an effect on code creation (cc) com-
pared to numeric indexing in regard to

a. speed

b. correctness

During the experiment, we defined variables and controlled the following parameters.

Parameters

1. The tasks, based on two real open data sets. We selected two different, real data sets that were understandable
without any special domain knowledge and slightly adapted them by removing rows with empty values,
selecting a subset of 10 by 10 cells and randomizing the order of rows.

2. The students, from a master’s level university course on data engineering.

3. The programming environment, an in-person experiment on a web-based experiment tool. The experiment
tool did not provide syntax highlighting or auto completion of any sort and ensured that individual editor
choice had no influence on the results.

4. Available help, only allowing standard documentation. We asked experiment participants to open the official
documentation of both treatments before the start of the experiment and to not use the internet in any other
way. One researcher ensured that participants did not leave the provided experiment environment at all times.

Independent variables

1. The cell selection syntax used, either a DSL with Spreadsheet syntax or Python with Pandas and it’s iloc cell
selection using Numeric syntax

Dependent variables

4
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1. The average time to task completion, in seconds from the moment a participant started a task until they
decided to submit their solution.

2. The average correctness of solution defined as defined by the Jaccard index [8]: J(C, S) = |C∩S|
|C∪S| where C

is the set of cells that should be selected and S the set of cells that are selected.

From the goals and based on the variables we measure, we defined the following hypotheses to test.

For goal 1a, the null hypothesis is "Using spreadsheet-software cell selection syntax has no effect on the speed of
bottom-up program comprehension compared to numeric indexing", more formally:

H0,1a : timepc(Spreadsheet) = timepc(Numeric)

H1,1a : timepc(Spreadsheet) ̸= timepc(Numeric)
(1)

For goal 1b, the null hypothesis is "Using spreadsheet-software cell selection syntax has no effect on the correctness
of bottom-up program comprehension compared to numeric indexing", more formally:

H0,1b : correctnesspc(Spreadsheet) = correctnesspc(Numeric)

H1,1b : correctnesspc(Spreadsheet) ̸= correctnesspc(Numeric)
(2)

For goal 2a, the null hypothesis is "Using spreadsheet-software cell selection syntax has no effect on the speed of code
creation compared to numeric indexing", more formally:

H0,2a : timecc(Spreadsheet) = timecc(Numeric)

H1,2a : timecc(Spreadsheet) ̸= timecc(Numeric)
(3)

For goal 2b, the null hypothesis is "Using spreadsheet-software cell selection syntax has no effect on the correctness
of code creation compared to numeric indexing", more formally:

H0,2b : correctnesscc(Spreadsheet) = correctnesscc(Numeric)

H1,2b : correctnesscc(Spreadsheet) ̸= correctnesscc(Numeric)
(4)

We chose two-tailed hypotheses because we had no prior knowledge about the effect direction that we expected.

3.4.2 Experiment Design

We chose a crossover design for our experiment, a within-subjects design in which each participant is assigned to
every treatment. We chose a crossover design because students can have different previous experiences which could
lead to challenges when measuring differences between participants groups instead of differences to the participants
average [23]. In addition, crossover designs are commonly used in software engineering research and well understood
[26].

However, because each participant is assigned to all treatments, crossover designs can introduce carryover effects in
which experience from previous tasks influences the completion of future tasks. To reduce this effect, we assigned
participants to two different sequences and introduced an initial non-tracked task in pseudocode that allowed them to
get familiar with the experiment tool instead of having to learn it during the first real tasks.

Participants were randomly assigned to two sequences AB (first spreadsheet syntax, then numeric indexing) and BA
(first numeric, then spreadsheet). To study the effects on both program comprehension and code creation, we ran two
different sets of tasks. A short description of the goal of each task is shown in Table 1. For both code creation and
program understanding, our goal was to offer one task that includes full rows, one that includes full columns, and two
tasks that handle different subsets of cells.

In one session, each participant completed both sets of tasks with the following task order: For code creation, task 1
to 4, see Table 2. For program comprehension, task 5 to 8, see Table 3.

To reduce learning effects between the sets of tasks, the dataset used for program comprehension was different from
the one for code creation. In any case, the datasets were real-world open data sets, slightly edited to remove header
information and empty values, randomize the order of columns, and standardize them to a 10 by 10 grid.

Participants were assigned randomly to a sequence using JavaScript’s built-in Math.random method when opening the
experiment tool.

5
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Table 1: Task descriptions.
Task Description

1 Understand code that selects complete rows
2 Understand code that selects connected cells,

no complete rows/columns
3 Understand code that selects complete columns
4 Understand code that selects connected cells,

no complete rows/columns
5 Write code to select complete rows
6 Write code to select connected cells,

no complete rows/columns
7 Write code to select complete columns
8 Write code to select connected cells,

no complete rows/columns

Table 2: Sequences and intervention assignment for code creation.
Sequence Period

Task 1 Task 2 Task 3 Task 4

AB Spreadsheet Numeric Spreadsheet Numeric
BA Numeric Spreadsheet Numeric Spreadsheet

3.5 Participants

Participants for the experiment were selected by convenience sampling from students of a master’s level course for
advanced methods of data engineering, mostly from master’s degrees in artificial intelligence and data science with
some students from related degrees such as information systems. Students were familiar with both treatment syntaxes
by previous participation the course.

Approval by an ethics committee is not required by our institution and not standard for these kinds of studies as they do
not carry personal risk or undue burden. However, we shared an informed consent handout with participants detailing
experiment goals, data handling and process by email. Immediately before the experiment started, we again shared
the same informed consent handout, allowed time for questions and asked for an explicit opt-in while making it clear
that not participating at this point would have no negative consequences.

The handout made explicit, that the students’ performance in the experiment tasks had no effect on their course grade,
however, we incentivized participation by rewarding points for the course grade for participation, independent of their
performance or whether they opted into the use of their data for research purposes. Opting in to allow the use of their
data was purely voluntary and had no effect on the grades of students.

We asked for permission to use the data before starting the experiment to make the opt-in independent of the perfor-
mance during the tasks.

3.6 Objects

The experiment was carried out using a web-based experiment tool with a small CSV data set displayed as a table
without header.

There were two types of tasks: code creation and code understanding. Before every task, a not-tracked example task
in pseudocode allowed the participants to learn how the experiment tool worked and what would be expected of them.
Additionally, the experimenters demonstrated the different task types at the start of the experiment.

First, for code creation, participants were shown the data on the left side of the tool. For every tasks, a different subset
of the data was highlighted in blue. On the right side, participants were shown a short program excerpt (a snippet from
the experiment tasks in the DSL is shown in Listing 1, numeric syntax tasks used equivalent Python/Pandas code)
and asked to complete a code block selecting the highlighted cells, either using numeric indexing with the iloc API in
Python/Pandas or spreadsheet-software syntax in the DSL.

6



Is spreadsheet syntax better than numeric indexing for cell selection? PREPRINT

Table 3: Sequences and intervention assignment for program comprehension.
Sequence Period

Task 5 Task 6 Task 7 Task 8

AB Spreadsheet Numeric Spreadsheet Numeric
BA Numeric Spreadsheet Numeric Spreadsheet

Listing 1: A DSL code snippet participants had to complete for a code creation task. An input field after the range
keyword allows for spreadsheet-style syntax to select cells.

// Other blocks and pipeline definition ...

block DataSelector oftype CellRangeSelector {
select: range ;

}

For numeric syntax using Pandas/Python, code creation tasks where based on the participants selecting cells based on
position using the iloc API. The surrounding Python/Pandas code was provided during the experiment tasks so that
participants only needed to use the numeric syntax inside the iloc call to complete the selection.

Using iloc, participants can select a subset of a Pandas dataframe using a variety of ways such as integers, arrays
of integers or slice objects to refer to cell positions. During the lectures in preparation for the experiment the use of
mainly integers or slice objects was highlighted (for example df.iloc[0, 1] or df.iloc[1:3]).

The DSL used in the experiment is based on connecting small blocks of computation using pipes. These blocks have
to be configured by the user, with a block named CellRangeSelector allowing the selection of a subset of cells from
2D data. The syntax used to select a range of cells using this block aligns with common spreadsheet programs where
ranges are described from the starting cell to a final cell (for example, A1:B2 refers to the range from cell A1 to B2).

Cells are referred to either by a character for the column, followed by a one-indexed number for the row (for example
B2 for the second column and second row). Additionally, either the column or the row reference can be replaced by a
* to indicate the last cell in that row or column, allowing a syntax like A1:B* to select all cells in the first two columns
of a data set.

In the same way as for the numeric syntax, all custom code for the DSL was provided and did not have to be remem-
bered by the participants. They only needed to complete the select property of a block using cell selection syntax.

An example screenshot of the whole task screen in the experiment tool is shown in Figure 1.

The second type of task was aimed at testing bottom-up program comprehension. Participants were shown code that
selects a subset of cells from a 2D data structure in either the DSL or Python/Pandas (using numeric indexing, an
example code snippet in Python from the experiment is shown in Listing 2, equivalent DSL code was shown for
spreadsheet syntax).

On the right, participants were shown the actual data in the same view as during the code creation tasks. They could
highlight cells in blue by either clicking them or dragging the mouse and were asked to highlight the cells that will be
selected with the code shown.

Listing 2: Python code excerpt for a program comprehension task
# Python code
# Imports and pipeline definition ...

df = pd.read_csv(’./data.csv’)

df.iloc [6:10 , 0:3]

A complete task view for program comprehension is shown in Figure 2.

7
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Figure 1: Code creation task in the experiment tool.

3.7 Instrumentation

Before the experiment, participants were trained in Python and the DSL and their respective cell selection strategies
during the university course.

Participants were introduced to the DSL and spreadsheets software cell selection syntax in two introduction lectures.
During the semester, they completed five exercises with real-world open data using the DSL.

Based on their backgrounds, some participants already had some prior knowledge in Python and Pandas. In addition,
they implemented a self-directed, real-world data science project in Python. The project included writing an automated
data pipeline to download, clean and save open data sets before using the data to create a report.

I preparation for the experiment, we held a lecture on how to positionally select cells from 2D. The lecture included
information about cell selection both in Python/Pandas using the iloc API used in the tasks as well as in the DSL using
the same block used in the tasks.

The measurement instrument was a browser based environment that automatically tracked events for future analysis.
Participants were asked not to use other programs or leave the experiment environment in any way. This explicitly
included using websites to get outside help such as search engines or AI services. One experimenter monitored the
screens of participants to make sure that they followed the directions.

At the start of the experiment, participants were allowed to open links to the official documentation of position-based
indexing by Pandas, as well as the cell range documentation by the DSL. These links were provided by the experiment
tool and the same for all participants.

3.8 Data Collection Procedure

The experiment was conducted in person in computer labs with identical equipment provided by the university. Due
to the large size of the experiment, multiple sessions were conducted immediately following each other on one day
and students were asked not to share the experiment setup with later groups.

After a brief introduction, the informed consent letter was handed out. The same letter was already shared by email
beforehand. Participants were given the chance to ask questions or withdraw from the experiment without any negative
consequences.

Then, one researcher followed a predefined experiment procedure document to present the experiment tool, the exper-
iment flow, and two example tasks with pseudocode. Participants were asked to focus on correctness over speed if in
doubt.

8
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Figure 2: Program comprehension task in the experiment tool.

Data collection was done automatically using the experiment tool. For this, the tool automatically recorded events,
their timing, and associated data like the submitted solution.

For each task, participants decided themselves when they considered a solution complete and submitted it. Between
tasks, a success screen allowed them to pause before attempting the next task.

Participants were given 40 minutes to complete all tasks, with an announcement of time passing every 10 minutes.

3.9 Analysis Procedure

The analysis was completed using Python 3.11 with Pingouin 0.5.5 [21].

First, experiment data was anonymized, and data integrity checks were performed, verifying that the tracked events
are in the expected order and quantity. Another round of data integrity checks (such as verifying that no correctness
value was outside the bound of 0 to 1) was executed after calculating the derived variables.

Second, from the timestamps of task start and end, the duration of a task was calculated in seconds. The overall time
for a treatment is then taken as the average of both tasks completed using that treatment.

Correctness was calculated automatically by executing the code written by the participant and comparing the selected
cells with the correct ones by building the Jaccard index, then averaging the correctness of both tasks. The more rigid
structure of the DSL leads to slightly lower correctness values for code creation in the spreadsheet syntax for rare edge
cases. We took note of this; however, with the correctness of the spreadsheet syntax being higher on average, this
effect ultimately had no influence on the results of the hypothesis tests.

Few code creation submissions included syntax elements that were already part of the program snippet that was
shown to participants, such as a trailing semicolon for the DSL or superfluous brackets for Pandas/Python. To reduce
the amount of basic syntax errors that lead to correctness values of 0 with otherwise correct solutions, these syntax
elements from the experiment tool were automatically removed for both Python and the DSL.

For the derived variables, outliers were marked using standard 1.5 interquartile range (IQR). Experiment runs with
outliers in the variables under consideration were removed for the hypothesis test.

9
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4 Results

The experiment was performed with 100 participants, of which seven were removed due to an abnormal amount or
order of events (mostly due to participants navigating back to previous tasks already completed during the experiment),
leading to a final count of 93 valid experiment runs. Of these, 52 had been randomly assigned to the sequence BA, 41
to the sequence AB.

For the results, we chose to only consider experiment runs with no outliers in the variable under consideration, meaning
individual hypothesis tests will have slightly different sample sizes depending on how many outliers were removed.
Including experiment runs with outliers in the analysis slightly affects the individual values but does not change the
results of the hypothesis tests.

We chose kernel-density plots to visualize the distributions of the variables because they provide a good overview of
the distribution and make it easy to see non-normality [12]. The plots are cut off at the extreme data points so that only
existing data points are graphed.

The resulting distributions were analyzed for normality using the Shapiro-Wilk test [19]. Since all distributions were
non-normal, we used the Wilcoxon signed-rank test for paired data for further hypothesis tests [24, 25]. We used the
standard α = 0.05 as a measure of statistical significance.

The detailed results of all hypothesis tests are shown in Table 4 and Table 5. We use common language effect size
(CLES) as a more intuitive measure of effect size, first introduced by [18], but based on the generalization by [22], to
discuss effect sizes.

The CLES describes the probability of a random value from one distribution to be larger than one from the other.
Therefore, a value of 0.5 is expected for no effect and larger deviations from that value with larger effects. We
interpret CLES based on the guidelines in [22] as either small, medium, or large (calculating 1 − CLES for values
below 0.5). For completeness, we additionally include effect sizes as matched pairs rank-biserial correlation (RBC)
[11].

4.1 Program Comprehension

The results of the hypotheses tests for program comprehension are shown in Table 4.

Table 4: Wilcoxon signed-rank test results for program comprehension.
n W-val p-val RBC CLES

H1a 84 1459.0 0.146597 -0.182633 0.464427
H1b 83 1230.0 0.018937 0.29432 0.541951

We defined the null hypothesis for speed of program comprehension, H0,1a, as "Using spreadsheet-software cell
selection syntax has no effect on the speed of bottom-up program comprehension compared to numeric indexing".
With a p-value of p ≈ 0.147 (n = 84), we have no reason to reject the null hypothesis and accept it as-is.

From the distribution shown in Figure 3, it seems while participants using numeric syntax show more varied task
completion times, both treatments have a similar peak submission time. Any existing difference is not large enough to
be statistically relevant.

Regarding H0,1b, "Using spreadsheet-software cell selection syntax has no effect on the correctness of bottom-up
program comprehension compared to numeric indexing", we reject the null hypothesis (p ≈ 0.019, n = 83) and
instead adopt the alternative hypothesis.

From the distribution plotted in Figure 4, it is clear that participants understood cell selection significantly more correct
when using spreadsheet syntax. This result is potentially very relevant to practice, as any data practitioner that wants
to work with existing scripts first has to understand them and be confident that they are selecting the correct data.

However, with a CLES of ≈ 0.54, the size of the effect is very small and has to be considered with that in mind.
Further experiments should be conducted to verify that this effect does in fact exists.

4.2 Code Creation

The results of the hypotheses tests for code creation are shown in Table 5.
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Table 5: Wilcoxon signed-rank test results for code creation.
n W-val p-val RBC CLES

H2a 84 163.0 4.775870e-13 -0.908683 0.160289
H2b 93 463.5 0.000003 0.637324 0.658053

The null hypothesis H0,2a, "Using spreadsheet-software cell selection syntax has no effect on the speed of code cre-
ation compared to numeric indexing", shows the largest effect. Participants are significantly faster to write code using
the spreadsheet syntax (p ≈ 4.776e− 13, n = 84, see also Figure 5).

In addition, the effect size of 1 − 0.16 ≈ 0.84 can be classified as large. Given how strong the effect is, using
spreadsheet syntax to select cells from two-dimensional data has a clear impact on data practitioners and will allow
them to complete their tasks faster.

Lastly, H0,2b, "Using spreadsheet-software cell selection syntax has no effect on the correctness of code creation
compared to numeric indexing" shows a statistically significant result as well (p = 0.000003, n = 93) with participants
being more correct when using spreadsheet syntax to select cells instead of numeric indexing.

From the kernel-density plot shown in Figure 6 participants complete code creation tasks with much higher correctness
using spreadsheet syntax than numeric syntax. Additionally, the rate of solutions with a correctness of 0 (mostly due
to syntax errors) is dramatically lower when using the more simple spreadsheet syntax.

The effect size of ≈ 0.66 is medium, with a high relevance to practice. Working with two-dimensional data is a
common task for data engineers, and increased correctness will lead to lower amounts of bugs and further reduce the
time needed to arrive at a correct solution.
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5 Discussion

In this chapter, we move beyond the quantitative results and discuss potential reasons for the effects that were measured
in the experiment. Our goal is to provide additional insight from our extended engagement with the topic, the results
and the participants; however, additional qualitative research should be done to rigorously describe causal explanations
for the observed effects.

5.1 On Program Comprehension

With regards to program comprehension, using spreadsheet syntax resulted in higher correctness but had no statistically
significant effect on the time needed.

Because the time needed to understand the cell selection syntax is similar, we assume participants largely did not
try to verify their submission in depth by re-reading documentation and instead tried to answer from their intuitive
understanding. It seems with this approach, both the spreadsheet style syntax as well as the numeric syntax are easy
to read and did not create difficulties for the participants.

For correctness, the previous experience of participants very likely had an influence. During the coursework, many
students pointed out that they often work with data sets using spreadsheet software like Microsoft Excel or Google
Sheets. For many, these are standard tools used in data engineering to look at and edit small-scale 2D data sets.
Similarly, practitioners from industry without a programming background often use spreadsheet software to work with
data. Being able to reuse this previous experience can enable data practitioners to intuitively understand a selection
syntax more correctly.

It also seems that choosing to start counting rows with one instead of sticking to the zero-indexing often found in
GPLs means less confusion for users who do not have a programming background.
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5.2 On Code Creation

When participants had to write code, they could complete the tasks in less time and with higher correctness when
using the spreadsheet-style syntax compared to the numeric syntax.

A factor in the lower time needed to submit a solution might be the difference in the larger size of the documentation
that is available for Pandas/Python. We encouraged the participants to, if in doubt, prioritize correctness over speed so
it is conceivable that they verified their solution by re-reading the documentation.

On the other hand, this would also indicate that the spreadsheet syntax was more intuitive to understand and did require
less double-checking with documentation.

It is important to point out that faster task completion is very likely at least partially predicated on the small scale of
the dataset used. For larger data sets, especially when the spreadsheet syntax has to be extended and use two or more
characters to refer to columns (e.g., the use of "AA" for the 27th column), the numeric syntax might be faster to use
again.

Correctness was influenced by the comparatively larger amount of totally incorrect submissions with numeric indexing,
which also includes syntax errors. The spreadsheet-style syntax has only one comparatively simple way to express
a cell range. In contrast, the numeric syntax allows for some flexibility and is only one of many ways to select
cells in Pandas. For example, some participants tried to refer to column names or used extraneous brackets or other
not-allowed symbols, leading to syntax errors.

Aside from syntax errors, participants regularly made off-by-one errors using the numeric syntax, either incorrectly
selecting more initial cells or missing a final row or column of cells. These errors seem to stem from a wrong intuition
about zero-indexing selections in GPLs, as well as the resulting confusion about whether the final index is included or
excluded from the selection. In contrast, the spreadsheet-style syntax seems to be more clear. One possible explanation
is that the participants have previously selected data in the spreadsheet and visually seen the limits of their selection
represented by the software.
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5.3 Potential Reasons for Improved Correctness

A potential factor for improved correctness, both when reading code and when writing it, is the fact that spreadsheet
syntax uses two different numbering schemes to refer to the two distinct indices in two-dimensional data.

Going back to the initial example, numeric syntax such as accessing the cell in the first row and second column with
Pandas/Python using df.iloc[0, 1] relies on the ordering of parameters. With this style, no additional context can be
read from the syntax, and users have to rely purely on their knowledge about the correct position for, e.g., the index of
the row they are trying to access.

In contrast, spreadsheet syntax such as the equivalent B1 refer to columns using characters and rows by numbers.
This way, users can directly read which part of the syntax refers to which concept without having to rely on previous
knowledge about the implementation. Instead, they have to be aware of the convention of referring to columns by
characters, which they are due to their background using spreadsheet applications.

The different syntaxes are grounded in the two competing mental models when thinking about multi-dimensional data.
The programmer’s view (that finds its expression in the numeric syntax used by GPLs) is based on multi-dimensional
arrays or matrices that are accessed along their axis. This mental model scales better to more than two dimensions as
it does not assign inherent meaning to any axis.

The alternative mental model for thinking about two-dimensional data that is used by many data practitioners is
viewing the data in a spreadsheet. While this view does not scale past two dimensions, it allows for the assignment
of meaning to each axis and, therefore, custom representations for each. Additionally, using spreadsheet software
with the permanent visual representation of row and column labels as numbers and characters reinforces an intuitive
understanding of them among practitioners.

14



Is spreadsheet syntax better than numeric indexing for cell selection? PREPRINT

5.4 Practical Implications

Overall, these results are an indication that a domain-specific syntax for cell selection should be considered when
designing future languages for data engineering by data practitioners without a professional programming background.

The ability to contribute code faster hints at a lower technical barrier for users that have no background in software
engineering, one of the major challenges to including subject-matter experts in collaborative data engineering [4].
Together with the reduced rate of errors, both when creating code and when understanding cell selections, these
syntax adaptions could enable contributors with diverse backgrounds.

For language developers, knowing the target users’ previous experience is most likely an important consideration. In
this case, the insight that data practitioners often use spreadsheet programs to work with 2D data can directly lead to a
more domain-appropriate syntax.

6 Threats to Validity

We followed a thorough research process to conduct this study. However, some potential threats to validity remain
which we discuss according to the framework of threats to validity, as proposed in [25].

6.1 Threats to Conclusion Validity

To make a valid conclusion, one must understand the correct relationships between the treatment and the results of an
experiment.

Since the authors of this study are also creators oft he DSL used as a treatment in this study, searching for positive
results might have introduced bias. To mitigate this risk, we defined the hypotheses and the research design before
the data collection. Further, we used standard research designs and statistical tests and report effect sizes and results
regardless whether the results were statistically significant or not.

We employed a crossover experiment design to avoid the challenge of heterogeneity of students; in this manner, we
measure differences in comparison to participants’ average and not between participant groups [23].

For the data collection, we strictly followed a previously designed experiment procedure document to reduce individual
bias while guiding participants through the experiment. We automated large parts of the experiment in the form of an
experiment tool that implements the treatment and took measurements without interaction by the researchers.

However, subconscious bias remains a potential threat to the validity of the conclusions. Therefore, we share the
experiment tool for a thorough review and invite independent replication studies.

6.2 Threats to Internal Validity

To attribute observed effects solely to the treatment, it is crucial to control for any extraneous factors that might
influence the outcome.

One such external factor is the quality of the tools and tasks of the experiment. To ensure adequate quality, we tested
the tool and the tasks in multiple sandbox tests with other researchers before using it during the experiment. We
adjusted the tasks and the tool based on their feedback as suggested by Ko et al [14].

The participation in the experiment was voluntary for the class of students. The results might be biased by this selection
if students expect that positive responses in regard to the DSL under study would positively influence their class grades.
To avoid this, we clearly communicated that the data was anonymized and emphasized that neither participation nor
performance in the experiment influenced their grade.

Another external factor to discuss is carryover effects between treatments. We addressed such potential learning effects
by randomly assigning participants to different treatment orders and adding an initial task using pseudocode to allow
familiarization with the tool and the task setup. Regardless of these measurements, we must recognize that carryover
could still be an influencing factor on the results and aim for future replication with between-subject designs.

6.3 Threats to Construct Validity

To confirm that the measured variables accurately represent the intended theoretical constructs, it is essential to exam-
ine whether the operational definitions and instruments truly capture the underlying phenomena.
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We clearly defined the dependent variables of the experiment and measured them programmatically. Further, we chose
common measures for code comprehension and creation experiments: time and correctness [26]. However, while the
Jaccard index we chose for correctness is a standard measurement, many competing definitions of correctness are
possible.

Mono-method bias is a limitation for this study because we did only measure one variable for each construct. This
presents a danger to insufficiently capture complex relationships, for example regarding program understanding. To
strengthen the rigor of the results, additional experiments with more measurements would be needed. In future work,
we plan to extend the current insights with more qualitative studies as well.

6.4 Threats to External Validity

To generalize the results of the experiment beyond its specific context, we need to carefully evaluate the applicability
of the findings to other settings, populations, or times.

We chose students from master’s degree programs in information systems, data science, and AI as participants for the
experiment. For all drawn conclusions, it is important to contextualize them as representatives of a limited population,
data practitioners that are not professional software engineers [3].

However, we believe that those students are good proxies for a population of subject matter experts working with data
in the industry and represent the variety of data practitioners.

Additional experiments with real subject-matter experts would be needed to validate whether students are a proxy, but
we expect the results to generalize well in this limited domain. We expect that the results do not generalize well to
professional programmers with different previous backgrounds and more experiences with programming languages.

7 Conclusions

In conclusion, we conducted a large-scale, controlled experiment with student participants to find out if a domain-
specific spreadsheet-style syntax had any effect on how well data practitioners select cells from 2D data, compared to
the numeric syntax found in Pandas/Python.

In the experiment, participants completed tasks related to program comprehension by selecting a subset of cells as
described by a program snippet. In addition, they had to complete a program with appropriate syntax to select the
same cells that they were shown in a web-based tool.

With regards to program comprehension, we investigated if spreadsheet-style syntax had an effect on speed or correct-
ness when reading cell selection code, compared to numeric indexing. Participants did understand the program more
correctly when reading spreadsheet-style syntax but did not submit their solutions faster.

Similarly, for code creation, we measured time and correctness when completing program snippets with either
spreadsheet-style syntax or numeric syntax. In these tasks, participants completed their tasks faster and more cor-
rectly when using spreadsheet-style syntax compared to numeric selection syntax.

From this data, we conclude that spreadsheet-style syntax can improve results for data practitioners when creating
software artifacts for data engineering. Future language designers should consider the use of domain-specific syntax
when targeting users who do not have a classical systems programmer background.

Concretely, the correctness of both reading and writing code was increased using spreadsheet syntax. This effect can
improve the correctness of downstream data sets by reducing bugs in data pipeline code.

By using language syntax that is easier to use for practitioners and aligns more closely with their previous experience,
technical barriers to participation by these users can be reduced. This in turn will allow more non-technical users, such
as subject-matter experts, contribute to data engineering projects.

The implications for industry are important, with data engineering often consuming a large part of the costs for data
science projects. Enabling contributors from a wider array of backgrounds to directly contribute with software artifacts
can lower communication overhead and strain on professional software engineers.

While these results provide first quantitative indications, we can not draw clear causal explanations from them. To do
so, additional qualitative research would be needed. By employing interviews or think-aloud protocols, the reasons
for the effects of spreadsheet-style syntax should be explored in future work so that they can be used as guidelines for
further language development.
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